NameGarcía-Archilla, Bosco
DepartmentMatemática Aplicada II
Knowledge areaMatemática Aplicada
Professional categoryCatedrático de Universidad
E-mailRequest
           
  • No. publications

    18

  • No. visits

    1760

  • No. downloads

    2820


 

Article
Icon

Enhancing nonlinear solvers for the Navier–Stokes equations with continuous (noisy) data assimilation

García-Archilla, Bosco; Li, Xuejian; Novo, Julia; Rebholz, Leo G. (Elsevier, 2024)
We consider nonlinear solvers for the incompressible, steady (or at a fixed time step for unsteady) Navier–Stokes equations ...
Article
Icon

Robust error bounds for the Navier-Stokes equations using implicit-explicit second-order BDF method with variable steps

García-Archilla, Bosco; Novo, Julia (Oxford University Press / Institute of Mathematics and its Applications, 2023)
This paper studies fully discrete finite element approximations to the Navier–Stokes equations using inf-sup stable elements ...
Article
Icon

On the influence of the nonlinear term in the numerical approximation of Incompressible Flows by means of proper orthogonal decomposition methods

García-Archilla, Bosco; Novo, Julia; Rubino, Samuele;  (Elsevier, 2023)
We consider proper orthogonal decomposition (POD) methods to approximate the incompressible Navier–Stokes equations. We ...
Article
Icon

Second order error bounds for POD-ROM methods based on first order divided differences

García-Archilla, Bosco; John, Volker; Novo, Julia (Elsevier, 2023)
This note proves for the heat equation that using BDF2 as time stepping scheme in POD-ROM methods with snapshots based on difference quotients gives both the optimal second order error bound in time and pointwise estimates.
Article
Icon

POD-ROMs for Incompressible Flows Including Snapshots of the Temporal Derivative of the Full Order Solution

García-Archilla, Bosco; John, Volker; Novo, Julia (Society for Industrial and Applied Mathematics (SIAM), 2023)
In this paper we study the influence of including snapshots that approach the velocitytime derivative in the numerical ...
Article
Icon

Error analysis of proper orthogonal decomposition data assimilation schemes with grad–div stabilization for the Navier–Stokes equations

García-Archilla, Bosco; Novo, Julia; Rubino, Samuele (Elsevier, 2022)
The error analysis of a proper orthogonal decomposition (POD) data assimilation (DA) scheme for the Navier–Stokes equations ...
Final Degree Project
Icon

Eficiencia computacional de los elementos de Scott-Vogelius

Gutiérrez Amor, Carlota; García-Archilla, Bosco (2022)
Los elementos de Scott-Vogelius son unos elementos finitos diseñados para la resolución de las ecuaciones de Navier-Stokes. ...
Article
Icon

On the convergence order of the finite element error in the kinetic energy for high Reynolds number incompressible flows

García-Archilla, Bosco; John, Volker; Novo, Julia (Elsevier, 2021)
The kinetic energy of a flow is proportional to the square of the L2(Ω) norm of the velocity. Given a sufficient ...
Final Degree Project
Icon

Implementación eficiente en MATLAB del Método del Residuo Equilibrado

Camúñez Delgado, Antonio Jesús; García-Archilla, Bosco (2021)
El Método de lo Elementos Finitos es una herramienta muy extendida en el campo de la ingeniería para encontrar soluciones ...
Article
Icon

Uniform in Time Error Estimates for a Finite Element Method Applied to a Downscaling Data Assimilation Algorithm for the Navier--Stokes Equations

García-Archilla, Bosco; Novo, Julia; Titi, Edriss S. (Society for Industrial and Applied Mathematics Publications (SIAM), 2020)
In this paper we analyze a finite element method applied to a continuous downscal-ing data assimilation algorithm for the ...
Article
Icon

Error analysis of non inf-sup stable discretizations of the time-dependent Navier-Stokes equations with local projection stabilization

Frutos, Javier de; García-Archilla, Bosco; Volker, John; Novo, Julia (Oxford University Press, 2019)
This paper studies non inf-sup stable finite element approximations to the evolutionary Navier–Stokes equations. Several ...
Article
Icon

Fully Discrete Approximations to the Time-Dependent Navier–Stokes Equations with a Projection Method in Time and Grad-Div Stabilization

Frutos, Javier de; García-Archilla, Bosco; Novo, Julia (Springer Science+Business Media, LLC (Springer Nature), 2019)
This paper studies fully discrete approximations to the evolutionary Navier–Stokes equations by means of inf-sup stable ...
Master's Final Project
Icon

Diagramas de bifurcación con interfaz gráfica

Correa Martín, Juan José; Freire Macías, Emilio; García-Archilla, Bosco (2016)
Article
Icon

Stabilization of Galerkin Finite Element Approximations to Transient Convection-Diffusion Problems

Frutos, Javier de; García-Archilla, Bosco; Novo, Julia (Society for Industrial and Applied Mathematics, 2010)
A postprocessing technique to improve Galerkin finite element approximations to linear evolutionary convection-reaction-diffusion ...
Article
Icon

Postprocessing finite-element methods for the Navier–Stokes Equations: the Fully discrete case

Frutos, Javier de; García-Archilla, Bosco; Novo, Julia (Society for Industrial and Applied Mathematics, 2008)
An accuracy-enhancing postprocessing technique for finite-element discretizations of the Navier–Stokes equations is analyzed. ...
Article
Icon

The Postprocessed Mixed Finite-Element Method for the Navier–Stokes Equations: Refined Error Bounds

Frutos, Javier de; García-Archilla, Bosco; Novo, Julia (Society for Industrial and Applied Mathematics, 2007)
A postprocessing technique for mixed finite-element methods for the incompressible Navier–Stokes equations is analyzed. ...
Article
Icon

Postprocessing the Galerkin method: the finite-element case

García-Archilla, Bosco; Titi, Edriss S. (Society for Industrial and Applied Mathematics, 2006)
A postprocessing technique, developed earlier for spectral methods, is extended here to Galerkin nite-element methods for ...
Article
Icon

The Postprocessed Mixed Finite-Element Method for the Navier--Stokes Equations

Ayuso, Blanca; García-Archilla, Bosco; Novo, Julia (Society for Industrial and Applied Mathematics, 2005)
A postprocessing technique for mixed finite-element methods for the incompressible Navier–Stokes equations is studied. The ...