Mostrar el registro sencillo del ítem

Artículo

dc.creatorRodríguez de Tembleque Solano, Luises
dc.creatorGarcía Sánchez, Felipees
dc.creatorSáez Pérez, Andréses
dc.date.accessioned2024-02-08T16:45:18Z
dc.date.available2024-02-08T16:45:18Z
dc.date.issued2019-06
dc.identifier.citationRodríguez de Tembleque Solano, L., García Sánchez, F. y Sáez Pérez, A. (2019). Crack-face frictional contact modelling in cracked piezoelectric materials. Computational Mechanics, 64, 1655-1667. https://doi.org/10.1007/s00466-019-01743-x.
dc.identifier.issn0178-7675es
dc.identifier.urihttps://hdl.handle.net/11441/154964
dc.description.abstractActuators, sensors, micro- and nano-electromechanical systems and other piezoelectirc components are generally constructed in block form or as a thin laminated composites. The study of the integrity of such materials in their various forms and small sizes is still a challenge nowadays. To gain a better understanding of these systems, this work presents a crack surface contact formulation that includes friction and thus makes it possible to study the integrity of these advanced materials under more realistic crack surface multifield operational conditions. The dual boundary element method (BEM) is used for modeling frictional crack surface contact on piezoelectric solids in the presence of electric fields, further taking into account the electrical semipermeable boundary conditions on the crack. The formulation uses contact operators over the augmented Lagrangian to enforce contact constraints on the crack surfaces. The BEM reveals to be a very suitable methodology for these interface interaction problems because it considers only the boundary degrees of freedom, what makes it possible to reduce the number of unknowns and to obtain accurate results with a much lower number of elements than formulations based on the standard finite element method or the eXtended finite element method. The capabilities of this methodology are illustrated by solving some benchmark problems.es
dc.description.sponsorshipMinisterio de Ciencia e Innovación DPI201453947-Res
dc.description.sponsorshipMinisterio de Ciencia e Innovación DPI2017-89162-Res
dc.formatapplication/pdfes
dc.format.extent18 p.es
dc.language.isoenges
dc.publisherSpringeres
dc.relation.ispartofComputational Mechanics, 64, 1655-1667.
dc.subjectPiezoelectric materialses
dc.subjectCrackfrictiones
dc.subjectFracture mechanicses
dc.subjectContact mechanics·es
dc.subjectBoundary element methodes
dc.subjectSemipermeable electrical boundary conditionses
dc.titleCrack-face frictional contact modelling in cracked piezoelectric materialses
dc.typeinfo:eu-repo/semantics/articlees
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Mecánica de Medios Continuos y Teoría de Estructurases
dc.relation.projectIDDPI201453947-Res
dc.relation.projectIDDPI2017-89162-Res
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s00466-019-01743-xes
dc.identifier.doi10.1007/s00466-019-01743-xes
dc.journaltitleComputational Mechanicses
dc.publication.volumen64es
dc.publication.initialPage1655es
dc.publication.endPage1667es
dc.contributor.funderMinisterio de Ciencia e Innovación (MICIN). Españaes
dc.contributor.funderMinisterio de Ciencia e Innovación (MICIN). Españaes

FicherosTamañoFormatoVerDescripción
tembleque4.pdf1.416MbIcon   [PDF] Ver/Abrir   Versión aceptada

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Este documento está protegido por los derechos de propiedad intelectual e industrial. Sin perjuicio de las exenciones legales existentes, queda prohibida su reproducción, distribución, comunicación pública o transformación sin la autorización del titular de los derechos, a menos que se indique lo contrario.