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Abstract-This paper deals with the full-wave analysis of 
multiconductor microstrip lines used in electrooptic modula- 
tors (EOM), MMIC or high speed VLSI applications. An ar- 
bitrary number of coupled coplanar strips are embedded in a 
stratified medium involving iso/anisotropic dielectric and/or 
semiconductor layers. The numerical aspects of the computa- 
tion of the propagation constants using the spectral domain 
analysis (SDA) are stressed. An efficient scheme is used to ac- 
curately compute attenuation and propagation constants and 
current distributions with reasonable CPU times. Convergence 
problems due to the existence of very thin layers adjacent to 
the metallized interface has been explicitly considered. An al- 
gorithm to compute the modal characteristic impedances is 
provided regardless of the number and nature of substrate lay- 
ers. A reciprocity related definition of modal impedances is used 
in this paper. The use of this definition ensures the symmetry 
of the multiport scattering matrix associated to the structure. 

I. INTRODUCTION 
ICROSTRIP-like transmission lines are the most 
widely used in MIC and MMIC circuits. They also 

find applications in electrooptic modulators, SAW trans- 
ducers and high-speed VLSI interconnects. Conse- 
quently, a large amount of technical literature has been 
devoted to the analysis of these transmission lines. First 
of all, lossless isotropic dielectric substrates were as- 
sumed by most of authors. This is a good assumption for 
conventional MIC substrates. However, technological ad- 
vances make it necessary to study the propagation of the 
electromagnetic field in those transmission lines when 
printed on a variety of anisotropic dielectric or semicon- 
ductor substrates. Dielectric anisotropy often has to be 
considered (e.g., silicon-on-sapphire technology, elec- 
trooptic modulators and certain MIC substrates). A de- 
tailed review of the role of anisotropy in integrated circuit 
structures was reported in [I], and more recent works on 
this subject can be found in [2]-[5] and references therein. 
In addition, semiconductor materials with a wide range of 
doping levels are used in monolithic technology: slow- 
wave transmission lines (Schottky contact or MIS-metal- 
insulator-semiconductor-structures) are good examples 

Manuscript received April 25, 1991; revised September 18, 1991. This 
work was supported by CICYT Project No. PB87-0798, Spain. 

The authors are with the Department of Electronics and Electromagnet- 
ics, University of Seville, Avenida Reina Mercedes, s/n, 41012 Seville, 
Spain. 

IEEE Log Number 9104777. 

of its utilization. In general, MMIC and VLSI technolo- 
gies imply the use of semiconducting materials submitted 
to selective doping process. The geometry of these con- 
figurations consists of conducting strips printed on lossy 
stratified substrates. Different methods have been devel- 
oped to analyze single and coupled planar structures in- 
cluding lossy media. Perturbational methods are pre- 
cluded because the small losses condition is not fulfilled 
by semiconductor materials. The simple and analytical 
parallel-plate waveguide model was initially used for the 
study of slow-wave structures [6]-[SI. A quasi-TEM ap- 
proach based on physical considerations has been used in 
[5], [9], [lo]. However, for arbitrary geometries, if high 
conductivity materials or high frequencies are involved, 
more accurate theoretical models become necessary. 
Thus, full-wave approaches were developed later, e.g. 
mode matching [ 1 11, space-domain analysis [ 121, method 
of lines [13] and spectral-domain analysis (SDA) [lo], 
[ l l ] ,  [14], [15], [16], [17]. The SDA is probably the most 
simple and accurate procedure to deal with planar lines. 
However, from a numerical standpoint, the application of 
the SDA to the analysis of microstrip lines used in MMIC, 
high-speed VLSI applications and EOM shows certain 
important troubles. Part of this paper concerns this sub- 
ject. 

The general multistrip structure studied in this paper is 
shown in Fig. 1. In the most general case, the substrates 
are characterized by the following diagonal complex per- 
mittivity tensor [ E , ~ ] :  

[Ee9] = € O ( € , i i  + EyQQ + €$e) ;  (1) 
with 

E ,  = E,,, - j - ucm 

WE0 

where CY stands for x, y, z ,  which allows the consideration 
of anisotropic permittivity (dielectrics) and/or conductiv- 
ity (semiconductors, semiinsulators). Perfect zero thick- 
ness conductors are also assumed. As it was stated above, 
our goal is to implement an efficient SDA for this prob- 
lem. When Galerkin’s method is used, the most time con- 
suming part of the analysis is the generation of the Gal- 
erkin matrix. This matrix must be computed several times 
before an eigenvalue is attained. This process can be 
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Fig. 1. Transverse section of a multilayered, multiconductor coplanar 
transmission line with anisotropic dielectrics and semiconductors ([t,,]). 

drastically accelerated if an appropriate approximation of 
the dyadic Green’s function is used. Thus, as it will be 
shown later, the CPU time is kept within reasonable mar- 
gins and the accuracy of the results is ensured. This 
method is particularly advantageous when extremely thin 
layers are adjacent to the metallized interface, since this 
configuration causes poor convergence when usual tech- 
niques are used. The practical significance of this case 
(e.g., MIS lines, EOM with silica buffer) justifies the an- 
alytical effort to overcome this difficulty. 

In addition to the computation of the propagation con- 
stants, a general procedure to compute the modal imped- 
ances is provided. As it is well known, the existence of 
longitudinal field components supported by non-TEM 
structures does not allow unique current I and voltage V 
definitions in terms of path integrals of the fields. The 
impedance definition for this kind of transmission lines is 
affected by the aforementioned ambiguity, and the usual 
TEM definitions are no longer equivalent, showing dif- 
ferent dispersive behavior [ 181. The adequacy of the def- 
inition of the characteristic impedance for microstrip-like 
or other non-TEM structures has been the subject of dis- 
cussion by several authors [19]-[21]. In any case, the 
power flowing through the cross section of the structure 
is essential to define impedance parameters in single or 
multiconductor cases, as he has been discussed by differ- 
ent authors [13], [16], [22]-[24]. To our knowledge, the 
power flux has not been computed as directly as the prop- 
agation constant (@ in a multilayered system. Just a few 
examples of explicit treatment of the power flux are found 
in the literature. As an example, Chen et al. [ 131 use the 
method of lines to analyze microstrip lines providing 
expressions to compute transmitted and loss powers. A 
new general method to obtain the power flowing through 
the cross-section of an arbitrary layered structure is shown 
here. The power flux is explicitly expressed in terms of 
the surface current distribution on the strips for each prop- 
agating mode. The computation of the modal power in a 
multiconductor line in conjunction with the current eigen- 
vectors make it possible to obtain the modal impedances 
by using the definition reported in [23] and [24]. This def- 
inition is compatible with fundamental reciprocity re- 

quirements, and differs at high frequencies from other 
commonly used altematives (see, for instance, [22]). 

Finally, the validity of the numerical results has been 
checked with previous theoretical and experimental data. 
From these results it can be concluded that the SDA is a 
numerically efficient and accurate technique to deal with 
these sorts of transmission lines if some precautions are 
taken. In particular, the feasibility of this method to deal 
with high conductivity substrates is proven. An exhaus- 
tive study about the number of trial functions to be re- 
tained has been achieved. Although propagation constants 
are not too sensitive to the number of trial functions in 
most cases, a good knowledge of the current distribution 
on the strips is crucial to attain accurate values of modal 
impedances. 

11. STATEMENT OF THE PROBLEM: COMPUTATION OF 
THE COMPLEX PROPAGATION CONSTANTS 

The cross section of the multiconductor transmission 
system considered in this paper is shown in Fig. 1. A wide 
variety of MMIC (and MIC) transmission lines are partic- 
ular cases of this general configuration. Since the struc- 
ture is homogeneous in the z-direction, the phasor asso- 
ciated to the electromagnetic field has the following form: 
A = A(x, y )  e -Iyz. The propagation constant is a complex 
number, y(w) = P(w) - j a ( w ) ,  fl  being the phase con- 
stant, CY the attenuation facror, and w the angular fre- 
quency. 

A. Spectral Domain Formulation 
The analytical procedure to determine y(w) is the same 

that the one reported in [4]. There, lossless structures were 
treated. The extension to the lossy case is carried out here 
by introducing in the formulation in [4], the complex per- 
mittivity tensor ( l ) ,  and the complex propagation con- 
stant, y. The method is a SDA where the spectral dyadic 
Green’s function, G(n ,  U), is determined via the trans- 
verse propagation matrix technique (TPM) [4]. The only 
difference is the complex nature of all quantities. Permit- 
tivities appearing in those expressions become complex 
quantities, taking into account the lossy nature of media, 
as it is shown in (1). Fields and currents are then con- 
nected in the spectral domain as follows: 

(2) 
where subindex M refers to the Mth interface where con- 
ducting strips are printed. 

Once G(n,  w )  is obtained, Galerkin’s method is used to 
solve the integral equation in the spectral domain. This 
method leads to a homogeneous system of linear equa- 
tions with a certain coefficient matrix [A(w, y)]. The en- 
tries of [A(w, y)] are numerical series whose general term 
is 

EM(n)  = j w p o G ( n ,  U) - JM(n) 

Ajk = C Ja,(n)Jp*(n) Gcx~(n); 

(where CY,  0 E x ,  z )  (3) 
where & / ( n )  is the Fourier transform of the correspond- 
ing basis function used to expand the unknown surface 
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current density. The set of trial functions used in this work 
is the same that the one used in [4]. These functions in- 
clude the strip edge condition and make use of the quasi- 
minimax property of Chebyshev polynomials. The Fou- 
rier transforms of these basis functions are known in 
closed form in terms of the Bessel functions of first kind, 
which are suitable for numerical treatment. 

The condition of nontrivial solution for the equations 
system, det [A(w,  y)] = 0 is, implicitly, the dispersion 
equation y = y(w) of the structure. Its solution provides 
the mode propagation constants of the structure. Since (3) 
is a very slowly convergent serie, the solution of the ei- 
genvalue equation is a very slow process. In order to ac- 
celerate this part of the analysis some points should be 
taken into account, as it will be shown in the next sub- 
section. 

B. Numerical Solution of the Eigenvalue Equation 
The numerical treatment of the problem is substantially 

different from that used in [4]. In the general case, solving 
the eigenvalue equation implies to find the zeroes of a 
complex function of complex variable. This is achieved 
by using an effective numerical method which requires to 
calculate repeatedly the [A(w, y ) ]  matrix. These compu- 
tations should be efficiently achieved to get low CPU 
times and high accuracy. In this way, it has been found 
necessary to use a technique to accelerate the convergence 
of the series involved in (3). The technique is essentially 
based on the addition and subtraction of approximate se- 
ries that asymptotically match the series to be added. The 
main advantage lies in the fact that the approximate series 
need to be computed only once. Thus, the elements of the 
Galerkin’s matrix are computed as follows: 

where Kjk is the summation of the approximate series. 

&k = Ja,(n)J$,,,(n) Gzp(n) (5 )  

and GZb is an approximation of the corresponding Green’s 
function element. This approximation is better for in- 
creasing values of n (in fact, G(n >> N) -+ Em@)). The 
complete expression for the elements of cm is 

where a, = n a / a  is the Fourier variable; k t  = w2poe0. 
The functions E @ ) ,  q (n) ,  8 ( n ) ,  E(n), $(n), and %(n) are 
computed via readily programmable recurrence expres- 
sions (parallel to the ones used in the computation of the 
Green’s dyad) in terms of n and the permittivity tensors 
of the substrates (see Appendix I). The unknown propa- 
gation constant, y,  appears as a multiplier factor in these 
expressions. Thus, when y changes in the zero searching 
process, the approximate series do not have to be com- 
puted again. The formula (6) is a cumbersome expression 
because it is absolutely general and takes into account the 
presence of an arbitrary number of thin or thick layers. It 
could be significantly simplified for particular structures 
with two or three layers or without thin layers. Neverthe- 
less, we have used the complete expression to write a 
computer code which is useful for the general configura- 
tion studied in this paper. 

The approximate dyad c”(n) has been obtained from 
the truncation of the power series expansion of the eigen- 
values yc,(n), y&), associated to the [K,(n)] matrices, 
and other transversal propagation constants y,,(n) defined 
in [4]. Terms leading to series in (5) decaying as 1 /n’ or 
more quickly have been neglected. In addition, we have 
eliminated the terms depending on the unknown propa- 
gation constant, y,  in the arguments of the hyperbolic 
functions involved in the computation of c(n, U).  We 
must recognize here that a somewhat similar scheme has 
been used in [25 ] .  However, the study in that paper is 
limited to a two-layer lossless problem and neglects terms 
from 1 / n 3 .  The consequences of this will be discussed in 
the results section. 

It should be noted that the approximate Green’s func- 
tion converges to its true value independently of the ratio 
between the layer thickness and the box width. Conse- 
quently, the first term in (4) becomes a very quickly con- 
vergent series which can be added with extremely high 
accuracy by retaining at most a few tens of Fourier terms 
(for non critical cases less than ten terms are enough). The 
accuracy is significantly improved here in comparison 
with other techniques since the residual error of tails cor- 
responds to a Fourier series decaying as 1 /n5.  In partic- 
ular, convergence problems in SDA computations owing 
to the existence of very thin layers are avoided. An arbi- 
trary number of thin substrates or superstrates can be ac- 
commodated. The summation in ( 5 ) ,  requires to add up 
much more terms, although asymptotic techniques have 
been used to accelerate this summation. But, since the 
dependence on y and n of GZp is separated, these series 
are computed only once for each geometry and each fre- 
quency value. 

111. POWER FLOW AND MODAL IMPEDANCES 
A. Computation of the Complex Power Flux 

The existence of N ,  conducting strips printed at the Mth 
interface, implies that N,  quasi-TEM type fundamental 
modes can be supported by the structure. Once the modal 
complex propagation constants y I ,  . * - , yN, are com- 
puted, a complex modal power associated to each propa- 
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gating mode is defined as the flux of the Poynting’s vector 
through the cross-section of the structure: 

p k  = ( E  X H*)k * dS. (7) 
S 

It should be noted that real and imaginary parts are re- 
tained in this definition, in accordance with the theory de- 
scribed in [26] and [24] .  

From Parseval’s theorem, the power flowing through 
the ith layer is expressed in terms of the transformed elec- 
tric and magnetic fields in this layer: 

Now introducing the expressions in [4]  for the electro- 
magnetic fields and the matrix formulation provided by 
the SDA-TPM scheme, the integration of the Poynting 
vector over the y-variable is analytically carried out by 
using well known matrix algebra theorems. This mathe- 
matical procedures leads to an expression for P f  in func- 
tion of the transformed tangential electrical fields at the 
surfaces limiting the ith layer, Ei (n )  and Ei - ,(n): 

m 

Superscripts T and * standing for transpose and complex 
conjugate. [ M i @ ,  U, y k ) ]  is a 4 x 4 matrix, which is 
formed by two 2 x 2 matrices arranged in the following 
way : 

Formally, the [ M f ]  and [ M f ]  matrices are hyperbolic co- 
tangent and cosecant functions, as is shown in the Appen- 
dix 11. 

The tangential field at ith interface is related to the elec- 
tric field at the conductor interface via a transfer matrix, 
[T(n)lj, which is readily computed from the [LB9 ‘(n)], and 
[g(n)l , . ,+l  matrices defined in [4]  (see Appendix 111). 
Thus, the power flowing through an arbitrary layer is ex- 
pressed as a function of the tangential electric field at the 
Mth interface. Introducing ( 2 ) ,  we define for each layer a 
2 X 2 matrix, [Ni(n) ] :  

[Ni(n7 U, Y k ) ]  = ET ’ [ T I T - I 1  

Thus, the modal power flowing through the ith layer is 
given by 

m 

Finally, the total complex power associated to the kth 
propagation mode flowing through the cross section of the 
whole structure, can be expressed in terms of the Fourier 
transform of the surface current distribution on the con- 
ductors: 

m 

where [NI is obtained by adding the [Nil matrices corre- 
sponding to each layer. Note that JM is a known quantity 
once the eigenvalue problem has been solved and the 
complex vector solution to the Galerkin’s problem has 
been found. It should be emphasized that [N(n ,  U, r)]  is 
generated by means of a recurrent algorithm working par- 
allel to that used in the Green’s dyad computation. Simple 
2 X 2 matrices operations are involved. Thus, the above 
expressions turns out to be easily implemented as a com- 
puter subroutine allowing the computation of the complex 
modal power in very general cases of coplanar lines on 
multilayered substrates. 

B. Characteristic and Modal Impedances 
Once the modal power flux is computed, the impedance 

definition problem is posed. Brews [26] shows the feasi- 
bility of imposing the usual current-voltage (I - V )  re- 
lation for the complex power-even for a hybrid mode- 
for a single microstrip line. If this requirement is fulfilled, 
the three common definitions-in terms of power-current 
(P - I), voltage-power ( V  - P) and voltage-current 
( V  - I) ratio-become equivalent. The uncertainty does 
not stem from the choice of definition, but from the ability 
to define one of the quantities, I or V. The accessibility 
of either I or V determines the choice of one of them as 
the prevailing one. 

Different approaches have been used to define the modal 
impedances of multiconductor lines. For example, defi- 
nitions chosen in [16] and [22] assign partial powers to 
the lines. The line-mode impedances are defined as ratios 
between power and current associated to each line for each 
mode. Kitazawa in [3]  uses a voltage-current definition, 
since he considers that the total power flux cannot be al- 
located to the individual strips. However, this definition 
is arbitrary in some extent [26] .  Finally, Wiemer et al. 
propose in [23] a new definition of modal impedances for 
multiconductor transmission lines on lossless substrates. 
A similar requirement to the one used by Brews [26] for 
the single conductor case is done there. Modal complex 
powers and voltage and current eigenvectors fulfill the 
following relationship: 

(14) 

where [PI is a diagonal matrix built with the modal pow- 
ers. Each column of [VI and [ I ]  are the voltage and cur- 
rent eigenvectors associated to each propagation mode. In 
our case (multistrip line), the primary quantities to be 
computed are the modal powers and the current eigenvec- 
tors ([PI and [ I ]  matrices). These are built by taking the 

[PI = ; [VIT * [ I ] *  
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complex coefficients corresponding to the first term of the 
current expansion on each conductor, since just this term 
contributes to the net current with our choice of basis 
functions. The eigenvoltage matrix [VI is obtained by re- 
quiring (14). Modal orthogonality is included in (14) in 
the lossless case, since V r  Z: = VT * Z, = 0 ,  1 # m. 
A proof of the suitability of these assumptions can be 
found in [24], where for a two conductors structure a cou- 
pled transmission line model leads to expressions for the 
modal impedances analogous to the ones provided by the 
definition given in [23]. 

Nevertheless, if lossy substrates are present, the above 
formulation can be used only for certain symmetrical dis- 
tribution of conductors. In the most general case, the 
product of the eigenvoltage and the conjugate complex 
eigencurrent associated to different modes is not zero any 
more, and the matrix [PI in (14) is non-diagonal Cross- 
powers P" (defined from the electric field of mode 1 and 
the magnetic field of mode m, 1 # m),  should be then 
computed in order to obtain the voltage eigenvectors. For- 
tunately, the computation of PI.,, 1 # m, can be avoided 
if the orthogonality condition for the eigenvectors is used. 
So, for a generalized multiconductor microstrip structure, 
once the eigencurrents and modal powers are obtained for 
all the independent quasi-TEM type modes, the elements 
of the voltage eigenvectors are computed by solving the 
following set of linear equations: 

Pk = !vT. I ?  

(15) 

In this way, only the diagonal elements of [PI have to be 
computed. This leads to considerable CPU time savings. 

Modal impedances are defined for each line, lth, and 
each mode, kth, as the ratio between the elements of the 
[VI and [I] matrices, that is Zlk = VIk/ZIk. 

When modal propagation constants, normal mode 
impedances and current eigenvectors are known, the mul- 
tiport scattering and impedance matrices of the coupled 
lines system are easily computed by using the expressions 
in [22], [27]. The definition of modal impedances con- 
tained in this paper preserves the symmetry properties of 
the scattering and impedance matrices, which stands for 
a lossy reciprocal system. 

IV. RESULTS AND DISCUSSION 
Before generating reliable numerical results, we have 

tested the advantages provided by the method proposed in 
this paper. Firstly, we must emphasize that straightfor- 
ward addition of the series appearing in the analysis is 
impractical because thousands of terms should be typi- 
cally retained, especially if very thin layers are involved. 
This fact yields prohibitive CPU times in the computation 
of the complex modal propagation constants. Moreover, 
the accuracy of the numerical results is strongly depen- 
dent on geometrical and electrical parameters. On the 

contrary, the numerical scheme proposed in (4) in con- 
junction with (6) makes it feasible to handle configura- 
tions having one or several very thin layers in a very ef- 
ficient manner. Railton et al. proposed a method to 
consider one thin layer in a lossless problem [25]. First 
of all, we have generalized that method in order to take 
into account an arbitrary number of thin layers and lossy 
materials. This j r s t  order approximation of the Green's 
dyade corresponds to keeping only the first term in (6). 
However, in many practical cases, several hundreds of 
Fourier terms must be still retained if only this simplified 
approximation is used. If a second order approximation 
is used (namely, the complete expressions in (6)) only a 
few tens of Fourier terms need to be retained in the worst 
cases, even if wide boxes and/or high frequency or U val- 
ues are involved. The quality of the first and second order 
approximations is compared in Fig. 2 for a particular 
practical MIS configuration. In this structure a very thin 
layer of Si02 lies on a relatively thick Si substrate. 
The relative error for G,", AG&) = l(Gzz(n) - 
G,"(n))/G,,(n)I, is plotted in Fig. 2(a) versus the spectral 
variable (n) for two values of U. In Fig. 2(b) we have done 
the same for three frequency values. The quality of the 
approximation gets worse when U increases, but anyway, 
the second order approximation is significantly superior 
to the first order one. We can also observe another im- 
portant fact: the superiority of the second order approxi- 
mation becomes more evident when frequency (and/or box 
width) increases. These factors negatively affect the con- 
vergence of the first order approximation, while the sec- 
ond order is almost unaffected. In fact, when high fre- 
quencies or large box widths (a )  are involved, the use of 
the second order approximation is essential. The same 
conclusions are valid for AGxz and AG,,. 

The computer codes implemented on the basis of the 
theory in this paper have been exhaustively checked by 
comparing with data available in the literature. These data 
were obtained by means of quasi-TEM (valid in the low 
frequency range) or other full-wave methods (Wiener- 
Hopf's technique, spatial domain techniques and so on). 
We can conclude from these comparisons that the reli- 
ability and accuracy of our results is very satisfactory in 
all cases. In order to illustrate the applications of the tech- 
nique proposed in this paper, several structures are ana- 
lyzed and discussed in the next paragraphs. 

In Fig. 3, we show the normalized wavelength, X/Xo 
(= k o / P ) ,  -X, is the free space wavelength-, and atten- 
uation factor, a, for a MIS configuration consisting of a 
boxed microstrip on Si-Si02 substrate. Three different 
values of Si conductivity are considered and some exper- 
imental data reported in [6] are included. By comparing 
with the results reported in [Fig. 3 in [12]] for the same 
structure, we can conclude that the agreement of our re- 
sults with experimental data is slightly more satisfactory 
than those provided by spatial-domain or finite-elements 
methods. The slow-wave region is characterized by a large 
( X/X, << 1) frequency-independent slow-wave factor 
and by an attenuation constant which is proportional to 
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A A A First order opp. . . . Second order opp. 

o=l (nmm)-' 

0 5 10 15 20 25 30 35 40 
n 

(a) 

I A I First order app. . . . Second order opp. 

0 5 10 15 20 25 30 35 40 
n 

(b) 

Fig. 2. Relative error in approximations of G," for several conductivity 
and frequency values. The structure is the same that in Fig. 3 .  (a) Operating 
frequency: 10 GHz. (b) Conductivity: uI = O.OOS(Rmm)-'. 

0.4 I . l l . l l l l  I , , , , , , , ,  , I  , , , , , , ?  10 : + A  Exp. Val.  [6] 
- - h/h,  

I ,  ,!/' 

0.01 0.1 1 10 100 
Freq (GHz) 

Fig. 3 .  Dispersion of the normalized wavelength and attenuation factor for 
a shielded MIS structure for different values of u l .  Dimensions: U = 10 
m m . , h , = 0 . 2 5 m m . , h 2 = 1 ~ m . , w = 1 6 0 ~ m . ~ , . ,  = 1 2 , ~ , , ~ = 4 , 0 ~  
= 0. 

the square of frequency. When frequency increases, the 
structure enters either in the lossy dielectric region (if U 

is low enough) or in the skin effect region (if U is large). 
The characteristic impedance has also been computed by 
using the three usual definitions (power-current, voltage- 
power and voltage-current): 

20, = 2P/1Il2; Zo, = IVI2/2P*; GC = V / I ,  (16) 

being I the longitudinal current flowing on the strip and V 
the voltage. Here, V is defined as the path integral of the 

electric field from the center of the strip to the ground 
plane through a perpendicular straight line. This quantity 
is computed by using the algorithm proposed in [28] for 
layered structures, and the power flux by means of the 
method proposed in this paper. From a computational 
point of view, it is important to emphasize that more trial 
functions are necessary in voltage than in power compu- 
tations, especially in the slow-wave region. This is rea- 
sonable from physical intuition. As it was expected, the 
results obtained show that all the three definitions (both, 
real and imaginary parts) are indistinguishable at low fre- 
quencies (see Fig. 4). However, the frequency behavior 
differs at higher frequencies. This is because the funda- 
mental relation among power, voltage and current (P = 

I*) is not fulfilled by V when defined as the path 
integral. In accordance with the discussions in Section 
111-B V should be defined from I and P. In the following, 
we will restrict ourselves to the power/current definition. 
Experimental data are also plotted in Fig. 4: good agree- 
ment is found for these particular geometrical and elec- 
trical parameters. 

Livemois ef al. [12] point out strong qualitative and 
quantitative discrepancies between their spatial domain 
results and the SDA results reported in [14]. These dis- 
crepancies arise when wide strips and high U are present. 
They claim that SDA results are wrong because they are 
too far from the ones computed from a parallel-plate 
waveguide model. This reasoning is correct since the par- 
allel-plate analysis should work very well for wide strips. 
However, we have carefully computed the slow-wave fac- 
tor for this structure and we have found that our results 
are consistent with the parallel-plate waveguide model 
(see Fig. 5). In fact, the agreement is better when w in- 
creases, as it is expected from a physical argument: the 
smaller the skin depth is, the better the parallel-plate 
model works. Hence, our results seem to be very reliable. 
Wrong SDA data stem essentially from two numerical er- 
ror sources. On the one hand, several basis functions of 
the kind used in this paper must be retained when wide 
strips or high U are involved to correctly approximate the 
solution (the results reported in [14] were computed by 
using only one function). On the other hand, care must be 
taken in the evaluation of the series or integrals appearing 
in the spectral analysis, especially when very thin layers 
and/or high U materials are involved (as it is the case). In 
fact, we have also detected significant differences with 
spectral results in [14] even if only one trial function is 
used in our computations. This point has been highlighted 
in this paper. When an adequate number of trial functions 
and Fourier terms are used the results provided by the 
method in this paper are closer to the ones computed from 
the parallel plate model. We have also observed that the 
spatial domain results reported in [ 121 for the highest value 
of U (see Fig. 5) are slightly too high. Similar numerical 
error sources could explain this disagreement with our re- 
sults. 

Finally we present some results for multistrip struc- 

V 
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Fig. 4. Frequency behavior of the (a) real and (b) imaginary parts of the 
characteristic impedances for the MIS structure in Fig.  3 .  
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Fig. 5 .  Comparison of results for the complex propagation constant ob- 
tained by means of three differents methods. Single MIS stmcture. Dimen- 
sions: a = 10 mm., h ,  = 0.25 mm.,  h,  = 1 pm., w = 0.6 mm. = 12, 
E , , ~  = 4, uz = 0. (a) Normalized wavelength. (b) Attenuation factor. 

tures. Two shielded symmetric coupled microstrips on 
three layer substrate-insulator-semiconductor-semi-in- 
sulator-are first studied. This structure presents two very 
thin layers located under the conductors. The results for 
P / k o  and cy compares favorably with data in [16], where 
a SDA is also used. Modal impedances agree satisfactor- 
ily for the less dispersive mode-odd mode-but signifi- 
cant discrepancies are observed at high w with even mode 
data, as it can be seen in Fig. 6 .  In Fig. 7 we show results 
for a three conductor structure in a three layers configu- 
ration. In Fig. 7(a), slow-wave factors and attenuations 
are plotted for the three fundamental propagating modes. 
The plus, minus and zero signs (+ , -, 0), stand for the 
sense of the current flow, I, ,  on the conductors. Mode #1 
presents the lowest 0 / k o  and relatively high attenuation 
in the low-frequency range, owing to the existence of an 
important electric field in the semiconductor layer. At high 
frequencies (dielectric modes propagate), it is the field 
distribution corresponding to mode # 3  which shows the 
highest attenuation factor. Real and imaginary parts of the 
modal impedance [Z , ]  (ith conductor, jth mode), are de- 
picted in 7(b) and (c). It should be noticed that, as in the 
single microstrip case, the propagation as dielectric mode, 
( P / k o  - 3, for each fundamental mode is preceded for 

Fig. 6.  Real and imaginary parts of modal impedances for two shielded 
symmetric coupled microstrip on three layer substrate. Dimensions: a = 2 
mm., h ,  = 0.1 mm., h, = 0.6 pm., h, = 0.4 p m . ,  w = IO p m . ,  s = 10 
pm., = c , , ~  = t , . ~  = 12.7 (AsGa); U ,  = IO-' (Qmm)-l; uz = 
I O ( h m - l ;  u3 = 0. 

a maximum in the imaginary part of the corresponding 
modal impedances. For design applications, mode current 
ratios (R, = Z,/Zlj), should be provided if a three-con- 
ductors transmission line is considered [22]. Obviously, 
these parameters are known once the current eigenvectors 
have been computed. 
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V. CONCLUSION APPENDIX I 
In this paper we have presented a method based on the 

spectral domain formulation to efficiently analyze single 
and multiconductor microstrip transmission lines used in 
MMIC and high-speed VLSI circuits. Certain numerical 
convergence problems arising in the study of this kind of 
transmission structures are treated with detail. Approxi- 
mate expressions for the Green's dyad are used to dras- 
tically improve the convergence of the Fourier series in- 
volved in the computations. Important CPU time savings 
are achieved with this procedure. The accuracy and reli- 

The functions appearing in the definition of the approx- 
imate spectral Green's dyad (6) ,  are computed as follows 
(superscript + stands for M + 1 5 i < N ,  and - for 1 
< i I M, that is, they refer to layers above and below 
the Mth interface respectively): 

ability of the results are also meaningfully enhanced. In 
addition, a general method to compute the power flux @r(n) = coth (a,hl); @"+(n) = coth (a,,hN). (18) 

(19) 
through the cross section of the structure has been devel- 
oped. The power flowing for each propagating mode is 
expressed as a function of the surface current density on 
the strips (which is known from the Galerkin's analysis). 

number of anisotropic and/or semiconductor layers. Once 

b) 4 n )  = EM+ IG+ I@) + EMEV (n) 

6 ,  + C l *  I E L  coth [ a n d i 2 h , 1 .  

C l +  I E:* I + E ;  coth [Q,E:~2hll  ' E,+ (n) = 
The expression for the power is valid for an arbitrary 

modal powers and current eigenvectors are computed, 
voltage vectors are defined from the relation [PI = 4 [VIT 

(20) 
€,I 

E,", - _  - 
EYI 

E l ( n )  = coth [ a , ~ i / , , ~ h ~ ] ;  E"+(,) = coth [ a n ~ i / ; h N ] .  
The general expressions for the functions appearing in 

E, = (E,J€"J)1/2; 

[I]* and the modal orthogonality condition. Modal 
impedances are obtained now in the usual way as the volt- 
agelcurrent ratio for each line and each mode. 
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Some of the expressions above are valid for M # 1 and 
M + 1 # N .  If M = 1 or M + 1 = N those expressions 
are zero. 

It must be emphasized that the above expressions in- 

volve the same recurrence relations used in the computa- 
tion of c(n, U). Thus, redundant computations can be 
avoided. 
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APPENDIX I1 

In this appendix we define the [M47B] matrices appear- 
ing in power computations. Let [Ki(n)] the transverse 
propagation matrix associated to the ith layer such as de- 
fined in [4], and [ei@)] its diagonalization matrix: 

being yCi(n) ,  -yTi(n) the eigenvalues of [Ki(n)]. Then, the 
[Mf], [ M f ]  matrices in (10) are computed in the follow- 
ing way: 

[M?(n)l = ([Qil-l)‘ [Ai(n)l * <[Qil-l)* (30) 

(k ,  I = 1 ,  2) (33) 

where hi is the thickness of the ith layer; $, = ai + y2 
- kiEy,, and y I ,  y2 stand for the eigenvalues yc, 7%) re- 
spectively. (Ck/); and (&); are elements of the following 
matrices: 

(34) 

being [Y;] the admittance matrix defined in [4], which re- 
lates the tangential components of the electric and mag- 
netic fields in the spectral domain. 

APPENDIX I11 
The spectral components of the tangential electric field 

at thejth interface can be expressed in terms of the elec- 
tric field at the strips interface (Mth) in the following way: 

Ej = [T(n)]j ’ EM (36) 

where [T(n)lj matrix is given by 

The [LBIk- ,  and Lu]N-k matrices are defined in [4]. 
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