Por motivos de mantenimiento se ha deshabilitado el inicio de sesión temporalmente. Rogamos disculpen las molestias.
Artículo
Data Driven Energy Economy Prediction for Electric City Buses Using Machine Learning
Autor/es | Sennefelder, Roman Michael
Martín Clemente, Rubén González Carvajal, Ramón Trifonov, Dimitar |
Departamento | Universidad de Sevilla. Departamento de Teoría de la Señal y Comunicaciones Universidad de Sevilla. Departamento de Ingeniería Electrónica |
Fecha de publicación | 2023 |
Fecha de depósito | 2023-10-18 |
Publicado en |
|
Resumen | Electrification of transportation systems is increasing, in particular city buses raise enormous potential. Deep understanding of real-world driving data is essential for vehicle design and fleet operation. Various ... Electrification of transportation systems is increasing, in particular city buses raise enormous potential. Deep understanding of real-world driving data is essential for vehicle design and fleet operation. Various technological aspects must be considered to run alternative powertrains efficiently. Uncertainty about energy demand results in conservative design which implies inefficiency and high costs. Both, industry, and academia miss analytical solutions to solve this problem due to complexity and interrelation of parameters. Precise energy demand prediction enables significant cost reduction by optimized operations. This paper aims at increased transparency of battery electric buses' (BEB) energy economy. We introduce novel sets of explanatory variables to characterize speed profiles, which we utilize in powerful machine learning methods. We develop and comprehensively assess 5 different algorithms regarding prediction accuracy, robustness, and overall applicability. Achieving a prediction accuracy of more than 94%, our models performed excellent in combination with the sophisticated selection of features. The presented methodology bears enormous potential for manufacturers, fleet operators and communities to transform mobility and thus pave the way for sustainable, public transportation. |
Agencias financiadoras | Ministerio de Ciencia e Innovación (MICIN). España Unión Europea |
Identificador del proyecto | TED2021-131052B-C22 |
Cita | Sennefelder, R.M., Martín Clemente, R., González Carvajal, R. y Trifonov, D. (2023). Data Driven Energy Economy Prediction for Electric City Buses Using Machine Learning. IEEE Access, 11, 97057-97071. https://doi.org/10.1109/ACCESS.2023.3311895. |
Ficheros | Tamaño | Formato | Ver | Descripción |
---|---|---|---|---|
IEEE_2023_Sennefelder_Data_OA.pdf | 2.306Mb | [PDF] | Ver/ | |