Por motivos de mantenimiento se ha deshabilitado el inicio de sesión temporalmente. Rogamos disculpen las molestias.
Artículo
Spectral methods for bivariate Markov processes with diffusion and discrete components and a variant of the Wright-Fisher model
Autor/es | Domínguez de la Iglesia, Manuel |
Departamento | Universidad de Sevilla. Departamento de Análisis Matemático |
Fecha de publicación | 2012-09-01 |
Fecha de depósito | 2016-06-16 |
Publicado en |
|
Resumen | The aim of this paper is to study differential and spectral properties of the infinitesimal operator of two dimensional Markov processes with diffusion and discrete components. The infinitesimal operator is now a second-order ... The aim of this paper is to study differential and spectral properties of the infinitesimal operator of two dimensional Markov processes with diffusion and discrete components. The infinitesimal operator is now a second-order differential operator with matrix-valued coefficients, from which we can derive backward and forward equations, a spectral representation of the probability density, study recurrence of the process and the corresponding invariant distribution. All these results are applied to an example coming from group representation theory which can be viewed as a variant of the Wright-Fisher model involving only mutation effects. |
Agencias financiadoras | Ministerio de Ciencia e Innovación (MICIN). España Junta de Andalucía |
Identificador del proyecto | MTM2009- 12740-C03-02
FQM-262 P06-FQM-01735 P09-FQM-4643 2008-0207 |
Cita | Domínguez de la Iglesia, M. (2012). Spectral methods for bivariate Markov processes with diffusion and discrete components and a variant of the Wright-Fisher model. Journal of Mathematical Analysis and Applications, 393 (1), 239-255. |
Ficheros | Tamaño | Formato | Ver | Descripción |
---|---|---|---|---|
Spectral methods for bivariate ... | 511.8Kb | [PDF] | Ver/ | |