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Improved Quasi-TEM Spectral Domain Analysis Of 
Boxed Coplanar Multiconductor Microstrip Lines 

Enrique Drake, Francisco Medina, Member.. IEEE, and Manuel Homo, Member-, IEEE 

Abstract- This paper presents a very efficient quasi-TEM 
analysis of multistrip transmission systems embedded in a layered 
medium. The number of conductors and substrates is arbitrary, 
and the whole structure is assumed to be enclosed in a rectan- 
gular set of boundary conditions. The analysis makes use of the 
Galerkin method in the spectral domain. Chebyshev polynomials 
with edge conditions are used as basis and test functions for 
the strips free charge distribution. This standard technique is 
considerably enhanced by means of two alternative procedures to 
accelerate the computation of the entries of the Galerkin matrix. 
Extremely accurate results for a multistrip system, including the 
charge distribution, can then be obtained on a PC computer in 
a short CPU time. 

I .  INTRODUCTION 

ULTICONDUCTOR TRANSMISSION LINES (MTL) M are widely used in (monolithic) microwave integrated 
circuits, high speed interconnecting buses and other applica- 
tions. Once the propagation characteristics of a MTL system 
are known, its frequency domain or time domain electrical 
responses can be obtained by means of well known methods. 
The propagation parameters have been computed by means of 
both quasi-TEM and full-wave approaches. In many practical 
situations the quasi-TEM analysis provides results which are 
accurate enough, and in these cases it is prefered to the 
much more computationally involved full-wave approach. In 
addition, quasi-TEM data can be used as an initial guess in 
full-wave algorithms, thus improving their efficiency. 

If quasi-TEM operation is assumed. the propagation param- 
eters are computed from the capacitance, IC], and inductance, 
[ L ] ,  per unit length (p.u.1.) matrices of the MTL. Powerful 
methods have been reported in the literature to compute [C] 
and [L] for multiconductor systems having arbitrary geometry 
[1]-[3] or planar geometry [4], [SI. Specific techniques have 
also been developed for microstrip geometries, which result 
in particularly efficient computer algorithms. For instance, 
some multiconductor structures can be exactly solved by using 
conformal mapping [6], [7] or very efficiently handled by 
means of the integral equation technique [8]. For the general 
microstrip-like geometry embedded in a layered linear medium 
(see Fig.1) the spectral domain approach (SDA) - combined 
with the Galerkin method [9, IO],  variational formulation [ I  I]. 
[I21 or iterative techniques 1131, [I41 - is probably the most 
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Fig. 1, Cro\$ section of the generalized boxed coplanar multistrip line under 
study. 

simple and widely used tool. Although the direct application 
of these techniques gives place to accurate, reliable and quick 
computer codes, proper analytical preprocessing drastically 
improves their performance. A variety of techniques involving 
heavy analytical work has been applied to the solution of the 
single microstrip problem (see [ 151 and the references therein). 

The present paper is a meaningful extension of the work in 
[ 151 which deals with multistrip geometries having arbitrary 
strip widths. The technique is essentially an enhanced spectral 
domain analysis. Two efficient schemes are provided to ac- 
celerate the computation of the spectral series involved in the 
Galerkin matrix in a drastical way. The application of these 
techniques makes it possible to compute the characteristic 
parameters of the microstrip MTL in Fig. 1 with high accuracy 
in a short CPU time. The charge distribution is simultaneously 
obtained with extreme accuracy. The analysis of a typical 
multistrip system can be carried out on a PC/AT computer 
with math coprocessor in no more than one or two seconds. 
The developed programs can be used for CAD applications 
on a workstation. This software could be useful for engineers 
dealing with multistrip geometries. 

11. STATEMENT OF THE PROBLEM 

The cross section of the microstrip-like system considered 
in this work is shown in Fig. 1. Translational symmetry 
in the direction is assumed. An arbitrary number, N .  of 
zero-thickness perfectly conducting strips are placed on the 
31 th  interface of a N,-layered medium. The ith strip is 
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characterized by its width, w;. and the position, si .  of its 
middle point. The layered substrate is composed of NE slabs 
of lossless/lossy/iso/anisotropic linear materials. The j th  layer 
is characterized by its complex dielectric permittivity tensor, Ai:: (I c;,,(an) . G(a,) . aq,j(an) (4) 
i j ,  (or equivalent permittivity tensor [lo]). The structure is 
enclosed into a rectangular frame bounded by the planes 

= b (see Fig. 1). A wide family of 
coplanar microstrip-like transmission lines can be considered 
to be a particular case of this generic structure. 

As it is well known, all the quasi-TEM parameters of the 
MTL system can be obtained from its capacitance, [C]. and 

inductance, [L] ,  p.u.1. matrices. Usually [L] is computed from 0 q 3 J ( ” 7 1 ) = {  J 4  ( y) ( - l ) (q-1) /2  cos(cy,,sj) if q is odd 
the capacitance p.u.1. matrix, [C’], of a proper related structure 

are the following spectral series: 

2 m  

n = l  

= 0, = a ,  = 0, where (1, = nn/a is the Fourier variable, G is the SDGF, and 
cq,, ( Q 7 1 )  are the sine-Fourier transforms of the basis functions 
in ( 3 ) :  

Ly W ’  

- J~ (y) (--1)q/2 sin(a,,sj) if q is even 

(<\ 
[ IO].  Then, the quasi-TEM analysis reduces to solving two 
electrostatic-type bidimensional problems. Each coefficient 
C,, ( i . J  = 1,. . . . N )  of [C] or [C’] can be defined as the free 
charge on the ith strip when the j th  strip is set to voltage unity 
and the rest of the strips are grounded (canonical excitation). 
Therefore the computation of [C] (or [C’]) requires to solve the 
free charge density integral equation N times (for N canonical 
excitations): 

N nn 

where G(z.a:’) is the static Green’s function, @(x) is the 
voltage (one or zero on each strip depending on the particular 
excitation), and rrj(z’) is the free charge density on the j th  
strip. 

No general closed form expressions are known for the spa- 
tial domain Green’s function of our problem, but the spectral 
domain Green’s function (SDGF) can be easily computed (see, 
for instance, [ 1 11, [IO])  for an arbitrary layered configuration. 
According to this, i t  is more convenient to work with ( 1 )  in 
the spectral domain. A useful technique to solve the spectral 
domain version of (1) is the Galerkin method. As it has 
been established in the literature on this subject, Chebyshev 
polynomials weighed by the Maxwell edge singularity are 
particularly suitable test and basis functions for the strips free 
charge density. When these functions are used aj(:r’) can be 
written as follows: 

\ J I  

where .Iq is the first kind of Bessel function of order q .  
The sum of the series in (4) is the computational step in- 

volving meaningful CPU time cost. Therefore, the construction 
of a highly efficient computer code requires the analytical 
preprocessing of those series. Kummer’s method (extraction 
of an asymptotic tail) is used in order to accelerate the 
convergence of the series. According to this method, the series 
(4) are split as follows: 

71=1 

(7) 

f k  ( k  = hf. hf + 1) being the permittivity (or the equivalent 
permittivity [ 111, [ 101 in the anisotropic case) of the kth layer. 
Since Gas is chosen to be the asymptotic behavior of G for 
large an. the remainder series (first term of (6)) converges 
very quickly. The asymptotic tails Si:: are extremely slow 
convergent series, but they can be reduced to quasi-analytical 
expressions by means of the two procedures described in the 
two following sections. 

qnrnx, 111. TRANSFORMATION OF THE TAILS INTO POWER SERIES 
dz’) = %.,%(J’) ( 2 )  It can be seen from (5) and (7) that the computation of S;:: 

involves the addition of slowly convergent trigonometrical 
series of the following kind: 

q=O 

where 
w 

71 
7 1 x 1  

mq , ( .E’ )  = 

( 3 )  
The application of the Galerkin method leads to a system 

of algebraic linear equations for u q  ,. The entries 24; : (JJ = 
0. . . . . p,,,,,, : q = 0. . . . . qlIlaXl : 1 .  j = 1. . . . . N )  of this system 

where d, = nw,/2u and r: = (7r/a)(sJ f S ~ ) .  
The residues calculus technique makes it possible to trans- 

form (8) into much more quickly convergent power series. The 
first step is to identify (8) as the addition of the infinite residues 

--T T- 
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of the following properly chosen complex-plane function: 

When (9) is integrated along the closed path shown in 
Fig. 2,  the residues, Cauchy theorem provides an alternative 
expression for (S,;:),’: 

cos11 [ (T  - c* )y]: p + q even x (10) . { sirih [(T - c L 3 ) y ] :  p + y odd 

Now, the product of modified Bessel functions I J ,  is ex- 
panded as a series of powers [[16], p. 9601 shown in ( 1 1 )  
below. F being the hypergeometric function, and r being the 
gamma function. The hypergeometric function F [ - k .  - p  - 
k ;  y + l ;  (d3/d, )2 ]  is a k-degree polynomial in (d,/dO2 shown 
in (12) below. 

In addition, the integrals appearing in ( 1  1) are known in 
closed form. Two altemative expressions [ [ 161, pp. 349-3501 
for them are: 

where p = p + q + 2k,  [j = T - cG1 and C is the Riemann’s 
zeta function. The first expression in (13) is used for the first 
few terms of the k-series. This suffices for most cases, but if 

1 jy z-plane 

Fig. 2. Integration path in the complex plane for the computation of the 
spectral series by means of the residues calculus technique. 

larger values of k are needed, the second expression in (13) 
provides an alternative quick solution. 

This procedure is still valid in the case p+q = 1 because the 
new pole of f ( z )  in z = 0 presents a purely imaginary residue. 
However, the case p = q = 0 requires a separate treatment 
because of the double pole of f (z )  in z = 0. Let us consider: 

This auxiliary series can be computed by means of the 
technique explained above when f ( z )  in (9) is replaced by 
g ( z )  = z . f ( z ) .  If the power series resulting from this 
procedure is integrated with respect to c: expression ( 1 3 ,  

cos11 [(n - c*)yl: 
siiih [(T - c,,)y]: 

p + y even 
p + q odd 2 

!Jp+q+2k-l 
’ /I’ d‘y sin11 (ny) 
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which is shown at the bottom of this page, is obtained. In this 
expression, h(d,, d,) is the integration constant, which does 
not need to be calculated because it cancels out when S,”:: is 
computed. It should be noticed that the general expressions 
presented in this section for the computation of 5’;;: reduces 
to the more simple expressions appearing in [ 151 when the 
case I = j is considered (basis and testing functions on the 
same strip). 

The power series in this section provide extreme accuracy 
when just a few terms are retained. In some particular cases 
(which correspond to rather theoretical than practical situa- 
tions, such as extremely high coupling levels or very close 
proximity of the strips to the side walls) more terms need to 
be considered. Anyway, the Shanks transformation [ 17, pp. 
369-3741 provides a useful tool to accelerate the power series 
in such a way that the technique is even useful in these critical 
cases. 

Iv. SPATIAL DOMAIN COMPUTATION OF THE TAILS 

The second technique considered for the computation of 
(7) is based on the quasi-analytical integration of the spatial 
counterpart of the series 5’;;;. By applying Parseval and 
convolution theorems, we can write (1 6), which is shown at the 
bottom of this page, with Gas(x.  d )  being the spatial domain 
Green’s function whose Fourier transform is Gas(n) ,  that is: 

Note that Gas may be physically interpreted as the Green’s 
function of the “asymptotic structure” which results by pro- 
longing the Mth layer to y = -m and the (A4 + 1)th layer 
to y = +w. 

The square root in the denominator of the integrands in 
(16) makes these integrals specially suitable to be computed by 
means of the Gauss-Chebyshev quadrature formula. However, 
the direct application of this quadrature to the computation 
of the convolution integrals is not efficient enough because 
of the logarithmic singularity of GaS(x..d) in .c = .E’. 

In addition, if the strips #1 and/or #N are very close to 
the lateral electric walls, Gas ( . I : ,  s’) exhibits a quasi-singular 

behavior when LC + IC’ + 0 or x + :c‘ -+ 2a. In order to 
overcome these computational drawbacks, the singular and 
quasi-singular contributions of Gas (x, d )  must be extracted 
out and conveniently treated. The three terms causing the 
numerical problems can be joined to give the following 
“singular part” of Gas(x ,  d): 

It should be noticed that from a physical point of view, 
S(a ,  2’) accounts for the contributions of the real charge line 
and the first two image lines reflected by the conducting walls. 
The convolution integrals shown in (16) at the bottom of 
the page, can be very efficiently evaluated by splitting the 
kemel into two parts: Gas(z.z’)  = S(:E.:I;’) + [G,,(z.s’) - 
S ( x ,  d ) ] .  The second term in this expression is a very smooth 
function. Therefore, its contribution to the convolution is 
obtained with a low order Chebyshev quadrature. On the other 
hand, the convolution involving S(:r. d) has been analytically 
evaluated. Let us define I[;  [q ;  z] :  

111 lx - 2’1 i f v = O  
In (x + d) i f v = - 1  (19) 
In  (2a - :E - d) if v = $1 

s, - W L / 2  5 s 5 s ,  + u1,/2 

If complex plane integration techniques are used, the closed 
form expressions shown in (20) at the bottom of this page are 
obtained for (19), where 

’WZ ‘W 

2 -  2 
s, - - < :I: 5 s ,  + 2: 

I 1  
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A 

2.00 
1.00 
0.50 
0.10 
0.05 
0.01 

and sgn(.) is the sign function. For the particular case i = 
j:  u = 0: 

rL2 S:;: St,'," S,",': ($,':)* 

0.43 0 0 1 
O.GO 1 1 4  3 
0.75 1 2 8 5 
0.94 2 2 35 16 
0.!)7 3 3 79 3F 
0.99 3 0 229 94 

The next step for the computation of (16) is to carry out the 
inner products. Only the part involving I:!/ has been found to 
have a closed form: 

- l /2p 

ln(wt/4) 

if p = y # 0 

if p = q = 0 
= { ( )  if p # q (22) 

The rest of the inner products have been numerically eval- 
uated by low order Gauss-Chebyshev quadratures. 

In most cases, the number of points employed in both 
convolution and inner product quadratures has been two or 
three more than the number of basis functions used on each 
strip. This is sufficient to ensure more than eight significant 
figures in the calculations. Nevertheless, the computer program 
which implements this technique makes it possible to introduce 
a larger number of quadrature points for the inner product 
integrals involving I<:. 12:,11v. and (1 = 1:'. . N - 1). 
This possibility can be useful because these inner products 
require a few more quadrature points in the critic,a/ cases 
mentioned at the end of Section 111 (if similar accuracy is 
required for all the inner products). 

V. NUMERICAL RESULTS 

Two double precision FORTRAN codes have been written 
to implement the techniques discussed above. Exhaustive 
numerical work has been carried out to validate the computer 
codes on both a PC/386 computer (with math coprocessor) 
and a VAX/6410. This work has been useful to establish 
the parameters which have an influence on the accuracy and 
efficiency of the two alternative methods proposed in this 
paper. 

Firstly, we have checked the convergcnce of the series ( 1  I )  
and (IS). The convergence of (S;::)' has been found to be 
mainly affected by the ratios r z  = 111, + ,wJ/ '2( .~, ,  + .s,) and 
7.; = 'iu; + v1,/2(.s ,  - s t ) .  In most practical situations. the 
convergence is reached in few terms. Nevertheless. the con- 
vergence becomes slower when r z  and/or ,r,j are very close 
to one (unity). This occurs if some strip is very close to the 
lateral metallic walls (7.; E 1) and/or if very tightly coupled 
strips are present ( r6  E 1). In these cases, more terms must be 
retained to add up the corresponding series. In Table I we show 
a typical convergence pattern for the series 5':::; associated to 
a pair of asymmetrical strips for different coupling levels. The 
number of terms required in the computation of S::,': increases 
when ry2 approaches to unit. For this study five significant 
correct figures are always imposed in the computation of ( ' l , l .  

TABLE I 

TO B E  RETAINED FOR FIVE S K ~ N I F I C A N ~  Flm RES Acci RACY lh THE 
M A X I M U M  NUMBER O F  TERMS A,,,,,, O F l - H t  SERIES .$:,: I . , /  = 1 . 2  

C4PAClTANCE. THE As1 FRISKED COLL\IlN INCLUDES I HE RESLLTS 
OBTAINED B Y  USING THE TWICE ITERATED SHANKS TRANSFORMATION. 

(DATA: ( I  = 10.111 = 1.h' = 2 .  ( I ' ,  = 1. tr2 = 2 . i l  = 3 ) .  

€0  

4 W l A  w2 I.- 

Note that the use of the twice iterated Shanks transformation 
(asterisked column) introduces a significant acceleration (over 
SO%) in the convergence of this series. It must be emphasized 
that the cases involving a very large A:,,,,, are not realistic. 
Anyway, the direct summation of the original Fourier series 
would require much more computational effort (prohibitive if 
very high accuracy is desired). Therefore the application of 
this technique is always preferable to direct summation. 

The spatial domain technique presents similar difficulties 
in the same cases, but i t  has been found to be less sensitive 
to those problems. In general, the convolution integral and 
the inner products are very accurately computed by using 
a number of quadrature points equal to or slightly larger 
than the number of basis functions employed on each strip. 
Typical computations are so accurate that more than eight 
meaningful digits can be obtained for the coefficients of 
the expansion of the charge distribution. However, when 
I . :  and/or I , ;  take (theoretical rather than practical) values 
very close to 1. the number of' quadrature points IV~T used 
for the computation of the critical inner products involving 
1,;. I.:,'., and/or ( i  = I . .  . . . .V - 1)  must be increased 
to keep the accuracy pattern. In Table 11. we display the values 
of lV,y needed to get hoth tive and ten significant figures 
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I h n r  

I 
2 
3 
1 
5 

7 
8 
9 
Ill 
I I  

I 
2 
3 
1 
5 
G 
7 
S 
9 

6 

265 

A = 0. I mi 

CII Cl2 

25.7199 -7.73533 
30.8053 -9.00472 
31.3117 -9.01270 
31.1235 -9.1175G 
31.1139 -9.13304 

31.4455 -9.13GG9 
31.1190 -9.13687 
31.1191 -9.l3602 
31.1191 -9.13604 
31.4191 -9.13694 
5.70529 -4.73082 
11.9197 -7.53461 
13.5927 -9.20794 
13.9190 -9.19782 
13.9535 -9.56750 
13.9914 -9.57426 
13.9020 -9.57489 
l3.0920 -0.57191 
1:1.9920 -9.57491 

31.1179 -0.13600 

TABLE I1 
NUMBER OF GAUSS- CHEBYSHEV QUADRATURE POINTS .\-,: USED IN THE 

CRITICAL INNER PRODUCT INVOLVING TO GET BOTH FIVE AND TEN 
SIGYIFICANT FIGURES CAPACITANCES. (DATA: EQUAL TO THOSE IN TABLE I). 

A 

2.00 
1 .oo 
0.50 
0.10 
0.05 
0.01 

- 
1'1 2 

0.43 
0.60 
0.75 
0.94 
0.97 
0.99 

- 

iV; ( 5  digits) 

2 
2 
3 

7 
11 

Nd (10 digits) 

13 
20 
35 I 

of C I , ~  for different coupling levels. In that example, the 
convolution integrals and the non-critical inner products have 
been computed with 4 Gauss-Chebyshev quadrature points. 

The aspects discussed in the previous paragraphs deal with 
the quality of the computations of the Galerkin matrix entries. 
However, the accuracy of the capacitance and inductance 
coefficients also depends on the number of basis functions. 
The trial functions in (3) are very suitable for the multistrip 
problem, since extreme accuracy for both capacitance coeffi- 
cients and charge distribution can be achieved in all practical 
situations. Typical results obtained with our programs (both 
programs provide exactly the same results within the computer 
accuracy) can be seen in Tables 111 and IV. From Table 111, 
it can be seen that more trial functions are required when 
the strips are very close or when they are adjacent to thin 
dielectric layers (the strips are in this case relatively wide in 
comparison with the thicknesses of the layers). Anyway, from 
a practical point of view, no more than three or four basis 
functions are necessary to obtain useful highly accurate results. 
Table IV shows an example of the expansion coefficients 
obtained for the charge distribution when different number of 
basis functions are used. The coefficients of the expansion are 
not sensitive to the addition of new terms when convergence 
has been achieved (this fact suggests that ( 2 ,  3) is a quasi- 
orthogonal expansion). As it is expected from the stationary 
nature of the first coefficient, this is much more accurately 
computed than the charge distribution. 

In our opinion, an important feature of the methods reported 
in this paper is that when they are used, no numerical problems 
arise if the number of basis functions is increased. In the past, 
the authors have used other asymptotic tails-involving large 
argument approximation of the Bessel functions-to accelerate 
the convergence of the spectral series [ 181. For most practical 
purposes, that approach works properly (although more slowly 
than those presented in the present paper), but some problems 
can be observed when a relatively large number of basis 
functions are used. This is a consequence of cumulative 
numerical errors when series involving large order Bessel 
functions need to be computed. This drawback has not been 
detected with the methods developed in the present work. 

The numerical data generated with our programs have been 
compared with highly accurate data (or exact solutions) re- 

,' 

TABLE I11 

TO 6 " )  VERSUS THE NUMBER OF BASIS FUNCTIONS (33111.1). 
DATA: 6,-,.2 13. c y Y 2  = 10. ~ , . ~ : 3  = fyy:i = 2.51.  (1 = 20 
mm, .s1 E 9.15 mm, tu1 = 1 mm, (172 = 1 . 5  mm, CASE I 

( R I  = 0 . h 2  = 0.635 mm, hg = O.h4 = 10 mm), CASE I1 ( h l  = 0.51 
mm, 112 = 0.125 mm, h : j  = 0.125 mm, h d  = 9.875 mm). 

CONVERGENCE OF THE CAPACITANCE MATRIX (NORMALIZED 

Cases 

1 

~ 

c22 

- 
37.1587 
39.1877 
39.4832 
39.5505 
39.5639 
39.5663 
39.5GG3 
39.5671 
39.5671 
39.5671 
39.5671 
10.1251 
13.OSG9 
14.7678 
15.0354 
15.1115 
15.1 170 
15.1 1 77 
15.1177 
15.1 177 

__ 

__ 

~ 

C1 I 
~ 

27.1524 
27.1841 
27.2127 
27.2132 
27.2132 
27.2132 

~ 

6.57581 
7.06826 
7.18892 
7. ISGO2 
7.19835 
7.19849 
7.19850 
7.19850 

- 

3 = lmn 

c12 

-1.22612 
- 1.22926 
-1.19820 
-1.19824 

- 1.19829 
- 1.19829 

-1.74512 
- 1.83526 

-1.94558 
-1.94596 
-1.94900 
-1.94901 
-1.94901 

- 1 . 9 m a  

1 

C12 

35.1310 
35.1583 
35.2954 
35.2955 
35.2956 
35.2956 

- 

- 
7.99884 
8.14886 
8.28897 
8.29218 
8.29925 
8.29927 
8.29928 
8.29928 

ported in the literature for particular structures. The agreement 
has been always found to be excellent (all the significant 
figures reported have been invariably obtained). For example, 
numerical data for the capacitance coefficients of a five strips 
striplike configuration in homogeneous medium are reported in 
[[8], Table VII] and [[7], Fig. 61. The former uses an enhanced 
integral equation technique and extrapolation procedures and 
the latter gives a conformal mapping solution (although numer- 
ical computation of the hiperelliptic functions is required). Five 
figures are correctly given in [8] and six figures are given in 
[7] for the normalized capacitance coefficients. Our programs 
reproduce all the significant figures reported in those works. 
To obtain five figures accuracy, 4 basis functions have been 
retained on each strip, and the CPU time was about I .5 seconds 
on a PC/386 computer (about 0.15 seconds on a VAXJ6410). 
Six figures were obtained with 5 basis functions (2.2 seconds 
on a PC/386 computer, about 0.2 seconds on a VAXJ6410). 
These CPU times refer to the spatial domain technique. The 
same results were obtained by means of the other technique 
described in this paper with slightly higher CPU times. As 
a final example, in Table V we compare our results with 

7 T 
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3 
1 
2 

4 
1 
2 

4 
5 
1 
2 

4 
5 
G 

3 

3 

3 

TABLE IV 
CHARGE DISTRIBUTION COEFFICIENTS OF A PAIR OF ASYMMETRICAL COUPLED 

STRIPS FOR DIFFERENT VALUES OF THE NUMBER OF BASIS FUNCTIONS 
~ n r e y .  DATA: EQUAL TO THOSE IN TABLE 111, CASE I ,  1 = 1 mm. 

-1.95733 
27.2132 
0.10152 

0.01094 
27.2132 
0.10156 

0.01094 
0.04654 
27.2132 
0.10156 

0.01094 
0.04654 
0.00033 

-1.95706 

-1.95705 

-1.95705 

Qmax 
1 
2 

3 

4 

5 

G 

Dicstcl [5] 

4.633 
7.857 
5.723 
-2.547 
-2.338 
-0.oso 
-0.553 
-0.064 
-0.013 

Excit. ( 1 , O )  

This work 

4.642 
7.871 
5.738 
-2.555 
-2.346 
-0.080 
-0.553 
-0.064 
-0.013 

a92 
-1.22612 
-1.22926 
1.70030 

1.68933 
-1.19820 

-0.82322 
- 1 A9824 
1.68674 

0.31610 

1.68675 

0.31610 

-0.82325 

- 1.19829 

-0.82309 

-0.09211 
- 1.19829 
1.68676 

0.31609 
-0.0921 1 
0.02020 

-0.82309 

Excit, 
%,I 

- 1.226 12 
-1.22926 
-1.51918 
- 1.19820 
- 1.48469 
-0.55950 
-1.19824 
-1.48439 
-0.55952 
-0.15337 
-1.19829 
-1.48446 
-0.55955 
-0.15338 
-0.03038 
-1  A9829 
-1.48446 
-0.55955 
-0.15338 
-0.03038 
-0.00439 

:oJ) 
a9,2 

35.1310 
35.1583 

35.2954 
-0.11748 

-0.11830 
-4.65142 
35.2955 

-0.11827 
-4.65132 
-0.02298 
35.2956 

-0.11828 
-4.65161 
-0.02298 
0.16107 
35.2956 

-0.11829 
-4.65161 
-0.02298 
0.16107 

-0.00 150 

those obtained by the method of lines (with nonequidistant 
discretization) in [5] for a five conductor microstrip structure 
with different widths and inhomogeneous substrate. To obtain 
4 digits accuracy we have used 5 basis functions, and the 
CPU time was less than 1.5 seconds (PC/386). A fraction of a 
second was necessary to get the same level of accuracy of the 
example in [ 5 ] .  In general, very reliable and accurate results 
can be obtained for the capacitance and inductance matrices of 
microstrip structures on a PC/386 computer with CPU times 
ranging from a fraction of a second to two or three seconds 
(depending on the number of strips and basis functions). The 
surface charge distributions are also provided with very good 
accuracy. 

VI. CONCLUSIONS 

In the present work, a numerically improved spectral domain 
approach is employed for the efficient and accurate quasi- 
TEM analysis of a wide class of multistrip transmission 
lines. A proper analytical preprocessing is incorporated in 
the computation of the entries of the Galerkin equations 
system in order to achieve extreme accuracy in a short CPU 
time. To reach this goal, two different techniques have been 
proposed and compared. The double precision FORTRAN 
programs implementing these techniques are able to analyze 
multistrip configurations embedded in multilayered substrates 
on a PC/386 computer in less than a few seconds. Total 
agreement has been found with exact results (up to the 
accuracy reported in the literature) for simple particular config- 

. ir -~ 

TABLE V 
COMPARISON BETWEEN OUR RESULTS AND THOSE REPORTED I N  [ S ]  FOR 

THE CAPACITANCE MATRIX (NORMALIZED TO F ~ ,  ) OF A FIVE- 
CONDUCTOR MICROSTRIP CONFIGURATION. DATA: 12 = 0.8 mm, 

f = 2 . 5 ~ 0 .  (1’1 = 0 .1C mm, = 0.47 mm A = 0.07 mm, I( = 3.7 mm. 

€0 

I 4 w1 kkW24i w1 H--w2-l-l w1 k- I 

I 

€0 

i w1 k - k - w z i i  w1 H - - w 2 4 4  w1 k- 
4 k -  
n € h 

I k -  - 
n € 

Tl 

I 

urations. Good agreement has been also found with many other 
results reported for more general structures. The surface charge 
distribution can be obtained with accuracy and reliability if 
this quantity is required. 
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