Mostrar el registro sencillo del ítem

Artículo

dc.creatorLópez Arenal, Jesúses
dc.creatorMoshtaghion, Bibi Malmales
dc.creatorCumbrera Hernández, Francisco Luises
dc.creatorGómez García, Diegoes
dc.creatorOrtiz, Angel Luises
dc.date.accessioned2023-05-25T15:31:12Z
dc.date.available2023-05-25T15:31:12Z
dc.date.issued2022
dc.identifier.citationLópez Arenal, J., Moshtaghion, B.M., Cumbrera Hernández, F.L., Gómez García, D. y Ortiz, A.L. (2022). Powder-metallurgy fabrication of ZrB2-hardened Zr3Al2intermetallic composites by high-energy ball-milling and reactive spark-plasma sintering. Journal of Materials Research and Technology, 21, 617-626. https://doi.org/10.1016/j.jmrt.2022.09.071.
dc.identifier.issn2238-7854es
dc.identifier.urihttps://hdl.handle.net/11441/146640
dc.description.abstractA powder metallurgy route combining high-energy ball-milling (HEBM) of elemental powders and reactive spark-plasma sintering (SPS) is proposed for the controlled fabrication of novel composites based on a Zr-Al intermetallic matrix hardened with a ceramic second-phase. As proof-of-concept, its suitability is demonstrated on ZrB2-hardened Zr3Al2. Specifically, commercially available powders of ZrH2, Al, and B were first combined in molar ratios of 2:1:1 to give an intermetallic-ceramic composite nominally formed by ∼76.8 vol.% Zr3Al2 plus 23.2 vol.% ZrB2, and were intimately mixed and mechanically activated by HEBM in the form of dry shaker milling for 30 min, next identifying by a dilatometric SPS test at 50 MPa pressure that the densification window of these composites is ∼975-1275 °C. Subsequent densification SPS tests at 50 MPa pressure in that temperature interval, and also at 1350 °C, plus the microstructural and mechanical characterisations of the resulting materials, established 1175 °C as the optimal SPS temperature. It was also identified that densification takes place by transient liquid-phase sintering with molten Al, and that it occurs gradually, not abruptly, because most molten Al disappears in a flash by reacting with Zr to form in situ the intermetallic. It is also shown that the combination of HEBM plus reactive SPS yields Zr3Al2+ZrB2 composites with fine-grained microstructures formed essentially by multitudinous ZrB2 nanograins dispersed within a matrix of submicrometre, or nearly submicrometre, Zr3Al2 grains. Importantly, these intermetallic-ceramic composites were found to be very hard (i.e., ∼11.5 GPa), attributable to the hardening provided by the ZrB2 nanograins, and fairly tough (i.e., ∼4.5 MPa·m1/2), and therefore potential candidate materials for a multitude of structural-tribological applications. Finally, implications for future study are discussed.es
dc.description.sponsorshipMinisterio de Ciencia e Innovación PID2019-103847RJ-I00es
dc.description.sponsorshipJunta de Andalucía P18-RTJ-197es
dc.description.sponsorshipJunta de Extremadura IB20017es
dc.formatapplication/pdfes
dc.format.extent10 p.es
dc.language.isoenges
dc.publisherElsevieres
dc.relation.ispartofJournal of Materials Research and Technology, 21, 617-626.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectHigh-energy ball-millinges
dc.subjectIntermetallic-ceramic compositeses
dc.subjectMechanical propertieses
dc.subjectSpark plasma sinteringes
dc.subjectZr-Al intermetallices
dc.subjectZrB2hardeninges
dc.titlePowder-metallurgy fabrication of ZrB2-hardened Zr3Al2intermetallic composites by high-energy ball-milling and reactive spark-plasma sinteringes
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Física de la Materia Condensadaes
dc.relation.projectIDPID2019-103847RJ-I00es
dc.relation.projectIDP18-RTJ-197es
dc.relation.projectIDIB20017es
dc.relation.projectIDGR21170es
dc.relation.publisherversionhttps://doi.org/10.1016/j.jmrt.2022.09.071es
dc.identifier.doi10.1016/j.jmrt.2022.09.071es
dc.journaltitleJournal of Materials Research and Technologyes
dc.publication.volumen21es
dc.publication.initialPage617es
dc.publication.endPage626es
dc.contributor.funderMinisterio de Ciencia e Innovación (MICIN). Españaes
dc.contributor.funderJunta de Andalucíaes
dc.contributor.funderJunta de Extremaduraes

FicherosTamañoFormatoVerDescripción
Powder-metallurgy fabrication.pdf3.501MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional