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Generalized Spectral Analysis of Planar Lines 
on Layered Media Including Uniaxial and 

Biaxial Dielectric Substrates 

Abstruct -In this paper the spectral-domain analysis (SDA) is general- 
ized in order to compute the dispersive properties of a wide variety of 
planar and quasi-planar transmission lines ( microstrips and finlines) printed 
on a stratified dielectric medium. Uniaxial and biaxial dielectric anisotropy 
can be easily manipulated due to the definition of a “transverse propaga- 
tion matrix” characterizing each dielectric layer. The whole boundary 
value problem is reduced to two simpler problems involving only one or 
two dielectrics. Then, the spectral dyadic Green’s function is derived via a 
recurrence algorithm. The dispersion equation is derived by using the 
Ritz-Galerkin method. The numerical convergence is substantially im- 
proved taking into account the asymptotic behavior of the series. A number 
of illustrative examples have been included to emphasize the power of the 
method. 

I. INTRODUCTION 
CCURATE knowledge of the propagation parame- A ters of printed lines plays a vital role in the design of 

modern microwave and millimeter-wave integrated cir- 
cuits. Microstrip and finline configurations, the most 
widely used transmission lines for this range of frequen- 
cies, are becoming more and more complex, so it is desir- 
able to include in any analysis the presence of several 
dielectric layers and/or coupled strips or fins. On the 
other hand, since certain materials used as substrates in 
those circuits exhibit dielectric anisotropy (occurring natu- 
rally or being introduced during the manufacturing 
process), it is therefore interesting to include this contin- 
gency. The importance of accounting for the anisotropy 
has been emphasized in a comprehensive review paper by 
Alexopoulos [l]. In th s  paper and the references therein, 
the reader can find most of the major contributions on 
planar lines with anisotropic substrates published prior to 
1985. 

The multiple boundary value problem appearing when 
we have a number of planar conductors embedded in a 
stratified dielectric medium has been examined under the 
quasi-TEM assumption using different analytical tech- 
niques (a detailed review of the literature on this subject is 
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included in [2]). Cases involving anisotropic dielectrics 
have also been treated, for instance, in [3]. Unfortunately, 
the validity of these analyses is restricted to microstrip-like 
structures operating at the lower end of the microwave 
spectrum. The dispersive properties of these lines cannot 
be inferred from t h s  type of model, and the analysis 
cannot be applied to non-TEM configurations such as 
finlines. Therefore, a full-wave analysis is required to ade- 
quately model their behavior. A number of techniques 
capable of dealing with planar structures with isotropic 
and/or anisotropic dielectrics using a dynamic model have 
already been described. These include the finite difference 
technique [4], the least square boundary residual method 
[5], the singular integral equation method [6], the meth- 
od of lines [7], the generalized transverse resonance 
method [8], mode matching [9], the transmission line ma- 
trix method [lo], and the Wiener-Hopf technique [ll]. 
Nevertheless, the spectral-domain technique (SDA) is the 
most widely used, because of its feasibility in manipulating 
multilayer structures with one or several conducting strips 
[12], [13] or fins [14], [15]. 

In order to apply the SDA, the spectral dyadic Green’s 
function must be calculated for the structure to be ana- 
lyzed. To our knowledge, three different systematic meth- 
ods to do this have been given in the literature, i.e., the 
spectral-domain immittance approach [16], the transfer 
matrix approach [17], and, more recently, an iterative 
algorithm based on the use of vector potentials and equiva- 
lent transmission line problems [18]. All these methods 
consider isotropic materials, although the concept of 
equivalent transverse transmission lines is extended in [19] 
to uniaxial anisotropic dielectrics and recently has been 
applied to the analysis of a unilateral finline with uniaxial 
substrate [20] in the SDA context. Maia er al. apply the 
SDA to microstrips and finlines on uniaxial substrates [21] 
using an extension of the Hertz potential treatment pro- 
posed by Lee and Tripathi [22]. A very general approach 
for complex anisotropic layered media using a four-com- 
ponent formulation (which yields first-order partial differ- 
ential equations) is discussed from a theoretical point of 
view by Krowne [23]. The dispersive character of the 
fundamental modes of open microstrip and slotlike struc- 
tures on anisotropic substrates is treated by introducing 
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some transformed fields and using second-order differen- 
tial equations [24], [25]. A fourth-order formulation is 
presented in [26] to analyze a bilateral finline on a biaxial 
anisotropic dielectric substrate. The extension of this 
method to a general multilayer problem is not straightfor- 
ward. 

The approach presented in this paper tries to overcome 
the difficulties inherent in the analysis of multilayer struc- 
tures involving uniaxial or biaxial anisotropic dielectrics, 
and also makes use of the SDA. The spectral dyadic 
Green’s function is obtained via a recurrence algorithm 
similar to the one reported in [27] for the quasi-static case. 
The algorithm is based on the definition of a “transverse 
propagation matrix” associated with each dielectric layer 
and the reduction of the whole problem to simpler single- 
or two-layer partial problems. The method leads to sec- 
ond-order differential equations, in contrast to [23] or [26]. 
The dispersion equation is achieved via the standard 
Ritz-Galerkin method. The asymptotic behavior of the 
dyadic Green’s function and the Fourier transforms of the 
basis functions (used to approximate the surface charge 
density on the strips or the tangential electric fields in the 
slots) is explicitly incorporated in the computer programs, 
resulting in a drastic improvement of the convergence of 
the series defining the entries of the Ritz-Galerkin matrix. 
The theory developed in the paper has been used to write a 
computer program to find the dispersion characteristics 
(dominant and first higher order modes) of multistrip or 
multifin configurations embedded in a layered dielectric 
medium including uniaxial and biaxial anisotropic di- 
electrics. These programs have been conveniently checked 
with previously published results. 

11. STATEMENT OF THE PROBLEM 
Many planar transission lines used in practice can be 

viewed as particular cases of the general geometry shown 
in Fig. 1. This structure is assumed to be uniform in the z 
direction and it consists of a number of printed conductors 
embedded in a layered lossless dielectric medium, the 
whole being enclosed by rectangular boundaries. The met- 
allization thickness is negligible, and the electrical proper- 
ties of the nonmagnetic dielectric materials will be de- 
scribed by the following diagonal tensor: 

It is possible to take into account both isotropic and 
uniaxial or biaxial anisotropic materials with optical axes 
normal to region interfaces (materials are often supplied or 
selected with this orientation). This, together with the 
treatment of the multilayer problem using a “ transverse 
propagation matrix,” is the main feature of the analysis 
carried out in this paper. 

The rectangular boundary conditions assumed in Fig. 1 
correspond to actual metallic enclosures or to electric/ 
magnetic walls induced by the symmetries of the structure 
and the propagation mode. It is clear that single and 

l y  

X - a c 

Fig. 1.  Cross section of the generalized planar transmission line studied 
in t h s  paper. The system is composed of N isotropic or uniaxial/bi- 
axial dielectric layers with conductors printed on the Mth interface. 
The rectangular enclosure represents electric or magnetic walls. 

coupled microstrip lines, slotlines, and finlines can be 
modeled by the proposed general configuration. Our pur- 
pose is to provide a unified method to find the dispersive 
behavior of the propagation constant for this kind of 
transmission system in such a manner that the dielectric 
anisotropy and the number of dielectric layers or coupled 
lines are no longer a problem. 

111. SPECTRAL ANALYSIS 

A full-wave analysis of the frequency-dependent behav- 
ior of the planar transmission system shown in Fig. 1 
requires solving the Helmholtz equation subject to the 
appropriate boundary conditions. For ea5h dielectric layer 
(see Fig. 2(a)) the electric field vector ( E )  must obey the 
following equations: 

- 4 -  

v(v.E) - v ’l?= k $ Z  ( 2 4  

++Z) = o  (2b) 

with 

As stated above, the SDA has proved to be especially 
suitable in treating the multiple boundary problems we are 
interested in. Assuming time harmonic operation, each of 
the field quantities can be expressed as follows: 

+a, 

~ ( x ,  y ,  z )  = C { K ( n ,  y ) e ~ ~ a ~ ~ r } e - ~ ~ z  (3) 

where i ( n ,  y )  is the Fourier transform of A in the x 
direction, a,, is a Fourier variable, and p is the unknown 
propagation constant. 

Equations (2) can be rewritten in the spectral domain as 
a set of ordinary differential equations for the Fourier 

n = - m  
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structure to calculate g,, , (n). (c) Single-layer to calculate g,. I +, (n). 
Fig. 2. (a) i th dielectric layer of the structure in Fig. 1. (b) Two-layer 

transforms of the electric field components: 

where 

and 

Let us center our attention on the ith dielectric layer of 
the structure (Fig. 2(a)). The general solution of (4a) in the 
i th dielectric layer can be expressed in terms of the spec- 
tral two-component electric vectors-pa_rallel to the region 
interfaces delimiting this region: (8, 8- l). Using matrix 
notation, 

I sinh [ TI(  y - h,-,)] 
$ ( n ,  Y >  = 

sinh [ zl H I ]  

z s inh [p l (y -h l ) ]  - 
sinh [ El H I ]  

* E ,  - -8-1 (7) 

with 

where we have defined a transverse propagation matrix 
related to each dielectric layer: 

T h s  matrix reduces to the scalar transverse propagation 
constant given by Itoh [14] for isotropic materials. 

Note that the entire problem can be subdivided into a 
number of simpler two-layer problems corresponding to 
each pair- of adjacent dielectrics. A surface current distri- 
bution, f i n ) ,  lying at the zth interface is linearly related 
to the horizontal components of the electric fields at the 
( i  -l)th, ith, and ( i  +l)th interfaces. In the spectral do- 
main this relation can be written in a very simple manner: 

- - I - 
+ -+ 

M h J f ( n >  = i , . , - , ( .>.E1-,  + R , , , ( n ) . E :  + H l . l + l ( n ) . E l + l  
(9) 

where 

(In the space domain these expressions involve complex 

Our problem reduces now to one of determining the 
matrices. Fortunately, these can be easily derived from the 
solution of two simple problems involving only one or two 

A .  Evaluation of ii,i 

y2. = p 2  + c i  a2 - c:ki 

y;i = p 2  + ai - cbki 

(sa) convolution integrals.) 

(5b) 

(5c) dielectric layers. 

X I  X Y  n 

y: = c:,@’ + - €:ki  

. .  
€kY = L x / Z y  €:;=€;,-1 (6a) 

€tY = € , / C y  €$=€;y-l .  (6b) 

Note that the electric anisotropy is responsible for the 

In order to find i,, we must solve the problem shown in 
Fig. 2(b). The tangential electric field at the interface 
between the ith and (i + 1)th dielectric layers is related to 
the surface current at t h s  interface as follows: 

I 

(10) 
coupling in (4a). Isotropic materials yield decoupled equa- - + -  4 

j opoJ ,  = &( n )  . E i .  tions. 
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The tangential magnetic field in the spectral domain is 
derived from the electric field for each layer via 

2 = d ;  
j w o H l  = - K--E, (n ,  r)  (11) 

dY 
where 

From (11) the magnetic field is known as a function of 
the tangential electric field at the interface. Applying the 
corresponding boundary conditions, 

., (13) 
I 

we obtain a linear relation between e ( n )  and z ( n )  and 
thus an expression for f l , l  (for a biaxial anisotropic dielec- 
tric medium): 

i , , l ( n )  = ?-’( ~ + l ~ ~ l + l ~ c o t h ( ~ l + l H l + l )  
- -  + ~:E j . co th (E lH1) ) .  (14) 

B. Evaluation of g,, I + , 
In this case, the structure to be considered is shown in 

Fig. 2(c). The tangential electric field at the ( i  +l)th 
interface and the corresponding surface current on the 
ground plane are related by 

I I 

~ a P o z (  n 1 = E l ,  I + 1( n ) * e + 1. (15) 
Once again we apply the boundary conditions for H’ and 
find the expression for & I  + 1: 

As mentioned in the previous section, expression (9) is 
of interest mainly because it provides a method for deriv- 
ing a general form of the dyadic Green’s function for 
multilayered configurations. Relation (9) is formally iden- 
tical to the one reported in [27], so we can use a similar 
recurrence expression to evaluate the dyadic Green’s func- 
tion. Caution must be exercised in recognizing that the 
expressions for in [27] are scalar and in this paper are 
2 x 2  dyadics. In this way, once g matrices have been 
calculated for each layer and account is taken of the 
absence of currents at the interfaces without conductors, 
the inverse of the spectral dyadic Green’s function can be 
obtained from the following recurrence formulas: 

- 
z M ( n )  = z L ( n ) + z U , - , ( n ) - g , , , ( n )  (19) 

where 

-1 - - - - - 
- LI/ = 8,- I ,  N -  I E N -  I ,  N - I + 1. ( c- 1) . g N -  I + 1 ,  N - I 

i >1 .  
The first term ( i  = 1) in the above relations depends on 

a) ground planes: 
the nature of the upper and lower interfaces: 

- - 
zg = g,,, E?= i N - l , N - l  (214 

b) magnetic walls: 

From the reciprocity theorem, 

i l + , , l ( n )  = i l , l + , ( n > .  (17) 
Now the linear relation in the spectral domain (9) is 

known. In the following section th s  expression will be 
used to derive the dyadic Green’s function associated with 
the multilayer structure in Fig. 1. This function in conjunc- 
tion with the Ritz-Galerkin method will provide the dis- 
persion relation we are interested in. Note that (14) and 
(16) are even functions of E and so they can be properly 
evaluated from a knowledge of the eigenvalues of 8. 

IV. THE SPECTRAL DYADIC GREEN’S FUNCTION 

- 

Assuming the presence of conductors at the Mth inter- 
face, the Fourier transforms of the surface current density 
and the tangential components of the electric field are 
related via the spectral dyadic Green’s function: 

- I 

j w p o & ( n )  = E , ( n ) . E : , ( n )  ( 1 8 4  
I - 

I?,(n) = j w p o c M ( n ) . & ( n )  (18b) - - 
with Z, (n>- ’  = G,(n) = dyadic Green’s function. 

These expressions lead to a computer subroutine whose 
input variables are the tensor permittivities and thicknesses 
of the dielectric sheets. The spectral Green’s function is 
then obtained for any layered geometry using this subrou- 
tine. Because of the form of the described derivation 
process, the asymptotic behavior of the Green’s function is 
easily obtained. Ths behavior coincides with the one of 
the structure shown in Fig. 2(b). That is, although the 
Green’s function for a general multilayer structure is very 
complex, its asymptotic part reduces to the Green’s func- 
tion of a simpler equivalent structure [18]. This fact is 
exploited in the numerical implementation of the method. 

V. NUMERICAL RESULTS 

The dispersion equation for the generalized structure 
considered in this paper is obtained by applying the con- 
ventional Ritz-Galerkin procedure. The variational ex- 
pressions used as starting points involve either the surface 
current density on the strips (striplike configurations) or 
the tangential electric fields in the slots (slotlike and finline 
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configurations). In the spectral domain these expressions 
are as follows. 

Striplike systems: 
I - + C O  - 

a ( n ) . c M ( n ) - G ( n )  = O .  (23a) 
n = - w  

Slotlike or finline systems: 

t1=-m 

As is well known, a proper choice of the basis functions 
approximating the actual current or field distributions is 
critical at this point of the analysis. Following the sugges- 
tions of Jansen [28], the experience furnished by other 
authors, and our own numerical experiments, the following 
set of basis functions has been found especially suitable 
for computational purposes: 

with 

i m  

i m  

where s, is the central coordinate of the ith strip (slot), w, 
is the strip (slot) width, and Tm(x) ,  Um(x)  are Chebyshev 
polynomials of the first and second kind. (Note that the 
edge condition is explicitly taken into account.) 

The application of the Ritz-Galerkin method leads to a 
homogeneous system of linear equations for the expansion 
coefficients in (25) which has a nontrivial solution when 
the determinant of the coefficient matrix vanishes. Ths 

8 
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Fig. 4. Effective dielectric constants for several microstrip configura- 

tions as a function of frequency. Solid lines are with the results in [18]; 
circle points have been computed with our programs. 

condition provides the dispersion relation in numerical 
form. 

The singular behavior of the functions in (25) at the end 
of the conductors spreads out their Fourier spectrum in 
such a way that the series defining the entries of the 
Ritz-Galerkin matrix are very slowly convergent. In order 
to gain numerical efficiency it is necessary to overcome 
this difficulty. Fortunately, with this choice of basis func- 
tions, the asymptotic behavior of the above-mentioned 
series can be extracted and added analytically or reduced 
to an extremely fast converging series. The difference 
between the original series and its asymptotic part is added 
numerically, but its convergence is much better than that 
of the original one. It is important to emphasize that all 
series appearing in the computations present the same 
asymptotic behavior in such a way that these computations 
must be performed only once. In this way, the most time 
consuming part of the SDA is substantially improved. This 
mathematical preprocessing requires a knowledge of the 
asymptotic behavior of the spectral Green's function, which 
is very complex if several dielectric layers are present. 
Nevertheless, as discussed above, it must be noted (in 
accordance with [l8]) that this behavior depends only on 
the dielectric layers immediately adjacent to the interface 
with conductors. The contribution of the remaining layers 
decreases exponentially with an, as can be seen from the 
form of (16). 

Using the theory in this paper and taking into account 
the above considerations, we have written two computer 
programs to calculate the propagation constants of both 
generalized microstrip and generalized finline or slotlike 
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Fig. 5. In this figure we compare our results (circle points) with the 

ones recently reported by Shalaby et al. [20] (solid lines) for the 
unilateral finline on uniaxial anisotropic substrate drawn in the figure. 
(a) Dispersion characteristics of the first three odd modes for a finline 
on (i) sapphire and (ii) boron nitride substrates. W / h  = 0.1; substrate 
thickness = 0.125 mm. (b) Slot width dependence of the effective 
dielectric constant for the dominant mode for a finline on four differ- 
ent substrates: (i) Epsilam-10, (ii) sapphire, (iii) boron nitride, (iv) 
c, = 2.2. The substrate thickness and the waveguide are the same 
as in (a). 

structures. In order to check the computer programs, we 
have made exhaustive comparisons with previously pub- 
lished results. First, we have checked the low-frequency 
values with those obtained with the method reported in [3], 
obtaining agreement better than 0.5 percent. We then 
compared our results with other results obtained using 
very accurate methods. For instance, the results have been 
checked against those given by Kretch and Collin 1291 
(microstrip line on isotropic and anisotropic substrates), 
and they agree to within the accuracy with which data can 
be read from the graphs. The results obtained with our 
programs are also indistinguishable from the ones reported 
in [ l l ,  fig. 21 and [26, table I]. We have also made compar- 
isons with experimental data reported in the literature. For 
instance, we have found excellent agreement between our 
results and the measurements reported by Deibele et al. 
[30] for a large-scale microstrip model on an isotropic 
substrate (Fig. 3). This fact confirms the accuracy of the 
programs for very high frequencies. Fig. 4 shows a compar- 
ison with the results recently reported by Das and Pozar 
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Dispersive behavior of the three quasi-TEM modes of the three 
coupled strips on Epsilam-10 substrate shown in the figure. Solid lines 
have been computed taking into account the anisotropy of the sub- 
strate (c, = 13.0, c y  = 10.3) while in dashed lines the substrate has been 
assumed to be isotropic, with c, =10.3. Discrepancies are not negligible 
at all. u = 2 0  mm; d = 1 0  mm; h = l  mm; W,=IV3=l  mm; W 2 = 2  
mm; S,  = S, = 0.5 mm. 

Fig. 6. 

[18] for several multilayer microstrip structures, and in Fig. 
5 the comparison refers to a unilateral finline recently 
studied by Shalaby et al. [20] for different iso/anisotropic 
substrates. Very good agreement with previously published 
results [6] has also been found for higher order modes. 

Although only a few results have been included, we have 
also made comparisons with many other numerical and 
graphical data reported in the works cited in th s  paper 
and certain others not cited here. In most cases the agree- 
ment was very satisfactory. From this, we can use the 
developed programs with confidence. As an example, in 
Fig. 6 we show the mode effective dielectric constants for a 
three-strip configuration on Epsilam-10. The data have 
been calculated both neglecting the anisotropy of the sub- 
strate and taking it into account. As can be seen from the 
graphs, the effect of the anisotropy is not negligible. This 
effect is very important in many structures used in practice 
and so the electric anisotropy of the materials used as 
substrates should be considered in the computation of the 
propagation characteristics of the lines. Another example 
can be viewed in Fig. 7. Even- and odd-mode effective 
dielectric constants for two symmetrically coupled strips 
on P.B.N. are shown. The difference between the mode 
phase velocities is significantly reduced using a thin over- 
lay made of the same material, as can be seen from the 
figure. This result could be useful in coupler design. 
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Fig. 7. Even- and odd-mode effective dielectric constant for (a) coupled 
strips on P.B.N. ( d = 0 )  and (b) the same structure covered with a 
P.B.N. overlay (d=0.08 mm). c,=c,=5.12; c,.=3.40; w=1.2 mm; 
s = 0.5 mm; h = 0.635 mm. 

VI. CONCLUSIONS 
A unified theoretical and numerical analysis of general- 

ized planar or quasi-planar structures is presented in this 
paper. This analysis allows us to compute the propagation 
constants of fundamental and higher order modes for these 
types of structures taking into account uniaxial and biaxial 
anisotropic dielectrics and an arbitrary number of dielec- 
tric layers. The analysis is achieved using the spectral- 
domain approach, which is found to yield excellent accu- 
racy if a judicious choice of trial functions is made. The 
spectral Green’s function is computed, using a simple 
recurrence expression, from the solutions of two elemen- 
tary one- and two-layer problems. Each dielectric layer is 
characterized by its transverse propagation matrix in such 
a way that a new dielectric layer means only the introduc- 
tion of a simple 2 X 2 matrix in the analysis. The dispersion 
solution is obtained by applying the Ritz-Galerkin method, 
using as unknowns the surface current densities or the 
tangential electric fields depending on the type of structure 
to be analyzed (microstrip or finline, respectively). The 
asymptotic behavior of the series defining the entries of 
the Ritz-Galerkin matrix must be explicitly incorporated 
in order to accelerate the convergence and gain accuracy. 
The results obtained with the theory in this paper compare 
very well with previously published data for particular 
structures. 
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