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A Banach space E is said to be Grothendieck if weak® and weak sequential
convergence in E’ coincide. Grothendieck spaces are close to the heart of every
vector measure theorist (see [2]). Here is a list of reformulations of the definition -
of Grothendieck spaces which can be also seen in [2].

Theorem 1 [2]. Any one of the following statements about a Banach space E
implies all the others:

(1) E is a Grothendseck space.

(2) Every bounded linear operator from E to co is weakly compact.

(3) For all Banach spaces F' such that F' has a weak® sequentially compact unit
ball, every bounded linear operator from E to F is weakly compact.

(4) For all weakly compactly generated Banach spaces F; every bounded linear
operator from E to F is weakly compact.

In the framework of locally convex spaces, we are going to show that if we
change “sequential convergence” for “uncorditional convergence of series” in the
definition of Grothendieck spaces, we can obtain a similar result to Theorem 1
with the Banach space ¢; and some other classes of Banach spaces. Moreover,
we also give some other characterizations which involve perfect sequence spaces,
copies of ¢p and Orlicz—Pettis topologies.

In what follows, for space we mean Hausdorff locally convex space. We refer the
reader to Jarchow’s monograph [4] for terminology and' notation.

Now, we list some facts and definitions that we will use in the theorem.

(1) A space E is said to be X—complete if every unconditionally Cauchy series
in E is convergent (see [1]). It’s clear that every sequentially complete space
is a ¥-complete space.

(2) There exists a finest Hausdorff locally convex topology on every space [E, 7]
which has the same summable sequences as the original one (see [6]). This
topology is denoted by OP(r).

(3) Let E and F be Banach spaces. In [3], Edgar introduced the following order
relation: .

E<F = E= () (T*)V'(F),

TEL(E,F)
where L(E, F) denotes as usual the set of linear continuous maps from E

to F.
(4) A sequence space A is said to be perfect if A = AX* (see [5]).

Our theorem is the following.
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Theorem 2. Assume that [E',0(E', E)] is a £-complete space, then the following
are equivalent:

(1) [E',o(E',E")] is Z-complete.

(2) OP(o(E' E)) is finer than B(E' E).

(3) [E',B(E', E)] has no copy of co.

(4) Weak® and weak unconditional convergence of series in E' coincide.

(5) Every linear weakly continuous map from E to £y carry bounded sets into
relatively compact sets. .

(6) For all Banach spaces F such that F < £y in Edgar’s ordering, every linear
weakly continuous map from E to F carry bounded sets into weakly relatively
compact sets.

(7) For all separable weakly sequentially complete Banach lattices F, every lin-
ear weakly continuous map from E te F carry bounded sets into weakly
relatively compact sets.

(8) For all perfect sequence spaces A, every linear o(E, E')-0(A, AX) continuous
map from E 16 X maps bounded sets into weakly relatively compact sets.

We notice that if E is a Banach space, the maps which carry bounded sets into
weakly relatively compact sets are exactly the weakly compact maps.
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