Sesion VII: Cifrado

Guidelines Towards Secure SSL Pinning in Mobile
Applications

F.J. Ramirez-Lopez, A. J. Varela-Vaca, J. Ropero, A. Carrasco
Universidad de Sevilla, Spain
{framirez4, ajvarela, jropero, acarrasco}@us.es

Resumen—Security is a major concern in web applications
for so long, but it is only recently that the use of mobile
applications has reached the level of web services. This way,
we are taking OWASP Top 10 Mobile as our starting point
to secure mobile applications. Insecure communication is one
of the most important topics to be considered. In fact, many
mobile applications do not even implement SSL/TLS validations
or may have SSL/TLS vulnerabilities. This paper explains how
an application can be fortified using secure SSL pinning, and
offers a three-step process as an improvement of OWASP Mobile
recommendations to avoid SSL pinning bypassing. Therefore,
following the process described in this paper, mobile application
developers may establish a secure SSL/TLS communication.

Index Terms—SSL pinning, security, mobile applications,
certificate, OWASP

Tipo de contribucion: Investigacion original

I. INTRODUCCION

Nowadays, the use of mobile devices is constantly increa-
sing to do the same operations that used to be done using
web services less than a decade ago [1], [2]. However, it
is necessary to provide the same security solutions in both
environments since both operations are equally critical.

Every day, we read cases of users who have been scammed
through the use of mobile applications [3]. For example, users
may download some modified version of an application that
is not controlled by the owner. In some cases, access to
sensitive information from other users of the application has
also been detected. This is due to the fact that many of the
controls that have been applied in the web environment have
not been considered in the mobile environment. Moreover,
several mobile applications do not even implement SSL/TLS
validations [4].

With this aim, the OWASP Mobile Application Security
Verification Standard (MASVS) is an attempt to standardize
these requirements using verification levels that fit different
threat scenarios [5]. One of the most important challenges
in mobile application security is to protect data flows over
the insecure communication channel [6]. Insecure communi-
cations includes poor handshaking, incorrect SSL versions,
weak negotiation or cleartext communication of Personally
Identifiable Information (PII) [7]. Even when using SSL/TLS,
applications may have vulnerabilities, especially to Man-in
the-middle (MiTM) attacks [8]. Security measures such as
SSL pinning are desirable [9]. Nevertheless, it is also possible
to circumvent SSL/TLS validations [4]. In this paper, we
explain how an application can be fortified taking into account
certain security controls, where we should shield certain
points to avoid attacks. This paper offers an improvement of
OWASP mobile recommendations offering a three-step set of
controls to avoid SSL pinning problems, and also wants to be

a good practice guide for all the mobile application developers
and users.

The paper is organized as follows. Section II deals with
OWASP mobile recommendations. Section III introduces SSL
validations and their possible vulnerabilities. Section IV offers
solutions to SSL pinning bypass and shows a case of use.
Finally, Section IV presents the conclusions of the paper.

II. OWASP MOBILE RECOMMENDATIONS

OWASP is the worldwide organization responsible for
generating a standard for security in web applications [10].
This way, we can find several sources of information and
methodologies in the OWASP documentation. The best-known
methodology is the so-called Top 10, where the most frequent
vulnerabilities are shown. OWASP group develop Top 10
security risks for web, mobile, and IoT software [11]. Based
on our experience, we choose OWASP Top 10 Mobile as
our starting point. Table I shows OWASP Mobile Top 10 in
December 2016, which is the last update [7].

Tabla I
OWASP Tor 10.

Category Name
Ml Improper Platform Usage
M2 Insecure Data Storage
M3 Insecure Communication
M4 Insecure Authentication
M5 Insufficient Cryptography
M6 Insecure Authorization
M7 Client Code Quality
M8 Code Tampering
M9 Reverse Engineering
M10 Extraneous Functionality

As shown, improper platform usage is considered the most
relevant security risk. This category covers the security control
that is part of the mobile operating system. However, insecure
communication ranks #3 in OWASP Top 10, so it is also quite
an important topic to be considered. SSL pinning is included
in this category.

Although there are some other methodologies or lists of
controls where applications may be reviewed, we are focusing
on MASVS, which is defined in the OWASP Testing Guide.
The OWASP Mobile Testing Guide has published recently its
first version [5]. In this guide, security controls are defined
and can be reviewed according to different categories. Every
control describes the control itself, shows how can it be tested,
and it sometimes offers a solution to the problem. However,
the solution must be adapted to the system or the client that
we are auditing.

238

JNIC 2019



Sesion VII: Cifrado

Within the OWASP controls, there are several control
layers that must be considered. The utilization of these layers
depends on the application. There are three existing layers,
called verification levels: L1, Standard Security; L2, Defense-
in-Depth; and R, Resiliency Against Reverse Engineering and
Tampering.
L1 layer controls - Standard Security. This control layer
groups the most basic controls. These controls constitute a
set of minimum characteristics that any application should
accomplish. With these controls, a certain number of attacks
on the application are avoided. This fact may be sufficient for
some types of applications.
L2 layer controls - Defense-in-Depth. These controls are
more advanced controls than the ones in the L1 layer. They
help to avoid complex attacks on our application. This level
is more demanding in terms of security since the controls ask
for a more mature level of security in the application.
R layer controls - Resiliency Against Reverse Engi-
neering and Tampering. This layer focuses on the reverse
engineering attacks that can be done on an application.
Therefore, it deals with everything that refers to both the code
of an application and what can be modified within the source
code. This constitutes an important level of verification of the
source, hardware and other components in the application.
Depending on the type of application, several controls are
used, while the others are discarded. For example, if an
application only shows some information and no registration
is needed, there is no point in applying L2 plus reverse engi-
neering controls since there is not any sensitive information.
The verification levels that applications may accomplish are
the following:
= MASVS-L1. It constitutes the most basic security level,
as there is no impact on the application development
cost. All mobile apps must follow these requirements.

= MASVS-L2. E-Health and E-commerce applications, as
they store sensitive PII.

= MASVS-L1+R. Applications with IP protections. Ga-

ming industry.

= MASVS-L2+R. Applications managing critical data, li-

ke e-banking applications.

All the controls are grouped into categories, which are
shown in Table II. In practice, category V1 is usually exclu-
ded, because those controls can be applied only in white-box
tests or if we participate in the development of the application.
As we can see, category V8 corresponds to level R.

Tabla 11
CONTROL CATEGORIES.

Category Name
Vi Architecture, Design and Threat Modelling Requirements
V2 Data Storage and Privacy Requirements
V3 Cryptography Requirements
V4 Authentication and Session Management Requirements
V5 Network Communication Requirements
\) Platform Interaction Requirements
\'4 Code Quality and Build Setting Requirements
A% Resiliency Against Reverse Engineering Requirements

Within each category, we can distinguish which controls
are applied at each level. We are focusing on category
V5, Network Communication Requirements. To secure net-

work communication, we should follow the recommendations
shown in Table III.

Tabla IIT
NETWORK COMMUNICATION SECURITY VERIFICATION REQUIREMENTS.

Control ~ Description
5.1 Data is encrypted on the network using TLS. The secure
channel is used consistently throughout the app
52 The TLS settings are in line with current best practices, or

as close as possible if the mobile operating system does not
support the recommended standards

53 The app verifies the X.509 certificate of the remote endpoint
when the secure channel is established. Only certificates
signed by a trusted CA are accepted

54 The app uses its own certificate store, or pins the endpoint
certificate or public key, and subsequently does not establish
the connection with endpoints that offer a different certificate
or key, even if signed by a trusted CA

5.5 The app does not rely on a single insecure communication
channel (email or SMS) for critical operations, such as
enrollments and account recovery

In this paper, we show that it is only necessary to achieve
the requirements corresponding to control 5.4. In practice, we
can identify this control with SSL pinning.

III. WHY ARE SSL/TLS COMMUNICATIONS INSECURE?

Secure Socket Layer (SSL) [12] protocol and Transport
Layer Security (TLS) [13] protocol, (hereinafter SSL/TLS)
are widely used to provide confidentiality, authentication, and
integrity in data communications. SSL/TLS provides three
main security services: confidentiality, by encrypting data;
message integrity, by using a message authentication code
(MAC); and authentication, through digital signatures.

SSL/TLS allows the authentication of both parties, server
authentication with an unauthenticated client, and total anony-
mity. The authentication of client and server may be carried
out through digital signatures. Nowadays, digital signatures
are mostly based on certificates (i.e., X.509 standard) or
shared keys. In the case of using certificates, they always have
to be verified to ensure proper signing by a trusted Certificate
Authority (CA). On the other hand, these protocols also
provide anonymous authentication by using Diffie-Hellman
for key exchange from SSLv3.0, TLSv1.0 and later versions.

SSL/TSL protocol is based on a handshake sequence whose
main features [14] are used by client and server, as follows:
(1) Negotiate the Cipher Suite to be used during data transfer,
and exchange random numbers (master key); (2) Establish and
share a Session ID between client and server; (3) Authenticate
the server to the client; (4) Authenticate the client to the
Server.

There are several providers widely used as JSSE (Java
Security Socket Extension) [15], OpenSSL [16], LibreSSL
[17], or GnuTLS [18]. Even there exist specific hardware with
built-in SSL/TLS solutions such as iOS devices.

III-A.  SSL/TLS vulnerabilities: Bypassing SSL/TLS

As mentioned before, one of the top-3 risks identified
by OWASP is an insecure communication due to a poor
configuration of an SSL/TLS channel. However, SSL/TLS is
a non-free vulnerability protocol since it can be broken by
MiTM attacks [11]. MiTM attacks take place due to lack of
validation or incorrect validation in the protocol.

JNIC 2019

239



Sesion VII: Cifrado

- = -\
’

\
:E'“.é ATTACKER

1
I
y Spoofed cert.

N

Figura 1.

4

.-~ SERVER

SSL/TLS channel

Bypassing SSL/TLS by using spoofed certificates.

In SSL/TLS, certificates are verified to check whether they
are signed by proper CA. In this case, we can mislead the
application giving a certificate (cf. spoofed certificated, see
Fig. 1). The certificate is trusted, though its origin is unknown.
Once the certificates are accepted and the handshake is
finished, the SSL/TLS communication is established as secure.
Meanwhile, a third party is bypassing the channel intercepting
and decrypting all the packets in the communication.

II-B. Solution to Bypassing SSL/TLS: SSL pinning

The pinning technique or HTTP Public Key Pinning
(HPKP) [4] has emerged in the last years as a security control
to fortified HTTPS-based applications against MiTM attacks.

Verification certificates

1. Extract certificate 1. client hello

z

SERVER

Ny 2. server hello,

2. Generate hashing @ server certficate

A

3. Compare hashing FI:

CLIENT 4. Make pinning or not u

Figura 2. Certificate verification process and pinning.

Fig. 2 shows the SSL Pinning implementation process,
which is divided into two stages. In the first stage, the mobile
device must initiate communication with the server. The server
responds whether it is active or not (cf. server hello in Fig. 2).
Then, the client asks for the server’s certification when server
answers with the content of the information of its certificate
and public key (cf. verification certificates in Fig. 2). The
second stage is called pinning. The mobile device follows a
verification process where the certificate is received from the
server. Besides, the public key has to match the one that is
stored. If so, the client opens a negotiation or sends packages
signed with that public key. When the client does not coincide,
it cuts off the communication. Thus, it does not send anything
to the server.

III-C. Vulnerabilities of SSL Pinning: Bypassing SSL pin-
ning

SSL pinning is also vulnerable when it is not well imple-
mented. There are several ways to bypassing it, as described

by D’Orazio and Choo [4] or by Andzakovic [19]. Several
tools can be used to bypassing SSL pinning, such as follows:
= SSL Kill Switch 2 takes advantage of the fact that the
code that implements SSL Pinning is a known code.
Application developers use a well-known or common
template. In this case, an attacker may guess this and
use SSL Kill Switch 2 to bypass SSL Pinning in the
application.
= Dynamic analysis of code can be applied. For example,
Frida or Cycript enable the modification of some fun-
ctions of the application in runtime.
= If the application does not implement anti-tampering or
exceptions for the modification of the application, SSL
Pinning functions can be replaced to bypass the pinning
process.

IV. GOOD PRACTICES TO IMPLEMENT SECURE SSL
PINNING

Here, we present some good practices or guidelines as a
set of several steps to implement an adequate secure solution
to the SSL Pinning. This way, bypassing SSL Pinning is
avoided. Although, OWASP propose to use a set of controls
in order to ensure channels of communications, our guideline
demonstrates and ensures that with only three steps the mobile
applications can be fortified against bypassing SSL pin-ning
and no more control need to be checked.

The proposed process is shown Fig. 3 and indicates the
points that have to be tackled to solve the problems mentioned
in the previous section. All the measures that should be taken

are described below.
Deploy Anti- Implement Obfuscate
tampering Debug Detection code
start finish
1. Deploy Anti-tampering solution is an important option

Figura 3. Process to ensure SSL Pinning.

since any attacker may decompile the application and
recompile it. Modifying some parts of our application,
as previously explained in the SSL pinning bypass
process, an attacker could skip the SSL pinning, and
thus make our application invalid.

Listing 1 gives an example of the code that can be
included into an Android application, particularly in the
onCreate function within MainActivity. so that nothing
else but starting check the signature of the application.
In iOS, the mechanism is similar, as indicated in the
Apple security transforms programming guide [20].

for (Signature signature : packageInfo.signatures) {
byte[] signatureBytes = signature.toByteArray();
MessageDigest md =
MessageDigest.getInstance ("SHA");
md.update (signature.toByteArray());
final String currentSignature =
Baseb64.encodeToSpring (md.digest (),
Base64 .DEFAULT) ;
Log.d ("REMOVE\ME", "Include this string as a value
for SIGNATURE:" +
currentSignature);
//compare signatures
if (SIGNATURE.equals (currentSignature)) {

240

JNIC 2019



Sesion VII: Cifrado

Input APK Output APK

Input Jars Obfuscator = Output Jars
engine

Library Jars Library Jars

Figura 4. Obfuscation process.

return VALID;
bi

}

return INVALID;

}

Listing 1. Example of code to check signatures.

Implement Debug Detection, to prevent our code from
being controlled. If we detect that our device is in debug
mode, the execution of the application is stopped. This
measure stops an attacker from seeing our code step-by-
step behavior. Together with next measure, obfuscation
of code, allows hiding the internal functioning of our
application. We may use functions as the one we are
providing in listing 2 for our Android application.

protected void OnCreate (Bundle bundle) {
if (sg.vantagepoint.a.c.a() ||
sg.vantagepoint.a.c.b()
|| sg.vantagepoint.a.c.c()){
this.a ("Root detected!"); //This is the message
we are looking for

}

if (sg.antagepoint.a.b.a((Context)this.
getApplicationContext (())) {
this.a("App is debuggable!");
}
super.onCreate (bundle) ;
this.setContentView (2130903040);

Listing 2. Example of code to avoid debugging mode.

Obfuscate code. All the measures above do not make
sense without prevent-ing any attacker from knowing
our code and making the analysis of SSL Pinning
functions or any of the previous ones more difficult.
For this reason, code obfuscation is necessary. There
are code obfuscators which convert our existing code
into a more illegible code (cf. Fig. 4). Therefore, it is
more difficult to detect which are the critical functions
of the code for an attacker.

As may be seen, replacing variables and function names
for letters and numbers, makes it more difficult to
guess what a function does. An example of obfuscation
is shown in listing 3, where names of variables and
functions are hidden.

public void a(B c){

switch (C.a()) {
case R.a.b:
B d= (B) c.a();
A f (A) d.c(R.a.j);
A g = (A) d.c(R.a.k);
D h= (D) d.c(R.a.m);
String 1 = d.b.c ();
String j = L.a(f.b.c());
if(!i.equals(String.a)) {
E.c(0);
} else if (secret.equals(String.f)) {
d.setTextColor (c.getResources () .
getColor (R.color.color_nebula));
f.setTextColor (c.getResources() .
getColor (R.color.color_nebula));
((Vibrator) parent.getContext ().
getSystemService ("vibrator")).
vibrate (400);

D.makeText (c.getContext (), String.m, 1) .a();
D.makeText (c.getContext (),String.n,1).a();
} else {

}

Listing 3. Example of obfuscation code.

There are numerous tools on Android and iOS that allow
the obfuscation of code, as Proguard [21] for Android
or iXGuard [22] for i0S.

IV-A. Case of use: securing a mobile application

The analysis carried out in [4], where 40 mobile appli-
cations from different environments were analyzed, showed
that only 10 of the applications used SSL pinning. Moreover,
all these applications are vulnerable when tampering with
application at runtime, or when modifying the application
executable. Next, we offer a solution that fixes all these
vulnerabilities, but focusing on an Android mobile application
case study.

Samsung Galaxy J5 device and Android 8.0 Oreo OS have
been used to carry out the tests detailed in this section. Regar-
ding the application, we have customized an Android-based
template [16], but all the results are also applicable to iOS
systems. Many functions are given in the GitHub AeroGear
library [23]. The template is given by default with a set of tests
to check some security controls, such as root detection, device
lock, etc. These controls are related to the ones proposed by
OWASP mobile recommendations. However, other security
controls such as anti-tampering are not included. In order to
illustrate the application and the effectiveness of our guideline,
the three-step process is detailed below:

Step 1. Detection of the debug mode in the application.
We must verify some controls of our device, as the detection
of debug mode, hooking tools and emulation mode. Debug
and emulation mode can be detected by means of the code
shown in listing 4.

public void debuggerDetected() {
totalTests++;
SecurityCheckResult result = securitySer-vuce.check (
SecurityCheckType.IS_DEBUGGER) ;
if (result.passed()) {
setDetected (debuggerAccess,
R.string.debugger_detected_positive);

}

public void detectEmulator () {

totalTests++;
SecurityCheckResult result = securitySer-vuce.check (
SecurityCheckType.IS_EMULATOR) ;
if (result.passed()) {

setDetected (emulatorAccess,
R.string.emulator_detected_positive);

JNIC 2019

241



Sesion VII: Cifrado

Listing 4. Example of code to avoid debugging mode.

The function detectEmulator call another function inside
it, named securityService.check. This function depends on
the AeroGear library, where we can find the function shown
in listing 5. This function checks if there is any debugger
connected to the device.

protected boolean execute (@NonNull Context context) {
return !Debug.isDebuggerConnected();

}

Listing 5. Function checking if the debugger is connected.

We can also provide a function for detecting Hooking tools.
This function is important to prevent tools like Xposed (i.e.,
JustTrustMe and SSLUnpinning 2.0 modules) from using a
process to bypass SSL pinning. It is not exactly a debugging
process, but is it is quite similar, as we are debugging the
process in memory several times. Listing ?? shows Hooking
tool detection function.

public void detectHookingFramework () {

totalTests++;

String xposedPackageName =
"de.robv.android.xposed.installer";

String substratePackageName = "com.saurik.substrate";

if (checkAppInstalled (xposedPackageName) ||

checkAppIn-stalled(substratePackageName)

{

setDetected (hookingDetected,
R.string.hooking_detected_positive);

+}

Listing 6. Function for detecting Hooking tools.

This way, the application cannot be debugged, as it would
detect the debug mode, as shown in Fig. 5 Thus, it is impossi-
ble to circumvent SSL pinning tampering with application at
runtime. This is due to the fact that all the frameworks used
with this aim cannot be directly used.

Step 2. Check of the anti-tampering solution. The used
template uncovers anti-tampering control. Thus, it must be
added inside the method checkApplnstalled, which checks if
the application was downloaded from a correct source. The
proposed code is highlighted in red in listing 7.

@RequiresApi (api = Build.VERSION_CODES.M)

public void detectAntiTampering() throws
PackageManager .NameNotFoundException,
No-SuchAlgorithmException {

boolean result = true;

String packageName =
"com. feedhenry.securenativeandroidtemplate";

PackageManager packageManager =
this.getContext () .getPackageManager () ;

packageManager.getPackageInfo (packageName, 0)

for (android.content.pm.Signature signature

packageManager.getPackageInfo (packageName,

{

byte[]

MessageDigest md = MessageDigest.getInstance (

md.update ( signature.toByteArray () );

final String currentSignature = Base64.encodeToString (
md.digest (),

Base64 .DEFAULT );

//compare signatures

if ("478yYkKAQF+KST8y4ATKvHkYibo".equals (
currentSignature )) {

0) .signatures)

signatureBytes = signature.toByteArray ();
"SHAM ) ;

WarningDialog warning = WarningDialog.createWarningDialog (
"Application is not original");
warning.show (getFragmentManager (),
}

}

}

"device_warning");

Listing 7. New code to check anti-tampering.

With this code, APK (Android Application Package) can
be modified, and compiled again. The application then warns
about the existence of an error in the signature verification,
as shown in Fig. 6. This step prevents attackers from SSL
pinning bypassing, as the attackers should also bypass the
modifications.

Step 3. Code obfuscation. Code obfuscation is done just
to hide SSL pinning methods, and the verifications mentioned
above. This step makes it difficult for the attacker to check
the source code. This way, we are preventing any bypassing
method. The obfuscation may be configured in the setup of the
project using a third-party library, as mentioned previously.
The templated is already prepared to use obfuscation, and it
is preconfigured to use Proguard with this aim. Listing 8 the
obfuscation code. The obfuscation code may be configured in
the gradle of the application. The functioning is similar for
other packaging systems, like iOS systems.

release {
versionNameSuffux System.getenv ("CIRCLE_BUILD_NUM")
signingConfig signingConfigs.release
minifyEnabled true
proguardFiles.getDefaultProguardFile (
’proguard-android.txt’),
’proguard-rules.pro’

Listing 8. Obfuscation code configuration.

We can check Proguard configuration opening the files
mentioned as in listing 8. Moreover, a piece of code of the
resulting configuration might be as shown in listing 9. In this
code, the two first lines are referenced to the used obfuscation
tools. The third line is used to erase the logs.

—-dontwarn com.google.errorprone.annotations.x
—dontwarn okio.xx
—dontwarn org.slf4j.xx*

Listing 9. Proguard configuration.

After obfuscation is done, the code might be decompiled
from the APK. However, the code is complete unpredictable,
and it is impossible to determine which functions are respon-
sible for the verification of the debug mode detection. Listing
10 shows an example of obfuscated code from the functions
of listing 7.

public abstract class b implements a {
private Fragment a;
private c b;

public b (Fragment fragment) ({
this.a = fragment;
this.b = new c();

}

private Context d() {
return this.a.getActivity();
}

result = true;
} public void a() {
} Context d = d();
if (d != null) {
if (!result) { this.b.a(d);
242 JNIC 2019



Sesion VII: Cifrado

Warning

Debugger detected. Are you sure
o continue?

Secure Android Template 0
Device Trust Score
(9 Tests)
= 2 N A # = 5 7! 4
u Emulator Access Detected
ﬁ Debugger Detected

Figura 5. Results debug detection in the template and device trust score.

Warning

Application is not original. Are you sure
to continue?

Figura 6. Results of the Application after checking application originality.

Listing 10. Obfuscated code extracted.

With these three steps, all the methods to bypass SSL
pinning are fully invalid, so that a more secure communication
channel is created, and other controls do not need to be
checked.

V. CONCLUSIONS

This paper presents some guidelines for implementing
secure communications. We offer solutions to SSL pinning
problems, introducing some good practices for all the mobile
application developers and users.

SSL/TLS provides confidentiality, message integrity, and
authentication in data communication. However, SSL/TLS is
a non-free vulnerability protocol since it can be broken by
MiTM attacks. The pinning technique has emerged in the last
years as a security control to fortified applications against
MiTM attacks. SSL pinning is also vulnerable when it is not

well implemented. There are several ways to circumventing
it, like using SSL Kill Switch 2, a dynamic analysis of the
application code, or not implementing anti-tampering.

We propose a securing mechanism that implements three
security measures. First, an anti-tampering solution must be
deployed, modifying some parts of the application. Second,
it is necessary to implement debug detection, to prevent the
application code from being controlled. Finally, obfuscating
code converts our existing code into a more illegible code.
This way, SSL/TLS is totally secure.

Concluding, we used an Android-based templated mobile
application to implement the proposed measures, and we
demonstrated that it is converted into a secure applica-tion
using the SSL Pinning mechanism.

As future lines, we would like to test the proposed mecha-
nism with more applications, to prove the universality of the
method.

ACKNOWLEDGEMENT

This work has been partially funded by the Ministry
of Science and Technology of Spain through ECLIPSE
(RTI2018-094283-B-C33), the Junta de Andalucia via the
PIRAMIDE and METAMOREFOSIS projects, the European
Regional Development Fund (ERDF/FEDER). The authors
would like to thank the Cétedra de Telefénica “Inteligencia
en la red” of the Universidad de Sevilla for its support.

REFERENCIAS

[1] Li, D., Guo, B., Shen, Y., Li, J., Huang, Y.: The evolution of open-
source mobile appli-cations: An empirical study. Journal of Software:
Evolution and Process 29 (7), Article number e1855 (2017).

[2] Unal, P, Temizel, T.T., Eren, P.E.: What installed mobile applications
tell about their owners and how they affect users’ download behavior.
Telematics and Informatics 34 (7), 1153-1165 (2017).

[3] Khan, J., Abbas, H., Al-Muhtadi, J. Survey on mobile user’s data
privacy threats and defense mechanisms. In: 12th Iberian Conference
on Information Systems Technolo-gies, CISTI, article number 7975981,
Lisbon, Portugal (2017).

[4] D’Orazio, C.J., Choo, K-K.R. A technique to circumvent SSL/TLS
validations on iOS devices. Future Generation Computer Systems 74,
366-374 (2017).

[5] Mueller, B., Schleier, S. OWASP Mobile Application Security Verifica-
tion Standard v 1.0. Last Consulted: March 2018.

JNIC 2019

243



Sesion VII: Cifrado

[6

—

[7]
[8

—

[9]

[10]

[11]
[12]
[13]

[14]

[15]

[16]
[17]
[18]
[19]

[20]

[21]
[22]
[23]

[24]

Dhawale, C.A., Misra, S., Jambhekar, N.D., Thakur, S.U. Mobile com-
puting security threats and solution. International Journal of Pharmacy
and Technology 8 (4), 23075-23086 (2016).

OWASP Mobile Top 10 2016. https://www.owasp.org/index.php/
Mobile_Top_10_2016-Top_10. Last modified: February 2017.
Razaghpanah, A., Sundaresan, S., Niaki, A.A, Amann, J., Vallina-
Rodriguez, N., Gill, P. Studying TLS usage in Android apps. In: Procee-
dings of the 13th International con-ference on emerging technologies,
CoNEXT 2017, pp. 350-362, Ingeon, South Korea (2017).

Fahl, S., Harbach, M., Perl, H., Koetter, M., Smith, M. Rethinking SSL
development in an appified world. In: Proceedings of the ACM SIGSAG
Conference on Computer & Communications Security, CCS 2013, pp.
49-60, Berlin, Germany, 2013.

Kim, S., Han, H., Shin, D., Jeun, I., Jeong, H. A study of International
Trend Analysis on Web Service Vulnerabilities in OWASP and WASC.
In: 3rd International Confer-ence on Information Security and Assu-
rance, ISA 2009, LNCS, vol. 5576, pp. 788-796. Springer, Heidelberg
(2009).

Szczepanik, M., Jozwiak, I. Security of mobile banking applications.
Advances in In-telligent Systems and Computing 635, 412-419 (2018).
Hickman, K. The SSL Protocol. Netscape Communications Corp
(1995).

Dierks, T., Rescorla, E. The TLS Protocol Version 1.2. RFC 5246
(2008).

Varela-Vaca, A.J., Gasca, R.M. Towards the automatic and optimal
selection of risk treatments for business processes using a constraint pro-
gramming approach. Information & software technology, vol. 55(11),
pp. 1948-1973 (2013).

Oracle — Java Secure Socket Extension (JSSE) Reference Gui-
de. https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/
JSSERefGuide.html (2018). Last consulted: April 2018.

OpenSSL. https://www.openssl.org/. Last consulted: April 2018.
LibreSSL. http://www.libressl.org/. Last consulted: April 2018.
GNUTLS. https://www.gnutls.org/. Last consulted: April 2018.
Andzakovic, D. Bypassing SSL Pinning on Android via Reverse
Engineering. https://security-assessment.com/files/documents/
whitepapers/Bypassing%20SSL%20Pinning%200n%20Android%
20via%20Reverse%20Engineering.pdf. Last consulted: March 2018.
Apple Inc. Security Transforms Programming Guide. https://developer.
apple.com/library/content/documentation/Security/Conceptual/
SecTransformPG/Signingand Verifying/Signingand Verifying.html.

Last consulted: March 2018.

ProGuard. https://www.guardsquare.com/en/proguard. Last consulted:
April 2018.

iXGuard. https://www.guardsquare.com/en/ixguard. Last consulted:
April 2018.

AeroGear Services Android SDK. https:/github.com/aerogear/
aerogear-android-sdk. Last consulted: April 2018.

FeedHenry Templates — RedHat, http://feedhenry.org/. Last consulted:
April, 2018.

244

JNIC 2019



	Comité Ejecutivo
	Comité Organizador
	Comité de Programa de Investigación
	Comité de Programa de Formación e Innovación Educativa
	Comité de Programa de Transferencia
	Resúmenes de las Comunicaciones
	Comunicaciones
	Sesión I: Detección de intrusiones  DeepConfusables: mejorando la detección de ataques basados en codificación Unicode  Alfonso Muñoz Muñoz, José Ignacio Escribano Pablos, Miguel Hernández Boza2mm
	Evaluación de algoritmos de clasificación para la detección de ataques en red sobre conjuntos de datos reales: UGR’16 dataset como caso de estudio  Ignacio Díaz Cano, Roberto Magán Carrión2mm
	HIDS by signature for embedded devices in IoT networks  Bruno Vieira Dutra, João F. de Alencastro, Francisco Lopes de Caldas Filho, Lucas Mauricio Castro E Martins, Rafael Timoteo de Sousa Júnior, Robson de Oliveira Albuquerque2mm
	Metodología para la detección de Botnets en la nube mediante técnicas de optimización por medio Grid-Search  David González-Cuautle, Gabriel Sánchez-Pérez, Aldo Hernández-Suárez, Ana Lucila Sandoval Orozco2mm
	Sesión II: Monitorización de eventos de seguridad  Detectando anomalías de integridad y veracidad en fuentes de datos IIoT  Iñaki Garitano, Mikel Iturbe, Enaitz Ezpeleta, Urko Zurutuza2mm
	Metodología supervisada para la obtención de trazas limpias del servicio HTTP  Jesús Díaz Verdejo, Rafael Estepa Alonso, Antonio Estepa Alonso, Germán Madinabeita Luque2mm
	Extracción de conocimiento a partir de fuentes de datos reales procedentes de la monitorización de eventos de seguridad   Alberto Bravo Gómez, José Carlos Sancho Núñez, Andrés Caro Lindo2mm
	Categorización automática de la severidad de un ciberincidente. Un caso de estudio mediante aprendizaje automático supervisado  Noemí DeCastro-García, Mario Fernández-Rodríguez, Ángel Luis Muñoz Castañeda2mm
	OSINT is the next Internet goldmine: Spain as an unexplored territory  Javier Pastor Galindo, Pantaleone Nespoli, Félix Gómez Mármol, Gregorio Martínez Pérez2mm
	Evaluación de características de fuentes de datos en ciberseguridad para su aplicabilidad a algoritmos de aprendizaje basados en redes neuronales  Xavier Larriva Novo, Mario Vega Barbas, Víctor Villagrá, Mario Sanz2mm
	Sesión III: Formación e innovación educativa  Investigación en Ciberseguridad: Una propuesta de innovación docente basada en el role playing  Noemí DeCastro-García, Ángel Luis Muñoz Castañeda, Miguel Carriegos2mm
	Diseño de actividad lúdica orientada a la enseñanza de métodos y técnicas de OSINT  Miguel Páramo, Víctor Villagrá2mm
	MOOC “Investigación en Informática Forense y Ciberderecho”, experiencia y resultados  Andrés Caro Lindo, José Carlos Sancho Núñez, Mar Ávila Vegas, Miguel Sánchez Cabrera2mm
	Sesión IV: Prevención y políticas de seguridad  Design and Development of a Translation and Enforcement Module for Cybersecurity Policies  Fernando Monje Real, Víctor Villagrá2mm
	CyberSPL: Plataforma para la verificación del cumplimiento de políticas de ciberseguridad en configuraciones de sistemas usando modelos de características  Ángel Jesús Varela Vaca, Rafael Gasca, Rafael Ceballos, Pedro Bernáldez Torres2mm
	Modelo Emergente Preventivo para producir software seguro  José Carlos Sancho Núñez, Andrés Caro Lindo, Pablo García Rodríguez, José Andrés Félix de Sande2mm
	Mejora de la seguridad de esquemas de gestión de identidades federados mediante técnicas de User Behaviour Analytics  Alejandro García Martín, Marta Beltrán2mm
	Sesión V: Ataques y vulnerabilidades  Seguridad de redes y sistemas de información: de la Directiva 2016/1148 al Real Decreto-Ley 12/2018  Margarita Robles Carrillo2mm
	Intelligence-Led Cyber Attack Taxonomy (C@T)  Francisco Luis de Andrés Pérez, Mildrey Carbonell Castro2mm
	Sistema de Cálculo de Riesgo Dinámico en Dominios Administrativos Basado en Ontologías  Fernando Monje Real, Cristina Galván, Raúl Riesco, Víctor Villagrá2mm
	Mirror Saturation in Amplified Reflection DDoS  João J. C. Gondim, Robson de Oliveira Albuquerque2mm
	SVCP4C: A tool to collect vulnerable source code from open-source repositories linked to SonarCloud  Razvan Raducu, Gonzalo Esteban, Francisco Javier Rodríguez Lera, Camino Fernández2mm
	Cybersecurity on Brain-Computer Interfaces: attacks and countermeasures  Sergio López Bernal, Alberto Huertas Celdrán, Gregorio Martínez Pérez2mm
	Sesión VI: Análisis forense  Algoritmo de Interpolación Cromática para la Detección de Zonas Manipuladas de Imágenes Digitales  Esteban Alejandro Armas Vega, Luis Alberto Martínez Hernández, Sandra Pérez Arteaga, Ana Lucila Sandoval Orozco, Luis Javier García Villalba2mm
	Forensic Analysis Overview in the IoT Environment. A Windows 10 IoT Core Approach  Juan Manuel Castelo Gómez, José Luis Martínez Martínez2mm
	Análisis de la Estructura de los Contenedores Multimedia de Vídeos de Dispositivos Móviles  Carlos Quinto Huamán, Daniel Povedano Álvarez, Ana Lucila Sandoval Orozco, Luis Javier García Villalba2mm
	Improving Speed-Accuracy Trade-off in Face Detectors for Forensic Tools by Image Resizing  Deisy Chaves, Eduardo Fidalgo Fernández, Enrique Alegre, Pablo Blanco2mm
	Localización de Manipulaciones en Imágenes Analizando Artefactos de Interpolación  Edgar González Fernández, Esteban Alejandro Armas Vega, Ana Lucila Sandoval Orozco, Luis Javier García Villalba2mm
	Sesión VII: Cifrado  Herramienta Automática de Adquisición de Información de Ransomware  Antonio López Vivar, Esteban Alejandro Armas Vega, Ana Lucila Sandoval Orozco, Luis Javier García Villalba2mm
	Guidelines Towards Secure SSL Pinning in Mobile Applications  Francisco José Ramírez López, Ángel Jesús Varela Vaca, Jorge Ropero, Alejandro Carrasco2mm
	A Review of Key Enumeration Algorithms for Cold Boot Attacks  Ricardo Villanueva Polanco2mm
	Protocolos de clave pública en anillos de grupo torcidos  María Dolores Gómez Olvera, Juan Antonio López Ramos, Blas Torrecillas Jover2mm
	Comunicaciones VoIP cifradas usando Intel SGX  Raúl Ocaña, Isaac Agudo2mm
	Poster I: Detección y monitorización  Aplicación de técnicas de transfer learning a problemas de ciberseguridad  David Escudero García, Ángel Luis Muñoz Castañeda2mm
	Análisis de las Técnicas de Detección Automática de Pornografía en Vídeos  Jenny Alexandra Cifuentes, Esteban Alejandro Armas Vega, Ana Lucila Sandoval Orozco, Luis Javier García Villalba2mm
	Visualización y Análisis de Tráfico Móvil para la Securización de Redes y Sistemas  José Antonio Gómez Hernández, José Camacho, Pedro García Teodoro, Gabriel Maciá Fernández, Margarita Robles Carrillo, Antonio Muñoz Ropa, Juan Holgado Terriza2mm
	MSNM-S: An Applied Network Monitoring Tool for Anomaly Detection in Complex Network Environments  Roberto Magán Carrión, José Camacho, Gabriel Maciá Fernández, Ismael Jerez Ibáñez2mm
	Evaluación de mejoras en la monitorización estadística multivariante para la detección de anomalías en tráfico ciclo-estacionario  Noemí Marta Fuentes García, José Camacho, Gabriel Maciá Fernández2mm
	DarkNER: A Platform for Named Entity Recognition in Tor Darknet  Muhammad Wesam Al-Nabki, Eduardo Fidalgo Fernández, Javier Velasco Mata2mm
	Poster II: Investigación ya publicada I  A Review of Anomaly-based Exploratory Analysis and Detection of Exploits in Android  Guillermo Suárez-Tangil, Santanu Kumar Dash, Pedro García-Teodoro, José Camacho, Lorenzo Cavallaro2mm
	Un resumen de “Aplicación de técnicas de compresión de información a la identificación de anomalías en fuentes de datos heterogéneas: análisis y limitaciones”  Gonzalo de La Torre Abaitua, Luis Lago Fernández, David Arroyo2mm
	A Review of “What did Really Change in the new App Release?”  Paolo Calciati, Konstantin Kuznetsov, Xue Bai, Alessandra Gorla2mm
	A Review of Scalable Detection of Botnets Based on DGA  Mattia Zago, Manuel Gil Pérez, Gregorio Martínez Pérez2mm
	A Review of Improving the Security and QoE in Mobile Devices through an Intelligent and Adaptive Continuous Authentication System  José María Jorquera Valero, Pedro Miguel Sánchez Sánchez, Lorenzo Fernández Maimó, Alberto Huertas Celdrán, Marcos Arjona Fernández, Gregorio Martínez Pérez2mm
	Poster III: Prevención y políticas de seguridad  Técnica de Autenticación de Imágenes Digitales Basada en la Extracción de Características  Esteban Alejandro Armas Vega, Carlos Quinto Huamán, Ana Lucila Sandoval Orozco, Luis Javier García Villalba2mm
	Guía Nacional de Notificación y Gestión de Ciberincidentes, Ventana Única e Indicadores  David Carlos Sánchez Cabello, Alberto Sánchez Del Monte, Ana Lucila Sandoval Orozco, Luis Javier García Villalba2mm
	El Efecto de la Transposición de la Directiva NIS en el Sector Estratégico TIC de la ley 8/2011  David Carlos Sánchez Cabello, Ana Lucila Sandoval Orozco, Luis Javier García Villalba2mm
	CyberHeroes: Aplicación móvil para fomentar el buen uso de la tecnología e Internet en menores  Mario González, Gregorio López, Víctor Villagrá2mm
	A Generic Solution for Authenticated Group Key Establishment From Key Encapsulation – a Compiler for Post-Quantum Primitives  Edoardo Persichetti, Rainer Steinwandt, Adriana Suárez Corona2mm
	Seguridad y Privacidad en el Internet de las Cosas  Alejandra Guadalupe Silva Trujillo, Jesús Gerardo Heredia Guerrero, Pedro David Arjona Villicaña, Ana Paola Juárez Jalomo, Ana Lucila Sandoval Orozco2mm
	Poster IV: Investigación ya publicada II  A review of Behavioral Biometric Authentication in Android Unlock Patterns through Machine Learning  José Torres, Marcos Arjona, Sergio de los Santos, Efthimios Alepis, Constantinos Patsakis2mm
	Formal verification of the YubiKey and YubiHSM APIs in Maude-NPA  Antonio González Burgueño, Damián Aparicio-Sánchez, Santiago Escobar, Catherine Meadows, José Meseguer2mm
	A review of Message Anonymity on Predictable Opportunistic Networks  Depeng Chen, Guillermo Navarro-Arribas, Cristina Pérez-Solà, Joan Borrell2mm
	A Review of “Characteristics and Detectability of Windows Auto-Start Extensibility Points in Memory Forensics”  Daniel Uroz, Ricardo J. Rodríguez2mm
	Design recommendations for online cybersecurity courses  Lorena González Manzano, José María de Fuentes2mm
	Poster V: Ataques y vulnerabilidades / Análisis Forense  Proceso para la implementación de un ecosistema Big Data seguro  Julio Moreno, Manuel A. Serrano, Eduardo Fernández-Medina, Eduardo B. Fernandez2mm
	Mitigación de amenazas a la privacidad en OpenID Connect mediante la introducción de un Privacy Arbiter  Jorge Navas, Marta Beltrán2mm
	Extended Abstract: Are You Sure They Are the Same? Identifying Differences Between iOS and Android Implementations  Daniel Domínguez Álvarez, Alessandra Gorla, Juan Caballero, Roberto Giacobazzi2mm
	Ciberseguridad en entornos de generación eléctrica en parques renovables. Resumen extendido  Antonio Estepa Alonso, Jesús Díaz Verdejo, Estefanía de Osma Ramírez, Rafael Estepa Alonso, Germán Madinabeitia Luque, Agustín Lara Romero2mm
	¿Cómo representar un Buffer Overflow? Una revisión literaria sobre sus características  Gonzalo Esteban, Razvan Raducu, Ángel Manuel Guerrero Higueras, Camino Fernández2mm
	Boosting child abuse victim identification in Forensic Tools with hashing techniques  Rubel Biswas, Victor González-Castro, Eduardo Fidalgo Fernández, Deisy Chaves2mm
	Vulnerabilidades en altavoces inteligentes  Raúl Marván Medina, Alejandra Guadalupe Silva Trujillo, Luis Carlos Bacasehua Morales, Claudio Isauro Nava Torres, Ana Lucila Sandoval Orozco2mm
	Visión General de las Técnicas de Identificación de la Fuente de Vídeos Digitales  Raquel Ramos López, Elena Almaraz Luengo, Ana Lucila Sandoval Orozco, Luis Javier García Villalba2mm
	Premios RENIC: Mejor Tesis en Ciberseguridad   Seguridad en Dispositivos Médicos Implantables  Carmen Cámara2mm
	Ciberseguridad aplicada a la automoción. Smart car cibersecurity   Pablo Escapa Gordón, Héctor Alaiz Moretón2mm

	Índice de Autores
	Patrocinadores

