Login | Contact | Help |
 
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of idUSCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsFunding agenciesThis CommunityBy Issue DateAuthorsTitlesSubjectsFunding agencies

Services

My AccountLoginRegisterDeposit your workApplication to deposit in idUSRequest the deposit to the LibraryMore info

Discover

AuthorLi, Daniel (2)Queffélec, Hervé (2)Rodríguez Piazza, Luis (2)Lechner, Gandalf (1)Subject
Approximation numbers (2)
Composition operator (1)Composition operators (1)Hardy space (1)Infinite polydisk (1)von Neumann algebras (1)... View MoreDate Issued2017 (1)2018 (1)Funding agency
European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER) (2)
Ministerio de Economía y Competitividad (MINECO). España (2)Has file(s)Yes (2)

Policies

Institutional statementBerlin DeclarationidUS Policies

Gatherers

Recolecta
HispanaEuropeana
BaseGoogle Académico
OAIsterOpenAIRE

Links of interest

Sherpa/Romeo
DulcineaOpenDOAR
Creative Commons
Search 
  •   idUS
  • Investigación
  • Ciencias
  • Análisis Matemático
  • Search
  •   idUS
  • Investigación
  • Ciencias
  • Análisis Matemático
  • Search

Search

Show Advanced FiltersHide Advanced Filters

Filters

Use filters to refine the search results.

Now showing items 1-2 of 2

  • Sort Options:
  • Relevance
  • Title Asc
  • Title Desc
  • Issue Date Asc
  • Issue Date Desc
  • Results Per Page:
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
Icon

Approximation numbers of weighted composition operators [Article]

Lechner, Gandalf; Li, Daniel; Queffélec, Hervé; Rodríguez Piazza, Luis (Elsevier, 2018)
We study the approximation numbers of weighted composition operators f 7→ w · (f ◦ ϕ) on the Hardy space H2 on the unit disc. For general classes of such operators, upper and lower bounds on their approximation numbers ...
Icon

Approximation numbers of composition operators on the Hardy space of the infinite polydisk [Article]

Li, Daniel; Queffélec, Hervé; Rodríguez Piazza, Luis (Springer, 2017-12)
We study the composition operators of the Hardy space on D∞ ∩ℓ1, the ℓ1 part of the infinite polydisk, and the behavior of their approximation numbers.
  • About idUS
  • Deposit your work
  • Services
  • Distribution License
  • FAQS
  • idUS in figures

  • idUS is a DSpace version 6.2 implementation and is managed by Biblioteca de la Universidad de Sevilla
  • Last update: 20 November 2019
Contact  |  Help

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional License.

Logo CrueCreative Commons LicenseIcono de conformidad con el Nivel Doble-A, de las Directrices de Accesibilidad para el Contenido Web 1.0 del W3C-WAI
Copyright © 2014. idUS. Depósito de Investigación de la Universidad de Sevilla.
     

     

    This website uses cookies to improve your user experience. If you continue browsing, we understand that you accept our terms of use.  More information.

    OK