Por motivos de mantenimiento se ha deshabilitado el inicio de sesión temporalmente. Rogamos disculpen las molestias.
Ponencia
Computing and reducing slope complexes
Autor/es | Kropatsch, Walter G.
Moreno Casablanca, Rocío Batavia, Darshan González Díaz, Rocío |
Departamento | Universidad de Sevilla. Departamento de Matemática Aplicada I (ETSII) |
Fecha de publicación | 2019 |
Fecha de depósito | 2021-09-09 |
Publicado en |
|
ISBN/ISSN | 978-3-030-10827-4 0302-9743 |
Resumen | In this paper we provide a new characterization of cell de-
composition (called slope complex) of a given 2-dimensional continuous
surface. Each patch (cell) in the decomposition must satisfy that there
exists a monotonic ... In this paper we provide a new characterization of cell de- composition (called slope complex) of a given 2-dimensional continuous surface. Each patch (cell) in the decomposition must satisfy that there exists a monotonic path for any two points in the cell. We prove that any triangulation of such surface is a slope complex and explain how to obtain new slope complexes with a smaller number of slope regions decomposing the surface. We give the minimal number of slope regions by counting certain bounding edges of a triangulation of the surface obtained from its critical points. |
Agencias financiadoras | Ministerio de Economía y Competitividad (MINECO). España |
Identificador del proyecto | MTM2015-67072-P |
Cita | Kropatsch, W.G., Moreno Casablanca, R., Batavia, D. y González Díaz, R. (2019). Computing and reducing slope complexes. En CTIC 2019: 7th International Workshop on Computational Topology in Image Context (12-25), Málaga, España: Springer. |
Ficheros | Tamaño | Formato | Ver | Descripción |
---|---|---|---|---|
Computing and reducing slope ... | 552.0Kb | [PDF] | Ver/ | |