Login | Contact | Help |
 
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of idUSCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsFunding agenciesThis CommunityBy Issue DateAuthorsTitlesSubjectsFunding agencies

Services

My AccountLoginRegisterDeposit your workApplication to deposit in idUSRequest the deposit to the LibraryMore info

Discover

Author
Bonilla Ramírez, Antonio Lorenzo (4)
Bernal González, Luis (3)Seoane Sepúlveda, Juan Benigno (3)López-Salazar Codes, Jerónimo (2)Muñoz Fernández, Gustavo Adolfo (1)Prado Bassas, José Antonio (1)Subject
Algebrability (4)
Lineability (3)Spaceability (3)Disc algebra (2)Bergman spaces (1)Box dimension (1)Dense-lineability (1)Entire functions. (1)Hausdorff dimension (1)Nowhere differentiable function (1)... View MoreDate Issued2019 (2)2013 (1)2018 (1)Has file(s)Yes (4)

Policies

Institutional statementBerlin DeclarationidUS Policies

Gatherers

Recolecta
HispanaEuropeana
BaseGoogle Académico
OAIsterOpenAIRE

Links of interest

Sherpa/Romeo
DulcineaOpenDOAR
Creative Commons
Search 
  •   idUS
  • Investigación
  • Ciencias
  • Análisis Matemático
  • Search
  •   idUS
  • Investigación
  • Ciencias
  • Análisis Matemático
  • Search

Search

Show Advanced FiltersHide Advanced Filters

Filters

Use filters to refine the search results.

Now showing items 1-4 of 4

  • Sort Options:
  • Relevance
  • Title Asc
  • Title Desc
  • Issue Date Asc
  • Issue Date Desc
  • Results Per Page:
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
Icon

Nowhere hölderian functions and Pringsheim singular functions in the disc algebra [Article]

Bernal González, Luis; Bonilla Ramírez, Antonio Lorenzo; López-Salazar Codes, Jerónimo; Seoane Sepúlveda, Juan Benigno (Springer, 2019-04)
We prove the existence of dense linear subspaces, of infinitely generated subalgebras and of infinite dimensional Banach spaces in the disc algebra all of whose nonzero members are not α-h¨olderian at any point of the ...
Icon

Families of strongly annular functions: linear structure [Article]

Bernal González, Luis; Bonilla Ramírez, Antonio Lorenzo (Springer, 2013-01)
A function f holomorphic in the unit disk D is called strongly annular if there exists a sequence of concentric circles in D expanding out to the unit circle such that f goes to infinity as |z| goes to 1 through these ...
Icon

Hausdorff and Box dimensions of continuous functions and lineability [Article]

Bonilla Ramírez, Antonio Lorenzo; Muñoz Fernández, Gustavo Adolfo; Prado Bassas, José Antonio; Seoane Sepúlveda, Juan Benigno (Taylor & Francis, 2019-05)
Given s ∈ (1, 2], we study (among other questions) the algebraic genericity of the set of continuous functions f : [0, 1] → R whose graph has Hausdorff (or Box) dimension exactly s.
Icon

Boundary-nonregular functions in the disc algebra and in holomorphic Lipschitz spaces [Article]

Bernal González, Luis; Bonilla Ramírez, Antonio Lorenzo; López-Salazar Codes, Jerónimo; Seoane Sepúlveda, Juan Benigno (Springer, 2018-06)
We prove in this paper the existence of dense linear subspaces in the classical holomorphic Lipschitz spaces in the disc all of whose non-null functions are nowhere differentiable at the boundary. Infinitely generated free ...
  • About idUS
  • Deposit your work
  • Services
  • Distribution License
  • FAQS
  • idUS in figures

  • idUS is a DSpace version 6.2 implementation and is managed by Biblioteca de la Universidad de Sevilla
  • Last update: 20 November 2019
Contact  |  Help

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional License.

Logo CrueCreative Commons LicenseIcono de conformidad con el Nivel Doble-A, de las Directrices de Accesibilidad para el Contenido Web 1.0 del W3C-WAI
Copyright © 2014. idUS. Depósito de Investigación de la Universidad de Sevilla.
     

     

    This website uses cookies to improve your user experience. If you continue browsing, we understand that you accept our terms of use.  More information.

    OK