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Abstract 

Tuning a fuzzy system to meet a given set of inpuffoutput 
patterns is usually a difficult task that involves many param- 
eters. This paper presents an study of different approaches 
that can be applied to perform this tuning process automat- 
ically, and describes a CAD tool, named xfsl, which allows 
applying a wide set of these approaches: (a) a large number 
of supervised learning algorithms; (b) different processes to 
simplify the learned system; (c) tuning only specific param- 
eters of the system; (d) the ability to tune hierarchical fuzzy 
systems, systems with continuous output (like fuzzy con- 
troller) as well as with categorical output (like fuzzy classi- 
fiers), and even systems that employ user-defined fuzzy 
functions; and, finally, (e) the ability to employ this tuning 
within the design flow of a fuzzy system, because xfsl is in- 
tegrated into the fuzzy system development environment 
Xfuzzy 3.0. 

1. Introduction 

Tuning the system behavior is often one of the most dif- 
ficult task in the design flow of a fuzzy system. Much of the 
tuning effort is dedicated to search a proper configuration of 
the system parameters, because there is usually a large 
number of parameters. To confront this task, supervised 
learning algorithms are commonly used as automatic tuning 
methods. In supervised learning techniques, the desired sys- 
tem behavior is described by a set of inpuffoutput patterns 
and the objective is to minimize the error between the de- 
sired and the current system behavior. 

The paper is structured as follows. Section 2 presents the 
different error functions that can be employed in supervised 
learning. Section 3 describes briefly some families of super- 
vised learning algorithms. The problem of tuning under 
constraints is addressed in Section 4, while Section 5 sum- 
marizes some simplification processes that can be easily 
performed after tuning. Most of these possibilities has been 
included into a CAD tool, named xfsl, so as to automate the 
tuning process of complex fuzzy systems. This tool is brief- 

ly described in Section 6. Finally, Section 7 and 8 show sev- 
eral examples to illustrate the tuning of systems with either 
continuous or categorical outputs. 

2. The error function 

The first step in elaborating a supervised learning proc- 
ess supposes describing system deviation by means of a 
function, known as errorfunction. A very commonly used 
error function is the mean square error (MSE): 

where N is the number of data patterns, M is the number of 
output variables in the system, y ,  is the j-th output generat- 
ed by the system for the i-th pattern, j.. is the correct out- 
put expressed by the training pattern, and rj is the range of 
the j-th output that is used to normalize the deviations. 

It can be useful for the designer to select the relative in- 
fluence of every output variable on the global deviation 
from its intended behavior. The following function can be 
used in this case: 

V 

where wj is the weight of the j-th output variable on the glo- 
bal system error. These weights should be normalized so as 
to sum 1. 

It can be also useful to employ the absolute value instead 
of the quadratic error, with the corresponding options of 
variable normalization and weight accounting: 

The above expressions assume a numerical output from 
the fuzzy system. However, it is possible to define fuzzy 
systems whose outputs are linguistic labels, as is the case of 
classifiers. In these systems, the output value is the linguis- 
tic label presenting the highest activation degree as a result 
of the inference process. A common definition for the devi- 
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ation in the behavior of this kind of system is the number of 
classification errors: 

1 1  CE = - .  - .  z 6. .  N M i ,  II  (4) 

where Si is 1 when the classification of the pattern has been 
incorrect and 0 otherwise. This type of function considers 
equally all classification failures, without taking into ac- 
count the distance from a correct classification. To consider 
this information it is necessary to add a new term like the 
following: 

A C E  = -' Z6.. 
N M + I  i , i  rJ ( 5 )  

with 

where Gj  is the activation degree of the correct label, and 
ai is the activation degree of the label selected by the sys- 
tem. 

Another way of taking into account the distances from 
right classifications is to consider the following classifica- 
tion square error, which is a differentiable function: 

with 1 i f  y . . = j . .  
0 'I 

0 i f y . . t j . .  { 'J [J 

p.. = 

The choice of an adequate error function for the learning 
process depends both on the type of fuzzy system to be 
tuned and on the algorithm selected for performing the 
process. For example, if the learning algorithm belongs to 
the family of gradient descent algorithms, the error function 
must be derivable, so that the classification errors CE and 
ACE can not be used. 

3. Supervised learning algorithms 

Since the objective of supervised learning algorithms is 
to minimize an error function, they can be considered as al- 
gorithms for function optimization. Some supervised learn- 
ing algorithms that can be used to tune fuzzy systems are 
briefly described in the following. 

3.1. Gradient descent algorithms 
The equivalence between fuzzy and neural networks led 

to apply the neural learning processes to fuzzy inference 
systems. In this sense, a well-known algorithm employed in 
fuzzy systems is the BackPropagation algorithm, which 

modifies the parameter values proportionally to the gradient 
of the error function in order to reach a local minimum. 
Since the convergence speed of this algorithm is slow, sev- 
eral modifications were proposed like using a different 
learning rate for each parameter or  adapting heuristically 
the control variables of the algorithm, thus leading to Back- 
Propagation with Momentum, Adaptive Learning Rate, 
Adaptive Step Size or Manhattan algorithms. An interesting 
modification that improves greatly the convergence speed is 
to take into account the gradient value of two successive it- 
erations. This idea is followed by the algorithms Quickprop 
and RProp [l]. 

3.2. Conjugate gradient algorithms 
Since the gradient indicates the direction of maximum 

function variation, it may be convenient to generate not only 
one step but several steps which minimize the function error 
in that direction. This idea, which is the basis of the'steep- 
est-descent algorithm, has the drawback of producing a zig- 
zag advancing because the optimization in one direction 
may deteriorate previous optimizations. The solution is to 
advance by conjugate directions that do not interfere each 
other. The several conjugate gradient algorithms reported in 
the literature (like Polak-Ribiere, Fletcher-Reeves, 
Hestenes-Stiefel, and One-step Secant) differ in the equa- 
tions used to generate the conjugate directions. The main 
drawback of the conjugate gradient algorithms is the imple- 
mentation of a linear search in each direction, which may be 
costly in terms of function evaluations. The line search can 
be avoided by using second-order information, as done by 
the scaled conjugate gradient [ 2 ] .  

3.3. Second-order algorithms 
A forward step towards speeding up the convergence of 

learning algorithms is to make use of second-order informa- 
tion of the error function. Since the calculus of the second 
derivatives is complex, one solution is to approximate the 
Hessian by means of the gradient values of successive iter- 
ations. This is the idea of the algorithms of Broyden-Fletch- 
er-Golds@-Shanno and Davidon-Fletcher-Powell [3]. An 
special case is when the function to minimize is a quadratic 
error because, in this case, the Hessian can be approximated 
by only the first derivatives of the error function, as done by 
the Gauss-Newton algorithm. Since this algorithm can lead 
to instability when the approximated Hessian is not defined 
positive, the Marquardt-Levenberg algorithm solves this 
problem by introducing an adaptive term. 

3.4. Algorithms without derivatives 
The gradient of the error function can not be always cal- 

culated because it can be too costly or not defined. In these 
cases, optimization algorithms without derivatives can be 
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employed. An example is the Downhill Simplex algorithm, 
which considers a set of function evaluations to decide a pa- 
rameter change. Another example is Powell’s method, 
which implements linear searches by a set of directions that 
evolve to be conjugate 141. These algorithms are too much 
slower than the previous ones, A best solution can be to es- 
timate the derivatives from the secants or to employ not the 
derivative value but its sign (as RProp does), which can be 
estimated from small perturbations of the parameters. 

3.5. Statistical a lgo r i thm 

All the above commented algorithms do not reach the 
global but a local minimum of the error function. The statis- 
tical algorithms can discover the global minimum because 
they generate different system configurations that spread 
the search space. One way of broadening the space explored 
is to generate random configurations and choose the best of 
them. This is done by the blind search algorithm whose 
convergence speed is extremely slow. Another way is to 
perform small perturbations in the parameters to find a bet- 
ter configuration as done by the algorithm of iterative im- 
provements. A better solution is to employ simulated 
annealing algorithms [4]. They are based on an analogy be- 
tween the learning process, which is intended to minimize 
the error function, and the evolution of a physical system, 
which tends to lower its energy as its temperature decreases. 
Several annealing schemes (like linear, exponential, classic, 
fast or adaptive) have been proposed, producing different 
versions of the simulated annealing algorithm. 

4. Tuning fuzzy systems under constraints 

The parameters to adjust in a fuzzy system usually have 
to meet several constraints. For instance, when tuning the 
parameters of a Gaussian membership function, the learning 
algorithms should always reject a negative value for the pa- 
rameter representing the width of the function. The con- 
straints that usually appear when tuning a fuzzy system 
parameter.pi, are the following: “pi <= constant”, < con- 
stant”, ‘pi  >= constant”, “pi > constant”, or ‘>i < pj”. The 
latter ones appear, for instance, between the three points 
that can define a triangular membership function. They are 
the most difficult constraints to maintain and should be 
avoided as much as possible. In this sense, a triangular func- 
tion is better defined by its center, width, and slope. 

Statistical algorithms manage constraints easily, by di- 
rectly rejecting the random configuration generated if it 
does not meet the constraints. On the other hand, the algo- 
rithms based on any kind of gradient descent generate the 
same (detenninistic) displacement at a given iteration, so 
that the solution is not to reject it if it is forbidden (it would 
be again generated in the next iteration) but to change it into 
another displacement accepted by the system. The usual so- 
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Figure 1: Learning under constraints. 

lution is to try an smaller displacement in the same direc- 
tion, as shown in Figure la. The problem is that this solution 
does not distinguish between parameters, so that the con- 
straint on one parameter can limit not only the displacement 
of that parameter but also of other ones (as shown in Figure 
la). This problem can be avoided by managing the parame- 
ters independently. This means, in the example of Figure I ,  
that the system could be moved to the final point shown in 
Figure Ib. For those constraints relating several parameters 
(as those of the triangle shown in Figure IC), a good solution 
is to consider them as particles subject to inelastic collisions 
in a one dimensional space (Figure Id). 

Another interesting point to remark is that the stable 
point reached by the system after learning under constraints 
will provide or not the minimum possible error depending 
on the tuning algorithm employed. When the proposed dis- 
placement follows the gradient direction, the system 
evolves to a point where the gradient components over the 
non constrained parameters are null, that is, to the point of 
the frontier where the error is minimum (the point “b” in 
Figure 2). On the other hand, if the learning algorithm gen- 
erates a direction which is not parallel to the gradient (like 
that shown with a dashed line in Figure 3). the stable point 
of the system will not provide a minimum error (the point 
“ 1, . a in Figure 2). 

5. Simplification processes 

Supervised leaming can be used not only to tune fuzzy 
systems but also to help obtaining fuzzy models in identifi- 

forbidden region 

Figure 2: Stable points depending on the algorithm. 
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cation problems. Simplifying the fuzzy system obtained 
after a tuning process allows extracting a valuable informa- 
tion about the logical structure of the system. One of these 
simplification process consists in detecting and deleting 
those fuzzy rules and membership functions that are never 
activated sufficiently by any of the training inputloutput 
patterns. 

A typical result of the tuning process is that the member- 
ship functions covering the output variables overlap each 
other in a high degree. A clustering process over these func- 
tions drives to a good and simpler fuzzy system. This clus- 
tering can be made automatically by means of the Hard C- 
means algorithm, where the number of cluster can be fixed 
manually, or can be selected by some cluster evaluation 
functions [5 ] .  

6. The Xfsl tool 

In order to automate the tuning process of a fuzzy system 
we have developed the tool xfsl. Xfl includes all the error 
functions and supervised learning algorithms described in 
Sections 2 and 3, and apply the solutions described in Sec- 
tion 4 to allow learning efficiently under constraints. Sim- 
plification methods described in Section 5 are also included 
and can be executed prior to or after the learning algorithms. 
In addition, the system parameters to tune can be selected 
by a graphical interface. 

Xjsl allows the user to apply supervised learning algo- 
rithms to fuzzy systems specified with the XFL3 language 
[6], the formal language of Xfuzzy 3.0 [7]. XFL3 permits 
the description of complex fuzzy systems with hierarchical 
rule bases. Besides, there is no limitation in the number of 
rules within a rule base, linguistic variables, or linguistic 
labels covering the variables. The rules support complex 
logic relations in the premise part (with conjunctions, dis- 
junctions, and linguistic hedges), and these operators as 
well as the implication operators, membership functions, or 
defuzzification methods can be defined freely by the user. 
The language XFL3 is the nexus between the different 

Figure 3: Main window of the tool xjsl. 
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Xfuzzy 3.0 tools (dedicated to description, learning, verifi- 
cation, or synthesis of fuzzy systems). 

Figure 3 illustrates the main window of xfsl. This win- 
dow is divided into four parts. The left upper corner is the 
area to configure the learning process. The process state is 
shown at the right upper part. The central area illustrates the 
evolution of the learning, and the bottom part contains sev- 
eral control buttons to run or stop the process, to save the re- 
sults, and to exit. 

7. Fuzzy systems with continuous output 

Since fuzzy systems with continuous output can be seen 
as interpolators, let us consider, as  example, the problem of 
approximating the function shown at Figure 4a. We con- 
sider a two-input fuzzy system with 7 Gaussian member- 
ship functions per input, thus containing 49 rules. The 
Weighted Fuzzy Mean is selected as defuzzification 
method. Initially, input membership functions are homoge- 
neously distributed in their universe of discourse, while the 
49 output functions are equal and centered in their uni- 
verse. All the parameters of these membership functions as 
well as the weights are going to be  tuned, which means 126 
parameters. 

Figures 4b, c, and d show the evolution of the system 
behavior while being tuned by the different learning algo- 
rithms provided by xfsl. The gradient descent algorithms 
are shown in Figure 4b. It can be seen that modifications to 
the BackPropagation algorithm notoriously increase the 
convergence speed. Figure 4c is dedicated to the conjugate 
gradient and second order algorithms. As it is shown on 
this figure, these algorithms are significantly faster than the 
steepest descent algorithm, especially BFGS and Mar- 
quardt-Levenberg algorithms. Algorithms without deriva- 
tives and statistical algorithms are shown in Figure 4d. 
These algorithms are several orders of magnitude slower 
than the previous ones, so their use is only recommended 
when those are discarded (in non-derivable systems, for 
instance). It can be seen that Powell's algorithm is much 
faster than Downhill Simplex algorithm. Concerning the 
statistical algorithms, Simulated Annealing increases the 
convergence speed with respect to Blind Search or Iterative 
Improvement algorithms. 

The existence of non-linear parameters generates the 
presence of several local minima in the tuning process. 
Therefore, it is not possible to assert what is the best algo- 
rithm, since a very fast algorithm may be sometimes driven 
to a local minimum far away from the optimum behavior. A 
solution to this problem is to make several tuning processes 
with different random initial configurations, selecting the 
best of the learning results. 

Within the learning process. the membership functions 
of the output variable tend to group around some common 
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Figure 4: Comparison of the different algorithms. 

forms (Figure 5a). Applying the clustering process sup- 
ported by x f l ,  the 49 membership functions are reduced to 
6 (Figure 5b). This reduction leads to the simplified rule 
base shown in Figure 5c. 

The use of hierarchical structures allows simplifying the 
description of a system because complex behaviors can be 
generated by composing simple rule bases. A relevant ad- 
vantage of the xfs/ tool is its ability to adjust hierarchical 
systems. To illustrate this type of learning process, we will 
consider again the problem of approximating the behaviour 
at Figure 4a, but now using a hierarchical fuzzy system with 
two cascaded rule bases, like that shown in Figure 6a. The 
initial description we have taken for the first rule base is 
very simple: two fuzzy sets for each input variable and four 
singleton values for the output, thus giving 4 rules (Figure 
6b). The second rule base employs only one fuzzy set for the 

21 21 22 23 zS 26 26 
z l  z l  21 B 23 z5 26 

Figure 5: Rule base obtained after learning and clustering. 

input because two other ones are generated by using linguis- 
tic hedges, and three singleton values for the output (Figure 
6c). The defuzzification method performed by both rule 
bases is the Fuzzy Mean method. Since initially all the out- 
put values are equal, the input-output relation provided by 
this system is flat. 

The influence of the parameters on the global behavior of 
a hierarchical system is complex. In terms of learning, this 
means the existence of a lot of local minima which make no 
useful the application of gradient based learning algorithms. 
Contrary to the previous example, the statistical algorithms 
provide now better results. In particular, we have used the 
Blind Search algorithm followed by Marquardf-Leven- 
berg's algorithm. In the latter algorithm, xfsl does not com- 
pute the derivatives (it is not possible in hierarchical 
systems) but estimates them from small parameter modifi- 
cations. 

X 

Y 

(b) (4 
Figure 6. Tuning a hierarchical system 
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After learning, the global system behavior approximates 
the target behavior with an RMSE of 0.41%. What is very 
interesting is that the rule bases have learnt the intrinsic 
composition of the target function. The first rule base iden- 
tifies a subtracting relation between y and x (with a certain 
scaling factor), while the second rule base identifies an step- 
wise relation. Between 25 and 36 rules are required by a 
grid-based fuzzy system (using the Fuzzy Mean defuzzifi- 
cation method) to perform as well as a hierarchical system 
with only 7 rules, thus showing the importance of tuning hi- 
erarchical descriptions for a CAD tool. 

8. Fuzzy systems with discrete output 

A fuzzy classifier can be seen as a fuzzy system in which 
the membership functions of the output variable represent 
the different categories to which the output may belong. The 
output provided by a fuzzy classifier is generally the output 
membership function with the highest activation degree. 
Since the output values of these systems are categories, the 
learning process faces an additional obstacle. It should 
modify the parameters of the membership functions associ- 
ated to the input variables to improve the success rate of the 
classification. Contrary to the case of fuzzy interpolators, 
fuzzy classifiers can perform better when reducing their rule 
bases since classification boundaries not parallel to the grid 
partition can be obtained. 

As an example of tuning a fuzzy classifier, let us consid- 
er the problem illustrated in Figure 7. It shows a set of 80 
data grouped into 4 different categories with 20 data each 
one (Cl,  C2, C3, and C4). The fuzzy classifier to be tuned 
by ~fsl contains 9 rules initially, with 3 membership func- 
tions covering each input variable, as shown at the top and 
left parts of Figure 7. 

Figure 7: Example of a classification problem. 

Applying the pruning process of xfsl, the 9 rules are re- 
duced to 6, and the membership functions are learned as 
shown at the bottom and right parts of Figure 7. The classi- 
fication boundaries implemented by the 6 rules reach a clas- 
sification rate of 100%. as shown in Figure 7. 

9. Conclusions 

The tool xfsl presented herein represents an important ef- 
fort towards the.automatization of the learning process in 
the design of fuzzy systems. The wide set of algorithms in- 
cluded (from gradient-based to statistical) allows solving 
many application problems. The incorporated methods of 
clustering and pruning permits the simplification of the 
fuzzy system considered. Its capability of tuning hierarchi- 
cal fuzzy systems makes it also possible to simplify the de- 
scription of a system because complex behaviors can be 
usually generated by composing simple rule bases. Its abil- 
ity to work with systems that employ linguistic hedges al- 
lows adjusting the system as well as maintaining its 
linguistic meaning, which is very interesting when extract- 
ing knowledge from data. Since the tool is integrated into 
the environment Xfuzzy 3.0, it is possible not only to tune a 
system but also using other tools to graphically define it, to 
represent its behavior by 2-D or 3-D plots, and to simulate, 
monitor or synthesize software descriptions of it. As part of 
Xfuzzy 3.0, xfsl is distributed freely under the GNU General 
Public License from the Xfuzzy official web page (http:// 
www.imse.cnm.es/Xfuzzy/). 
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