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Quasi-Analytical Static Solution of the Boxed 
Microstrip Line Embedded in a 

Layered Medium 
F. Medina, Member, IEEE, and M .  Horno, Member, IEEE 

Abstract-In this paper, a quasi-analytical method is pre- 
sented to carry out the quasi-TEM study of a microstrip line 
embedded in a general layered substrate with rectangular en- 
closure. Electric walls, magnetic walls and periodic boundary 
conditions are considered. The analysis is based on the spectral 
domain formulation and the use of a proper expansion of the 
free charge distribution (Chebyshev polynomials with edge 
condition). Two different approaches are proposed to speed up 
the evaluation of the spectral series in such a way that only a 
few spectral terms must be retained in the numerical compu- 
tations of the mentioned series. The propagation parameters 
and the charge distribution are obtained with extreme accuracy 
in fractions of one second on a personal computer. 

I. INTRODUCTION 
ICROSTRIP is undoubtedly one of the most popular M transmission lines used in modern microwave tech- 

nology . The propagation characteristics of this transmis- 
sion line have been computed by using a variety of nu- 
merical and analytical tools during the last three decades. 
However, analytical or quasi-analytical solutions have 
only been provided for a limited number of cases. Many 
of these solutions, based on conformal mapping tech- 
niques, can only be applied to certain particular geome- 
tries (for example [1]-[3]). Some other numerically effi- 
cient methods involving a high degree of analytical 
preprocessing and/or physical insight in the nature of the 
problem can also be found in the literature. The Wiener- 
Hopf method 141, singular integral equation (SIE) [ 5 ] ,  [6], 
matched asymptotic expansions [7 ]  and other techniques 
[8], [9] are good pieces of this type of work. Neverthe- 
less, relevant but simple configurations were considered 
by those authors. 

Recently, several authors have focused their attention 
on the exact analysis of different microstrip structures and/ 
or on the improvement of the computational aspects of 
classical numerical techniques. Kretch and Collin [ 101 
have used a very efficient perturbation-iteration method 
for the full-wave analysis of a microstrip line printed on 
an anisotropic dielectric substrate. Fikioris et al. [ 1 11 have 
presented an extremely accurate quasi-TEM study of the 
boxed microstrip line printed on a single lossless isotropic 
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substrate. In the latter paper, the authors have solved a 
Carleman-type integral equation whose kernel (Green’s 
function) has been very efficiently computed by using 
three alternative rather involved approaches [ 121. Uchida 
et al. [13] and Homentcovschi [14] have obtained dy- 
namic and quasistatic solutions for the open microstrip 
problem on a single layer substrate by employing proper 
numerical tools in the spectral domain. Efficient space- 
domain formulations have also been reported in [15] 
(quasi-TEM) and [ 161 (full-wave). 

This work shares the aim with the previously refered to 
papers. The structure considered in this paper is the mi- 
crostrip line embedded in a layered configuration with ar- 
bitrary rectangular boundary conditions (see Fig. l(a)). 
This problem can not be exactly solved but, as will be 
shown, can be numerically treated in an extremely effi- 
cient way by making use of a suitable analytical prepro- 
cessing. Owing to the presence of the layered medium, 
the problem is conveniently formulated by means of the 
well known spectral domain analysis (SDA). The Green’s 
function (static or dynamic) can be easily computed in the 
spectral domain using appropriate existing algorithms 
which can handle anisotropic and lossy materials. In this 
paper we will restrict ourselves to the quasi-TEM model, 
since the essential features of the techniques described in 
the paper should be readily extended to full-wave for- 
mulations. The application of the Ritz and Galerkin meth- 
ods in the spectral domain leads to a system of linear 
equations whose entries are slowly convergent series. Al- 
though the straightforward application of the SDA makes 
it possible to obtain results which are accurate enough for 
many practical purposes, convergence is not satisfactory. 
Moreover, charge distributions can not be accurately 
computed with reasonable computational effort. In fact, 
erroneous results are likely to be obtained in certain crit- 
ical cases. Fortunately, if physically suitable basis func- 
tions are used and the asymptotic tails of the series in- 
volved in the computations are analytically added, the 
power of the SDA can be meaningfully enhanced. Dras- 
tic improvement of accuracy and CPU savings can be 
achieved in this way. Two different techniques are pro- 
posed in this paper to enhance the SDA with a reasonable 
degree of generality and relatively low analytical com- 
plexity. The first method makes use of the residue cal- 
culus technique to speed up the convergence of the series. 
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Fig 1 (a) Cross section of the generalized boxed microstrip line x = 0 
a n d x = a c a n b e e w , m w  o r p b c  1 = O a n d j  = H , c a n b e e w ,  
m w or o b (b) Asymptotic microstrip problem The \patial domam 
Green's function for this orobkm is in Table I1 

The second method is based on the consideration of an 
appropriate auxiliar asymptotic problem (see Fig. l(b)) 
whose Green's function is analytically known in the spa- 
tial domain. Convolution integrals and inner products are 
also quasi-analytically calculated. Extremely accurate re- 
sults (for both propagation characteristics and charge dis- 
tribution) are obtained with this method in fractions of 
one second on a PC computer, thus making it appropriate 
for CAD purposes. The reliability of the computer codes 
has been exhaustively tested by comparing with highly 
accurate data available in the literature for single layer 
configurations. 

Single and symmetrically coupled strips are considered 
in this paper, but the method is expected to be extended 
to multistrip systems. The method should also be useful 
to accelerate the computations when a dynamic model is 
used, since convergence problems are mainly associated 
with the quasi-TEM limit of the dynamic problem. Any- 
way, certain additional improvements are feasible in the 
dynamic case. It should be noted that although a closed 
structure is considered, open microstrip can be treated 
with slight modifications by considering spectral integra- 
tion instead of series addition. In fact, for open structures, 
a third alternative was explained in [ 181. 

11. OUTLINE OF THE PROBLEM 
The general microstrip line analyzed in this paper is 

shown in Fig. l(a). A perfectly conducting, w wide, zero- 
thickness strip is embedded in a layered medium com- 
posed of lossless/lossy isotropic/anisotropic slabs. The 
whole structure is assumed to be placed inside a rectan- 
gular enclosure bounded by the planes x = 0, x = a, y = 
0, y = H,,,. The planes y = 0, y = a can be electric walls 
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(e.w.), magnetic walls (m.w.) or open boundaries (0.b.). 
The planes x = 0, x = a can be e.w., m.w. or periodic 
boundary conditions (p.b.c.). It is obvious that a wide 
variety of single and symmetrically coupled strip config- 
urations are particular cases of the structure appearing in 
Fig. l(a). 

The quasi-TEM analysis of the transmission line shown 
in Fig. l(a) reduces to solving the bidimensional La- 
place's problem in the x-y plane. Since an arbitrary num- 
ber of layers must be considered, it is more appropriate 
to work in the spectral domain than in the spatial domain. 
The spectral static Green's function (SSGF), GM, is read- 
ily computed by using the method in [17] (lossy and/or 
magnetic materials can also be accommodated by follow- 
ing [18]). For simplicity purposes, we will restrict our- 
selves in the exposition to the dielectric lossless case. 
Anyway, the results can be easily applied to lossy and/or 
magnetic cases, since differences mainly arise from the 
Green's function rather than from the analytical and com- 
putational aspects, which are basically the same as those 
treated in this paper. Although the spectral domain anal- 
ysis of the microstrip line has been widely discussed in 
the literature, a brief summary will be given next in order 
to put this work in context. The relationship between the 
Fourier transforms of the surface charge distribution on 
the strip, 5, and the poteFtia1 distribution at the plane 
where the strip is printed, 6, is given by 

where CY, stands for the Fourier variable. The proper def- 
inition of a,  and the Fourier transform depends on the 
nature of the boundary conditions in x = 0 and x = a. 
The suitable choices at four different common situations 
are summarized in Table I. The problem posed by (1)  can 
be solved by using the Ritz method (in lossless cases) [17] 
or Galerkin method [ 181. In both cases, the unknown free 
surface charge distribution, u ( x ) ,  is expanded into a set 
of suitable basis functions whose coefficients are com- 
puted by requiring that the electrostatic energy per unit 
length is a minimum (Ritz method) or that the potential 
on the strip is constant (Galerkin method). Both tech- 
niques lead to a set of linear equations whose unknowns 
are the expansion coefficients. In order to prevent the size 
of this system from being too large, it is crucial to choose 
the basis functions in an adequate way. Concerning this 
subject, it has been conveniently stablished in the litera- 
ture that a particularly suitable set of basis functions are 
the Chebyshev polynomials weighed by the Maxwell edge 
condition. The surface charge distribution can then be 
written as follows: 

nf  

q = o  
a(x) = c aqaq(x) 

n f  , 

s - w / 2  I x I s + w / 2  ( 2 )  
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TABLE 1 
FOURIER VARIABLE (F.V.), FOURIER TRANSFORM DEFINITION (F.T.D.) A N D  

FOURIER TRANSFORMS OF BASIS FUNCTIONS I N  (2) (F.T.B.F.) FOR 

WALL = e.w.; MAGNETIC WALL = m.w., PERIODICBOUNDARY 
CONDITION = p.b.c. 

DIFFERENT COMBINATIONS OF LATERAL BOUNDARY CONDITIONS. ELECTRIC 

~ 

x = 0: e.w. 
x = a :  e.w. x = a: e.w. 

x = 0: m.w. 

F.V. 
nx a = -  
U 

(2n - I )*  
2u 

a,, = ~ 

x = 0: p.b.c. 
x = a :  p.b.c. 

x = 0: m.w. 
x = a :  m.w. 

nx 
= -  

2n?r F.V.  a = -  
U U 

When the basis functions in (2) are employed and the Gal- 
erkin’s method is applied to ( l ) ,  the following system of 
linear equations for the coefficients ay is obtained: 

A,,,, a, = B,, where p ,  q = 0,  * * , nf ( 3 )  

m 

~ p . 4  = .C, a,*(aii) . GM(an) * a q ( a n ) ;  ~p = 60.p 

(4) 

where 5, stands for the Fourier transform of the basis 
functions in (2) (which are tabulated in Table I) and A,,,, 
is the Kronecker delta. It should be pointed out that the 
term n = 0 must be added in (4) when necessary and that 
only even order basis functions should be considered in 
the case of lateral periodic boundary conditions. 

The computational effort is mainly spent in the calcu- 
lation of the entries of the Galerkin (or Ritz) matrix, A,,,q. 
The entries are slowly convergent series involving prod- 
ucts of the Fourier transforms of the basis functions and 
the SSGF. Owing to the wide spectrum of these functions, 
the truncation of the spectral series may give place to se- 
rious errors in case a suitable technique to speed up the 
computations is not employed. This fact is particularly 
true for narrow and/or strongly coupled strips, specially 
when the computation of the charge distribution is re- 
quired. In order to speed up the computation of (4), these 
series are split in the following way: 

m 

AP,, = 5;[GM - @;It?, + S,,, ( 5 )  
t1 = 1 

(6) 

where is the permittivity (or the “equivalent” permit- 
tivity for anisotropic [ 171 or magnetic cases [ 181) of the 
ith layer. Since &, exponentially reachs its asymptotic 
limit, e;, the first term in ( 5 )  typically converges within 
a few Fourier terms. However, the convergence of Sp,, is 
extremely slow. Fortunately, analytical or quasi-analyti- 
cal expressions can be provided for Sp,q when the basis 
functions in (2) are used. This will be shown in the fol- 
lowing two sections. 

111. FIRST METHOD: COMPUTATION OF TAILS BY 
RESIDUE CALCULUS TECHNIQUE 

The first technique to compute efficiently S,,,, is based 
on transforming (6) into very quick convergent power se- 
ries. The general term of the series SP,, involves products 
of integer order first kind Bessel functions (J,,) and, even- 
tually, trigonometric functions. Two kinds of series must 
be calculated: 

n sin (cn); p + q is odd 

(7) 

n =  I 

J,,(an)J,(an) s;,, = c ; p + q is even 
n = l  n 

with a = (7rw/2a) or ( r w / 4 a )  and c = ( 2 r s / a )  or 
( r s / a ) .  These series can be viewed as the addition of the 
residue of certain complex functions. This is the basis of 
the first summation technique reported in this work. 

A .  Computation of 
Let us consider the complex function: 

If (9) is integrated in the complex z-plane along the closed 
contour shown in Fig. 2(a), the application of the Cauchy 
theorem leads to the following expression: 

( -  l ) ( P  + 4/21  

cosh [(7r - c)y]; 

sinh [(7r - c)y]; 

p + q is even 

p + q is odd. 
(10) 

The integrals in (10) involving modified Bessel func- 
tions-Z,,-can be now expressed in terms of very quickly 
convergent power series as it is explained in the Appen- 
dix. For most practical purposes, the power series can be 
viewed as closed form expressions, since very few terms 
need to be retained in a typical case. Anyway, these for- 
mulas are still useful even in those critical cases requiring 
larger number of terms. 

T 
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in the Appendix. Caution should be taken when p = q = 
0. The same derivation/integration process described in 
the previous section must be applied here. The final re- 
sults for this case have been also included in the Appen- 
dix. 

To sum up, all the asymptotic tails appearing in the 
spectral domain calculations are very efficiently computed 
by using the formulas included in this section and in the 
Appendix. It should be noticed here that the final expres- 
sions in the Appendix only involve intrinsic FORTRAN 
functions-i.e., Bessel functions or other special func- 

(a) (b) tions subroutines are not used-resulting in additional 
CPU time 

z - plane 

poles 

Fig. 2 .  Closed paths in the complex plane used in the first method for the 
evaluation of the spectral series. 

Equation (9) cannot be applied to the casep  = 0, q = 
0 due to the existence of a double pole in z = 0 in this 
case. In order to overcome this difficulty, let us consider: 

m 

= -2  c Jo(an)J,(an) cos (cn) (11) 
* 
dol n =  I 

The series (1 1) can now be added by using the Cauchy 
theorem once again. In this case, the complex function to 
be integrated around the contour shown in Fig. 2(a) must 
be z - f (2 )  (wheref(z) is obtained by taking p = 0, q = 
1 in (9)). Acting in this way, the following expression is 
obtained: 

Then, the right hand term in (12 )  is transformed into a 
power series in a. This series is integrated with respect to 
this parameter getting the desired expression for SA,o. The 
final results are shown in Appendix. 

B. Computation of S i , q  
Let us now consider the complex function: 

J,(az)J,(az) exp ( j 2 n z )  
z [exp (j27rz) - 11 

. p + q is even (13)  ’ g(z> = 

If (13 )  is integrated along the closed contour in Fig. 2(b), 
(8) can be rewritten: 

dt (14) 

The first term in the second member is the Weber- 
Schafheitlin integral, which can be found in closed form 
elsewhere [[19], p. 6931. The second term is reduced to 
a very quick convergent power series such as that shown 

IV. SECOND METHOD: SPATIAL DOMAIN COMPUTATION 
OF TAILS 

A second procedure of similar numerical efficiency as 
that explained in the previous section is based on the eval- 
uation of SP,y by using a proper integration in the spatial 
domain. Making use of Parseval and convolution theo- 
rems, (6) can be rewritten in the following way: 

l x  - s\  

r 2 ‘~\“/2) r 
I 05’. I dx’ 

where Gg(x, x ’) is the spatial domain Green’s function 
of the “asymptotic problem” (or a related function). The 
asymptotic problem corresponds to the structure shown in 
Fig. l(b). The functions Gg(x, x ’) are tabulated in Table 
I1 for the four situations considered in Table I. 

The double integrals in (15) could be directly evaluated 
via the Gauss-Chebyshev quadratures, but the singular 
behavior of Gg(x, x ’) greatly restricts the computational 
efficiency. A very large number of quadrature points 
needs to be used to get acceptable accuracy. In order to 
overcome this drawback, the logarithmic singularity of 
Gg(x, x ’) should be extracted and the corresponding con- 
volution integral should be analytically computed. When 
the strip is close to the side wall (x = 0, a) ,  the nearest 
image line charge significantly affects the convergence of 
the convolutions. Owing to this, in addition to the sin- 
gularity taking place in the integration interval, the first 
two reflected images have been pulled out of the Green’s 
function. The singular terms explicitly considered in the 
computations, S(x, x ’), have also been included in Table 
11. Let us consider the case in which x = 0 and x = a are 
electric walls. The convolutions involving the singular 

- -7 
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TABLE I1 
ASYMPTOTIC SPATIAL GREEN'S FUNCTION, G;(x, x '), A N D  ANALYTICALLY TREATED SINGULAR PART, S ( x ,  

X '), FOR THE COMBINATIONS OF LATERAL BOUNDARY CONDITIONS I N  TABLE 

G;(x ,  x ') s(.r, x ' )  (Singular Terms) 

-In [sin ('(x + x, ) )  11 - In [(2a - x - x ' ) ( x  + x ' ) ] }  

x = 0: m.w. 

x = a: e.w. 

-In (2a - x - x ' ) }  

x = 0: p.b.c. 

x = a: p.b.c. 

+ In [ (a  + x - x ' ) ( a  - x + x')])  

x = 0: m.w. 

x = a: m.w 
- 

+ In [ (x + x ' ) ( 2 a  - x - x ' ) ] }  + In [sin ('Ix - x . 1 )  I ]  
terms in this case are given by the following expressions: 

2 - 
7rW 

In (x + x ' )  

j l  - (x+)2 

being zl  = - U ;  z2 = JG + 

being zI = - U ;  z2 = JZ + U ;  

2 a - x - s  

For the other cases in Table 11, we only need to replace x 
by a - x in (17) and (18) to obtain the necessary integrals. 
Note that the regularized Green's function, G","(x, x ' )  - 
S(x, x'), is a very smooth function in the whole integra- 
tion interval. So, this part of the convolutions can be com- 
puted by using very few Gauss-Chebyshev quadrature 
points. In our programs, we have used nf + 2 quadrature 
points where nfis the number of basis functions used in 
the computations. This choice typically ensures more than 
eight significant figures to be correct. 

Once the convolution integrals have been efficiently 
evaluated, the inner products in (15) have to be computed. 
The part of the inner products involving the singular term 
Zl(q, x )  can be obtained in closed form: 

I&, x )  
2 

- 1 / 2P  i f p  = q # 0 = [  0 i f p  # q (19) 

In ( w / 4 )  i f p  = q = 0 

Numerical Gauss-Chebyshev quadratures are now used to 
compute the rest of the inner products. Since no singular- 
ities are involved, very high accuracy is achieved by also 
using nf + 2 quadrature points in the computations. Only 
in nonrealistic situations (for example, impracticable 
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spacing between lines), the number of points should be 
increased above that value, as will be commented in the 
results section. Anyway, even in these cases, conver- 
gence is achieved with a reasonable number of quadrature 
points and the procedure is still very useful. It should be 
noticed that the convolution integrals are computed just 
once at the quadrature points corresponding to the inner 
products. As a consequence of this, the application of a 
point matching scheme is not essentially more efficient 
than the Galerkin technique used in this work. 

V. NUMERICAL RESULTS 
The theory developed in the previous two sections has 

been used to write FORTRAN computer programs which 
run on a PC computer working at 20 MHz. Double pre- 
cision is used in the computations in order to check the 
accuracy of the method. It has been found that both pro- 
cedures provide exactly the same results for the charac- 
teristic parameters and the coefficients of the charge 
distribution (until 16 significant digits equal). The con- 
vergence of the series (20), ( 2 5 ) ,  (26) and (27) and the 
accuracy of the Gauss-Chebyshev quadratures used to 
compute ( 15) have been investigated before generating 
numerical data. 

The number of terms to be retained in the computation 
of the series in the Appendix 1 depends on the aspect ratio 
r = (s - w / 2 ) / w .  This number is related to the distance 
from the strip to the side walls. In most practical cases 
this ratio is not too small, and just a few terms are enough 
to achieve convergence (typically less than 3 terms). More 
terms need to be added when r is small, that is, when very 
tightly coupled strips or one strip very close to the side 
wall are considered. In any case, we have not found se- 
rious numerical problems. A typical convergence pattern 
is shown in Table 111. In this table we display the number 
of terms to be retained (kmax) to get five significant figures 
(in the characteristic impedance and the phase velocity) 
for different values of r .  The results in Table I11 were 
obtained by using nf = 6 in (2), and the CPU time was 
not bigger than 0.5 seconds in the worst case (this time 
includes the computations for the structure without di- 
electric). 

Let us consider now the efficiency of the second method 
for the computation of the asymptotic tails. As stated 
above, the part of the convolution integrals in (15) in- 
volving the regularized Green’s function is computed in 
all cases by using nf + 2 quadrature points-that is more 
than enough. Inner products could require more quad- 
rature points when r is extremely small. Nevertheless, this 
technique is much less sensitive to the value of r .  All the 
results in  Table I11 were obtained with more than 8 digits 
accuracy by using nf + 2 quadrature points in the evalu- 
ation of the inner products. In the extreme and impractical 
case r = 0.005, 5 significant figures are obtained by using 
nf + 14 quadrature points. In this case the CPU time was 
0.7 seconds. In most cases this technique works slightly 
better than the first one. Anyway, the use of any of these 

TABLE I11 
NUMBER OF TERMS ( k m d x )  USED IN THE 

SERIES IN APPENDIX A TO GET FIVE 
CORRECT DIGITS IN THE CHARACTERISTIC 

PARAMETERS AS A FUNCTION OF THE 
ASPECT RATIO r 

r k m u  

1.5 1 
1 .o 2 
0.5 3 
0.25 6 
0.1 12 
0.05 24 

techniques results in drastic improvement of the SDA 
scheme. For comparison purposes, it should be empha- 
sized that, if no analytical preprocessing is used, the 
achievement of a similar accuracy for the capacitance re- 
quires adding up 5 * lo4 Fourier terms (more than 4 min- 
utes of CPU). Prohibitive CPU time should be required 
for narrower strips. On the contrary we must only add a 
few spectral terms (typically ten terms are enough) if the 
techniques in this paper are employed. Moreover, the 
convergence features of the methods described here do 
not depend on the strip width but only slightly on the as- 
pect ratio r .  This is an additional advantage of these pro- 
cedures over other asymptotic extractions used in the past 
by the authors (a brief description can be found in the 
Appendix of [ZO]). Bessel functions were also approxi- 
mated in that case by their asymptotic limit together with 
the Green’s function. Good convergence was achieved 
with that method, but its efficiency decreases with narrow 
strips and/or if many basis functions are required (nf is 
large)-this is the case for wide strips or strong cou- 
pling. The techniques in this paper have no limitations 
with respect to the number of basis functions or the strips 
width. In particular, the off-diagonal elements of the Ritz- 
Galerkin matrix are very accurately computed in contrast 
to the other techniques. Summing it up, the methods pre- 
sented here make it possible to obtain much more accurate 
results for the charge distribution and the characteristic 
parameters with less CPU time and much higher reliabil- 
ity and generality than the other techniques previously 
used by us. 

The numerical results provided by our programs have 
been also conveniently checked by comparing with highly 
accurate data taken from the literature. The propagation 
parameters obtained for certain structures by means of ex- 
act conformal mapping are reproduced with exactness 
within the accuracy of the computer. However the accu- 
racy of our results is better illustrated by considering the 
coefficients of the expansion (2). Recently Fikioris et al. 
[l 11 reported highly accurate data for the charge distri- 
bution on a boxed microstrip. These results were obtained 
by using very efficient quasi-analytical expressions for the 
spatial Green’s function of a single layer shielded geom- 
etry in combination with the Carleman-Vekua regular- 
ization method. The methods in our paper need less ana- 

- -r 
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TABLE IV 
COEFFICIENTS OF THE CHARGE DISTRIBUTION FOR SINGLE A N D  COUPLED 

W I T H  THE ONES REPORTED I N  [[ 1 I ] ,  TABLE I]. DIMENSIONS A N D  ELECTRICAL 
CHARACTERISTICS A R E  THE SAME T H A N  I N  THAT REFERENCE. 

Fikioris et U / .  [ I  I ]  Method # 1 

(single strip) ( Q  = 0 in [ I  I ] )  

Method # 2 

a 1 /a0 ,43027625 ,430301 86 .43030 186 
.z/% . I  SO20234 ,1502067 1 ,1502067 1 
a ? / %  .06 199 140 .06199221 .06 19922 1 
.,/.,I .02 181942 I ,021820228 .02 I 82022 8 
0 5  / U 0  .007849483 .007850208 .007850208 
(k/% .002990657 ,00291345 ,00299 1345 

(coupled strips, odd mode) ( Q  = - 1 in [ 1 I ] )  

.I/% ,40354420 ,40354433 ,403 5443 3 
(12 /.U .I5388507 ,15388538 ,15388538 
U 3 / %  .OS9858 19 .OS985868 .OS985868 
a, /% .02 1669 194 .021669701 .02 1669701 
.</.,I .007719048 .007719641 ,0077 1964 1 
.,/(lo .002948209 .002948744 ,002948744 

(coupled strips, even mode) ( Q  = + 1 in [ 111) 

TABLE V 
CHARACTERISTIC PARAMETERS (CHARACTERISTIC IMPEDANCE, 2, A N D  

EFFECTIVE DIELECTRIC CONSTANT, teR) A N D  COEFFICIENTS OF THE CHARGE 

DIMENSIONS: a = 5 mm, h ,  = 3 mm, hz  = ,635 mm, h,  = 5 mm, w = I 
mm, s = 0.55 mm. e ,  = e, = eo, e? = 9.6 E , ~ .  

DISTRIBUTION EXPANSION (2) FOR SUSPENDED COUPLED STRIPS. 

Odd Mode Even Mode 

-0.9201616 1 
+ 0.36842245 
-0.13634537 
+0.06394639 

+0.01585873 

+ 0.00396332 
-0.00200885 
+O.OO 102446 

- 0.0320 I O  1 8 

- 0.007886 I4 

+ 0.7544452s 
f0.02221162 
+0.03474569 
-0.01 39752 1 
+0.00487788 

+O.OO 104 146 

+ 0.0002366S 

- 0.0022380S 

- 0.00048 860 

-0.0001 1651 

z (nf = 5 )  
z (nf = 10) 

30.8366 R 
30.8360 Q 

182.8800 R 
182.8799 R 

4.608920 
4.608930 

2.136619 
2.136619 

.I/% ,45614674 .456 I97 12 ,45619712 
0 2  /a0 ,14663990 ,14664847 , 14664847 consequence of the stationary nature of the capacitance 
a3 /U,I .06405526 ,06405633 .06405633 oer unit length. v 

0 4  /a0 .02 I96496 1 .02 1966064 .021966064 Although this paper has focused its attention on the 

ah /a, ,  ,00303 1928 .0030325802 ~oo30325802 quasi-TEM model, the method developed here should be 
(1s / a ,  ,007975686 .007976541 .007976541 

also useful in spectral full-wave computations, since the 

lytical effort and are applied to multilayer geometries 
while keeping very high numerical efficiency. In Table IV 
we compare our results with the results reported in [[ 111, 
Table I] for the case nf = 6.  It can be seen that the agree- 
ment is excellent in all cases. Numerical results obtained 
with the two methods in this paper are exactly equal. One 
half of second is the typical CPU time to get these results 
even though the strip is very close to the side wall. The 
results reported in [ [ l l ] ,  Table 111 were reproduced by us 
within 6 or 7 significant figures with CPU times ranging 
from 0 .1  to 0.5 seconds. 

Computations using 20 basis functions were achieved 
in less than 2 seconds on a 20 MHz personal computer 
(an accuracy of 8 significant figures was imposed to the 
coefficients of the surface charge expansion). The use of 
a large number of basis functions is necessary when close 
proximity or very large strips are involved. As it can be 
seen, the numerical efficiency, reliability and usefulness 
of the methods in this paper have been widely proven. 

As a final example we present in Table V the results 
for the coefficients of the charge distribution and charac- 
teristic parameters of a pair of coupled strips on sus- 
pended substrate. We have used nf = 10 for these com- 
putations and also nf = 5 .  The agreement between the 
results for the characteristic impedance, 2, and the effec- 
tive permittivity when nf = 5 and 10 is better than 1 / lo7. 
However, a l o / u 0  = 0.001 for the odd mode and =0.0001 
for the even mode. This means that the number of basis 
functions that has to be used to compute the charge dis- 
tribution in an accurate way is bigger than that required 
to compute the characteristic parameters. This is a natural 

quasi-static limit of the dynamic problem-which is the 
main factor that limits the convergence-can be analyti- 
cally treated as explained in this paper. However, the con- 
vergence is expected to be worse in the full-wave case, 
since the dyadic Green’s function tends to its asymptotic 
limit more slowly than the static Green’s function. Some 
improvements are expected to be carried out in this sense 
in a forthcoming work. 

VI. CONCLUSION 
In this paper we have presented two methods which sig- 

nificantly enhance the numerical convergence of the spec- 
tral domain computations of a microstrip line with rectan- 
gular boundary conditions and layered substrate. By using 
these techniques, extremely accurate results for both char- 
acteristic parameters and charge distributions can be ob- 
tained on a PC computer in a very short CPU time. Vir- 
tually exact solutions can be obtained for a variety of 
single and symmetrically coupled microstrip structures. 
In spite of the fact that the techniques are very general, 
they are not as cumbersome as other techniques previ- 
ously reported in the literature. The extension of these 
techniques to multistrip systems and full-wave analysis is 
the object of a future work. 

APPENDIX 
In this Appendix, very quickly convergent expressions 

for the integral in (10) and the integral with respect Q! of 
(12) are obtained. In order to evaluate these integrals, the 
product of modified Bessel functions is expanded as a se- 
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ries of powers by using [ [ 191, p. 9601. Acting in this way, 
we can write: 

Similar considerations allow us to compute the integral 
appearing as the right hand second term in (12). The only 
difference is that the closed contour to be considered is 
that shown in Fig. 2(b). The results are 

J o  dt t [ I  - exp (-$)I 
where 

where r is the gamma function. The integrals appearing 
in the previous expressions are analytically known [[ 191, 
pp. 3501: 

This expression is used for low values of m (m I 9 which 
is enough in almost all practical cases). If larger values 
of m are required to achieve convergence (this rarely oc- 
curs), we use an alternative expression [[19], pp. 3491: 

sinh (f ix) icosh sinh ( T X )  dx 

(23) 
where f is the Riemann’s zeta function. In the case p = 
0, q = 1 the following identity [[19], p. 1074, p. 9451 
must be used: 

((1, q)  - U 1 ,  1 - 9)  = a coth (aq) (24) 
As it was stated in Section 111, the series corresponding 

t o p ,  q = 0 requires an special treatment. The integral in 
(12) can be expressed as a power series similar to (20). If 
we now integrate with respect to a! (bearing in mind that 
the series must give the correct value for CY = 0), S& can 
be finally expressed as 

1 
2 

t 

S6,O = - n [2(1 - cos (c)] 

2k + 2 r2(2k + 2) 
2 c  k r o  r2(k + 2)r2(k + l)(k + 1 )  (E) 

For the particular case p = 0, q = 0, in (8) a derivation/ 
integration process similar to that applied to get (25) gives 
place to 

. ($2k+2{(2k + 2, 1 ) .  

When a large number of basis functions is used ( p  or q 
is large) or a relatively large number of terms is needed 
in the computations (k is large), overflow problems can 
arise. Owing to this, from a computational point of view, 
it is preferable to work with the natural logarithms of the 
factors involved in the general term of the series in this 
appendix. 
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