Por motivos de mantenimiento se ha deshabilitado el inicio de sesión temporalmente. Rogamos disculpen las molestias.
Article
A study of the suitability of autoencoders for preprocessing data in breast cancer experimentation
Author/s | Macías García, Laura
Luna Romera, José María García Gutiérrez, Jorge Martínez Ballesteros, María del Mar Riquelme Santos, José Cristóbal González Cámpora, Ricardo |
Department | Universidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticos |
Publication Date | 2017 |
Deposit Date | 2022-04-12 |
Published in |
|
Abstract | Breast cancer is the most common cause of cancer death in women. Today, post-transcriptional protein
products of the genes involved in breast cancer can be identified by immunohistochemistry. However,
this method has ... Breast cancer is the most common cause of cancer death in women. Today, post-transcriptional protein products of the genes involved in breast cancer can be identified by immunohistochemistry. However, this method has problems arising from the intra-observer and inter-observer variability in the assess ment of pathologic variables, which may result in misleading conclusions. Using an optimal selection of preprocessing techniques may help to reduce observer variability. Deep learning has emerged as a powerful technique for any tasks related to machine learning such as classification and regression. The aim of this work is to use autoencoders (neural networks commonly used to feed deep learning architec tures) to improve the quality of the data for developing immunohistochemistry signatures with prognos tic value in breast cancer. Our testing on data from 222 patients with invasive non-special type breast carcinoma shows that an automatic binarization of experimental data after autoencoding could outper form other classical preprocessing techniques (such as human-dependent or automatic binarization only) when applied to the prognosis of breast cancer by immunohistochemical signatures |
Funding agencies | Ministerio de Economía y Competitividad (MINECO). España |
Project ID. | TIN2014-55894-C2-1-R |
Referenced by | Macías García, L., Robles Frías, A. y García Gutiérrez, J. (2024). Inmunohistoquímica del carcinoma ductal infiltrante de mama para supervivencia y mortalidad [Dataset]. idUS (Depósito de Investigación de la Universidad de Sevilla). https://doi.org/10.12795/11441/161794 |
Citation | Macías García, L., Luna Romera, J.M., García Gutiérrez, J., Martínez Ballesteros, M.d.M., Riquelme Santos, J.C. y González Cámpora, R. (2017). A study of the suitability of autoencoders for preprocessing data in breast cancer experimentation. Journal of Biomedical Informatics, 72 (August 2017), 33-44. https://doi.org/10.1016/j.jbi.2017.06.020. |
Files | Size | Format | View | Description |
---|---|---|---|---|
A study of the suitability.pdf | 4.914Mb | [PDF] | View/ | |