Mostrar el registro sencillo del ítem

Artículo

dc.creatorNardon, E.es
dc.creatorFil, A.es
dc.creatorHoelzl, M.es
dc.creatorHuijsmans, G.es
dc.creatorJet Contributorses
dc.creatorGarcía Muñoz, Manueles
dc.date.accessioned2020-08-26T14:48:20Z
dc.date.available2020-08-26T14:48:20Z
dc.date.issued2017-01
dc.identifier.citationNardon, E., Fil, A., Hoelzl, M., Huijsmans, G., Jet Contributors, y García Muñoz, M. (2017). Progress in understanding disruptions triggered by massive gas injection via 3D non-linear MHD modelling with JOREK. Plasma Physics and Controlled Fusion, 59 (1), 014006-.
dc.identifier.issn0741-3335es
dc.identifier.urihttps://hdl.handle.net/11441/100458
dc.description.abstract3D non-linear MHD simulations of a D2 massive gas injection (MGI) triggered disruption in JET with the JOREK code provide results which are qualitatively consistent with experimental observations and shed light on the physics at play. In particular, it is observed that the gas destabilizes a large m/n = 2/1 tearing mode, with the island O-point coinciding with the gas deposition region, by enhancing the plasma resistivity via cooling. When the 2/1 island gets so large that its inner side reaches the q = 3/2 surface, a 3/2 tearing mode grows. Simulations suggest that this is due to a steepening of the current profile right inside q = 3/2. Magnetic field stochastization over a large fraction of the minor radius as well as the growth of higher n modes ensue rapidly, leading to the thermal quench (TQ). The role of the 1/1 internal kink mode is discussed. An Ip spike at the TQ is obtained in the simulations but with a smaller amplitude than in the experiment. Possible reasons are discussed.es
dc.description.sponsorshipEURATOM 633053es
dc.formatapplication/pdfes
dc.format.extent9 p.es
dc.language.isoenges
dc.publisherIOP Publishinges
dc.relation.ispartofPlasma Physics and Controlled Fusion, 59 (1), 014006-.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDisruptiones
dc.subjectNon-linear MHD modellinges
dc.subjectMassive gas injectiones
dc.titleProgress in understanding disruptions triggered by massive gas injection via 3D non-linear MHD modelling with JOREKes
dc.typeinfo:eu-repo/semantics/articlees
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Física Atómica, Molecular y Nucleares
dc.relation.projectID633053es
dc.relation.publisherversionhttp://dx.doi.org/10.1088/0741-3335/59/1/014006es
dc.identifier.doi10.1088/0741-3335/59/1/014006es
dc.contributor.groupUniversidad de Sevilla. RNM138: Física Nuclear Aplicadaes
dc.journaltitlePlasma Physics and Controlled Fusiones
dc.publication.volumen59es
dc.publication.issue1es
dc.publication.initialPage014006es

FicherosTamañoFormatoVerDescripción
Nardon_2017_Plasma_Phys._Contr ...2.192MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional