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Abstract 

The present study was focused to 
characterize the raw materials, wastes and several 
co-products from titanium dioxide industry, in 
particular their elemental composition (major, minor 
and trace elements), mineralogy, and radioactive 
contents, with the objective to apply this knowledge 
to valorize these materials in fields such as 
construction, civil engineering, fertilizers 
manufacturing, etc. 
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INTRODUCTION 
 

The recycling of waste material generated in 
the majority of industrial production processes is the 
subject nowadays of more and more research for 
several reasons. The protection of health and the 
environment are of great importance, although the 
economic benefits accruing from waste recycling 
cannot be neglected either [1–2]. The minimization of 
waste disposal, avoiding its direct release into the 
environment, generates not only health and 
environmental benefits in several industrial 
processes, in addition to the generation of the main 
product; the appropriate treatment of a fraction of the 
waste generated could lead to the production of 
co-products with economic value and broad 
applications [3].  

There is a paradigmatic NORM industry 
(NORM = Naturally Occurring Radioactive Material)  

 
 

 
hat applies widely the recycling strategy. It is located 
in the province of Huelva and produces titanium 
dioxide pigments, and two different co-products 
obtained as a consequence of the treatment of waste 
generated throughout the process. 

Two raw materials are used as feedstock in 
titanium dioxide production at the Huelva factory: 
ilmenite (FeTiO3) and slag. Ilmenite is a heavy 
mineral containing approximately 43–65 % titanium 
dioxide [4], and can be considered as a NORM 
material because generally contains enhanced 
amounts of uranium and thorium depending deeply 
from this geological origin. The titaniferous slag, 
which contains 70–80 % in titanium dioxide, is a 
co-product resulting of the smelting of ilmenite [5]. 
The oldest and most common process for titanium 
dioxide production is the sulphate process (see Fig 
1), being its main steps the followings: 

1. Digestion of the ore (batch operation): A 
carefully controlled blend of illmenite and slag is 
mixed with highly concentrated sulphuric acid (80–95 
%) to digest the TiO2 containing feedstock.  
The resulting liquor contains titanyl sulphate 
(TiOSO4) and iron sulphate (FeSO4) dissolved in 
sulphuric acid. To ensure that all the Fe is in 
dissolution, the liquor is passed through a bath of 
scrap metal (Fe reduction step). 

2. Clarification of the resulting liquor: The 
reduced liquor flows into a clarification tank where 
the un-dissolved solids (mud) are separated from the 
solution by flocculation and filtration. 

3. Titanium dioxide precipitation: The 
clarified liquor is then hydrolyzed in order
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determined by X-ray fluorescence (XRF) and 
ICP-MS, respectively. Additionally, the activity 
concentrations of natural radionuclides in these 
materials were determined by both alpha-particle 
and gamma spectrometry with semiconductor 
detectors. 
 
RESULTS AND DISCUSSION 
 

In Table 1, we can see that ilmenite is a 
NORM mineral due to its enrichment by natural 
radionuclides from the Th and U series, with a total 
concentration of some 500 Bq/kg for 238U and 232Th. 
The figures for slag are lower than those found in 
typical undisturbed soil (20-30 Bq/kg) [7].  

 
Table 1. Average concentrations of dry Bq/kg activity of natural 
radionuclides in the raw material, co-products and RG. Relative 
Humidity R.H (%). N.D. Under Detection. 

 HR 238 U 226 Ra 232 Th 228 Ra 40 K 
ILM 4 95± 10 110±10 420±15 440±30 30±5 

SLAG 3 5.9±0.6 6.1±0.6 14 ± 1 9.0±0.4 N.D 
CAP 40.3 1.5±0.2 N.D. 13 ± 2 4 ± 1 N.D. 
MON 4.2 53 ± 2 9.1± 0.4 365±13 43±2 N.D. 
RG 46.3 20 ± 1 14 ± 1 127 ± 3 91± 3 12±2 

 
The CAP activity concentrations are less 

than 10 Bq/kg, so its use in any application is not 
restricted by its radioactive properties. By contrast, 
MON has high levels of Th isotopes, particularly 
232Th and 228Th, as well as an appreciable fraction of 
the initial U that enters the process with the ilmenite. 

The radioactive content for RG) is moderate, 
indicating that a minority fraction of the initial content 
(for the Th and U isotopes) in the treated raw material 
accumulates in this co-product.  

In relation to the majority metals, ilmenite 
has the following composition: Fe2O3 (44 %) and 
TiO2 (50 %), with low percentages of SiO2 (0.7 %), 
MnO (1.3 %) and MgO (0.33 %), [4]. By contrast, the 
slag is much richer in titanium than the ilmenite (75 % 
TiO2), as expected, but poorer in iron (11 % F2O3) [6]. 
On the other hand, CAP (FeSO4·7H2O) and MON 
(FeSO4·1H2O) yield high percentages of iron (~ 30 %) 
and sulphur (~ 25 %), as expected, which 
corroborates what XRD obtained. Due to its 
formation process, the CAP (achieved by 
crystallization) contains a lower proportion of metals 
than the MON (by precipitation).  

The levels of radionuclides and heavy 
metals in CAP and MON are not a problem in present 

commercial applications. Copperas is currently being 
used as a basic soil amendment, animal feed and a 
primary flocculant in the production of liquid and solid 
ferrous sulphate for waste water treatments. As for 
the monohydrate, it is valued as a fertilizer for soils 
that are poor in iron, and as an additive in the cement 
industry for the reduction of Cr (VI). Lastly, the 
majority composition of RG is: 27 % SO3 and 33 % of 
CaO, with CaSO4·2H2O being the dominant 
crystalline phase, but with a significant iron hydroxide 
content (12 %) which gives it its characteristic dark 
red colour [8]. Also surprising is this co-product’s 
high titanium content (~7 % TiO2), which has led the 
industry to seriously investigate ways of recovering it.   

Research is currently focused on replacing 
natural gypsum in cement with red gypsum (clinker + 
natural gypsum) as a setting retardant. The first trials 
have begun, with the mixing of 10 % RG with 90 % 
clinker (RG1) and comparing the result with Type I 
(95 % clinker) 52.5 N/SR commercial cement (CEM). 
Table 2 shows the preliminary results of tests for 
resistance and setting time. The behaviour of the RG 
sample studied is similar to that of commercial 
cement, and the figures fall within the RC-08 Spanish 
Regulations. 

 
Tabla 2. Figures relating to bending and compression (MPa). 
Initial setting time Ti, final Setting timeTf (min). 

 Bending Compression Setting 
2days 28days 2 days 28days Ti Tf 

CEM 6.8±0.3 10.1±1.2 34.4±0.4 61.3±1.0 139 224 
RG1 7.6±0.8 10.8±0.8 31.5±0.8 59.6±1.5 216 351 

In order to carry out the radiological 
evaluation and to check what kind of material can be 
used in construction, the EU has established criteria 
in its “Radiation Protection 112” document [9] that 
defines the rate of external risk (I) as: 
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where C226Ra, C228Ra, C40K are the concentrations of 
the activities of 226Ra, 228Ra and 40K, respectively, in 
the construction material on trial. When applying this 
radiological criterion, we find that red gypsum can be 
used as a component of construction materials in any 
proportion with no radiological consequences. 
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CONCLUSIONS 
The present study has been made to acquire 

detailed information on the composition of raw 
materials, co-products and waste from the process to 
obtain TiO2. 

Once these three have been typified from 
the physical, chemical and radiological viewpoint, we 
have confirmed that the concentrations of metals and 
radionuclides in the CAP and MON co-products are 
within the European regulations pertaining to 
applications. RG, is now being used as a substitute 
for natural gypsum in cement production. The 
preliminary results indicate that it can be used 
without the cement losing any of its mechanical 
properties.  
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