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Simplified Modal Expansion to Analyze
Frequency-Selective Surfaces: An Equivalent
Circuit Approach

Francisco Mesa, Ratil Rodriguez-Berral, Marfa Garcia-Vigueras,
Francisco Medina, and Juan R. Mosig

Abstract—This communication extends a previously reported analyti-
cal circuit that models the plane wave scattering by 2-D arrays of planar
patches/apertures embedded in a layered media. In this extension, it is
assumed that the current/electric field spatial profile in the patch/aperture
region can directly be taken from the eigenfields of a waveguide whose
cross section matches the scatterer boundaries. This methodology exploits
all the advantages of the circuit modeling and gives place to a very effi-
cient computational tool for many practical frequency-selective surfaces
(FSSs). The circuit model is expected to work up to frequencies where the
isolated scatterers have their third resonance. Thus, it allows us to provide
unified equivalent circuits to deal with conical incidence and with certain
symmetric cases involving two or three patches/apertures in the unit cell.

Index Terms—Equivalent circuits, electromagnetic scattering by peri-
odic structures, frequency selective surfaces.

I. INTRODUCTION

In the microwave and millimeter-wave regimes, two-dimensional
(2-D) periodic distributions of metallic patches/apertures (see Fig. 1)
are well-known structures widely used for many applications [1]-[4].
A renewed interest in the topic has arisen in connection with extraor-
dinary optical transmission and the birth of metamaterials science [5],
[6]. Although the handling of these structures heavily lies on the use of
commercial electromagnetic solvers, simple shape scatterers or elec-
trically small unit-cells are amenable to analytical description. Thus,
equivalent surface impedances or similar concepts [2], [7] can be used
in the latter case. The small electrical size requirement can be removed
without losing the analytical (or quasi-analytical) feature by using
appropriate equivalent circuits or networks (see, for instance, [8] and
references therein or [9]-[11]).

All the methods that yield accurate dynamic circuit models are
based on the general idea of transforming the original periodic scat-
tering problem into a generalized waveguide discontinuity problem,
since each unit cell can be seen as a generalized waveguide [12]
with obstacles or diaphragms inside. The authors have exploited this
concept to extract wideband equivalent circuits for several structures
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[13]-[15]. In [15], a key fruitful assumption was to consider the
spatial distribution of the current/electric field on the scatterer as a
frequency-independent function. This idea was extended to 2-D arrays
of rectangular patches/apertures in [16] and a seminumerical approach
for arbitrarily shaped scatterers was reported in [17]. Although the
circuit models in [15]-[17] are accurate over a wide frequency band,
they still suffer from the limitation associated with the use of a
unique spatial profile in the scatterer [18]. The results worsen when a
second intrinsic resonant mode of the patch/slot becomes significant
and they are totally wrong when the spatial profile is determined by
that second mode. More sophisticated methods, such as the theory
of characteristic modes [19], [20], should then be used. In this
communication, the authors propose an alternative approach to extend
the range of validity of [15]-[17] by using a linear combination of
two orthogonal spatial profiles which are taken from the eigenfields
of a hollow-pipe waveguide whose cross section has the shape of
the scatterer motif. Closed form profiles are available for simple
geometries. For more complex patterns, a 2-D eigenvalue problem
must be numerically solved (the computational cost of the 2-D
problem is almost negligible compared with the usual one required by
3-D solvers). It is worthy to note that the proposed approach does not
yield a general multimodal network model such as the one reported
in [16] but a circuit representation of the equivalent discontinuity
admittance met by a given incident wave. As a result, the new circuit
models are valid over a much wider frequency band that covers the
first two intrinsic resonances of the patches/apertures. Interestingly,
they can also account for unit cells involving two or three patches or
apertures. The analysis of cross-polarization effects is also simplified
with respect to other approaches [16].

This communication is organized as follows. In Section II, a cir-
cuit model is systematically derived for a planar array of patches. The
inclusion of a multilayered environment and the formulation of the
aperture problem is briefly discussed. Section III presents a selected
group of examples to illustrate the validity, advantages, and limitations
of the method. Finally, conclusion is drawn in Section I'V.

II. DERIVATION OF THE EQUIVALENT CIRCUITS

In this section, an equivalent circuit is derived that models the
scattering of a plane wave impinging on a periodic array of metallic
scatterers embedded in a layered environment, see Fig. 1(a). This prob-
lem can be posed in terms of the equivalent waveguide discontinuity
scenario (unit cell) depicted in Fig. 1(b). The walls of the general-
ized waveguide [12] are periodic boundaries. For convenience, it will
be first considered the case of semi-infinite homogeneous dielectrics
at both sides of the scatterers. In related papers [10], [16], [21], [22],
this problem has usually been developed for apertures-like disconti-
nuities and now it will be briefly exposed for the case of obstacles.
Thus, assuming a time-harmonic regime (w is the angular frequency),
a Floquet analysis of the discontinuity (z = 0) as that reported in [16]
should be carried out.

A. Patch Discontinuity

The surface current-density phasor in the patch J,(x, y) is assumed
to be given by the following superposition:

Ip(2,y;0) = A1 (W) T (2, y) + A2(w) T2 (2, y) ey

where Aj;(w) are complex frequency-dependent coefficients and
Ji(x,y) are certain given spatial profiles. These profiles can be
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Fig. 1. (a) 2-D rectangular periodic distribution of scatterers (metallic patches
or apertures in the metallic screen) embedded in a layered dielectric medium.
(b) Lateral view of a single unit cell for a three-layer structure.

obtained from appropriate physical assumptions [18] or derived from
a properly chosen characteristic eigenproblem. In this communication,
our eigenproblem of choice is the 2-D modal propagation problem of a
hollow metallic waveguide whose cross section is given by the geom-
etry of the patch after invoking the duality principle [23]. With this
choice, the obtaining of the spatial profiles only involves the solution
of a full-wave 2-D problem. Moreover, for scatterers with canoni-
cal geometries, closed-form expressions are available. When complex
geometries are involved, we compute the eigenfields by using the
so-called “solve ports only” option of HFSS [24], in which HFSS
calculates the natural field patterns (or modes) that can exist inside
a transmission structure with the same cross-section as the port.

Adopting the notation and the guidelines in [16], if the current den-
sity in (1) is made equal to the jump of the magnetic fields in a weak
sense [both quantities are equally projected in the unit cell (u.c.)];
namely

/ b {Zx [H@)(w,y) - H(l)(m’y)]} drdy
- / P e, . J,(z,y)dady ?

the following relations are obtained:

[Yo(l)( ~ Ro) - (2)(1 + Ro)] =AiNio+A2N20 (3
B [Yq(l) + Yq(Q)] Vo=A1Nig+ A2 Nayg. (4

The N; 4 (i =1,2) coefficients were identified as transformer turn
ratios in [10], [16], and [21], and are given by

Nig =Ti(keq) - &4 )

where

Ti(kig) = / Ti(z,y) ™1? dady (6)
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is the Fourier transform at k4 = kznX + kymy of the ith current
spatial profile in the patch. From (4), it is readily obtained that the
amplitudes of the harmonics of the electric field are given by

A1 Nig+ A N
T g
Y, 4+ Y,

which allows us to write E(z,y) as

ik, 0-p A —jkt,q P A
JK¢ 0 Peoi e JKi, g P

E(.’L',y) = €q

Ay Ny ot As N
(L + Ro)e S A et ey

YO 17 ®

q

®)

After imposing that the transverse electric field over the patch is null
when projected over each spatial profile

/Ji(x,w-E(m dedy=0 (i=12) (9

the following pair of equations are obtained:
N _ tVig A
YO fy®

AZ
N2q *

+A22 YO v

]\7:0(1 + RO

(i=1,2). (10)

Note that the use of the complex conjugate * is key to ensure the

physical consistency of the formulation; namely, power conservation
at the discontinuity plane. Now, it is convenient to rewrite the pair of
equations in (10) as

Vo = Zinlog + Zizlo2 (i=1,2) (11)
where it can be identified that (7, j = 1, 2)
Vo = —(1+ Ro) (12)
Ip; = —A; Nio (13)
't Nj Nj 1
Zij = 24 : (14)
! Ni’ONJ’O YD 4 y®

The system of equations (11) can be solved to obtain /o 1 and I 2
[and hence A (w) and Az (w)] as

Zos — Zho
I == —— W
O s — ZiaZor

Zui — Zon
I = " "= V).
02 s — ZiaZor

15)
(16)

In order to find the physical meaning of 1o 1 and I 2, first note that the
Vo coefficient defined above in (12) can be interpreted as the voltage
drop associated with the incident harmonic at the discontinuity plane,
whereas the quantity
Io =Y (14 Ro) — YV (1 - Ro) (17)
can be interpreted as the difference between the “currents” associ-
ated with the incident harmonic at both sides of the discontinuity.
Combining (3) and (13), it can be written as
Iy = Io1 + Io,2 (18)
which allows to interpret Io,1 and Ip > as partial contributions to the
discontinuity in the incident mode “current” due to the presence of the
obstacle. The above discussion allows us to identify the ratio between
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Fig. 2. Equivalent circuit that models the discontinuity formed by (a) metallic
patches and (b) apertures. The model takes into account two independent spatial
profiles of the unknown quantity in the discontinuity.

Ip and Vj as the equivalent admittance of the discontinuity for the
incident harmonic. Using (15), (16), and (18), the following equation
is obtained:

Io _ v — (Za2 — Z12) + (Z11 — Z21)
- Z11Z32 — Z12Z21 '

19

Unfortunately, the authors have not been able to find out a sim-
ple and general network topology that correspond to (19) in the most
general case. However, in those common and practical cases where
Z12 = Z21, the following expression is found for Z.q = qu_lz

—1

1 1
+ Z12

N7~ Z12 | Zms — Z1a

Zeg (20)

whose topology is shown in Fig. 2(a). By subtracting both equations
of the pair in (11), it is obtained that

I0,1(Z11 — Zo1) = 1o,2(Z22 — Z12) 2n
which makes it possible to identify the currents /o 1 and o 2 with those
drawn in Fig. 2(a).

The equality Z12 = Zo1 is satisfied provided that the factor involv-
ing the transformers ratios in (14) is a real number (for instance, if
the transformer turn ratios are either real or imaginary). This situa-
tion is found when each of the spatial profiles J;(z,y) does have a
given parity (even or odd), which is possible if the layout of the unit
cell is symmetrical. Thus, nonsymmetric single scatterers as well as a
nonsymmetric distribution of symmetric scatterers will not yield the
topological representation for Zq shown in Fig. 2(a).

If the structure is lossless and the operation frequency is below the
diffraction threshold, then its corresponding equivalent impedance Zeq
must be purely imaginary according to power conservation. This prop-
erty is satisfied provided that the complex conjugate in the turn ratios in
(14) are incorporated in the formulation, since it implies Z21 = —Z75
and Re(Z;;)=0 (j = 1,2), which makes that Re(Z.q) = 0. If the
conjugate is ignored (ensuring that Z12 = Z>; in all cases), it would
lead in general to the nonphysical condition Re(Zeq) # 0.

Regardless of the possible existence of a simple equivalent network
topology for Ze,, the knowledge of the equivalent admittance given
by (19) allows for the computation of the scattering parameters that
relate the incident wave with its corresponding reflected and transmit-
ted waves (namely, with the scattered ¢ = 0 harmonic). Furthermore,
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at the light of (7), the following generalized reflection coefficient can
readily be obtained that relates the amplitude of the reflected wave
of an arbitrary harmonic ¢ with the unit-amplitude of the incident
harmonic

Yq(l) A1 Nig+ A2 Nayg
Y'O(l) Y'q(l) +Y'q(2)

(22)

Although the coupling between the incident mode and a different mode
does not have a direct representation in terms of a multimodal network,
(22) shows that it is possible to compute the corresponding cross-pol
reflection coefficient a posteriori from the circuit elements and the
values of the current and voltages obtained after solving the circuit.

B. Aperture Discontinuity

The complementary situation where the discontinuity is an aper-
ture in a thin conducting wall instead of a metallic planar obstacle
can be studied in a similar way as before. This situation was already
treated in [10] in a similar manner and here only the final results will
be reported for completitude (the use of the conjugate to ensure power
conservation is now taken in contrast to [10]). Thus, assuming that the
transverse electric field in the aperture can be written as

Eo(z,y;0) = A1(w)€1(z,y) + A2(w)E2(z,y)  (23)
the following system of equations is obtained:

Io =Yi1Vo1 + YiaVo,2 (i1=1,2) (24)

where Iy was already defined in (17) and
Vo,i = Ai Nio (25)
b r]

with the transformer ratios now given by
Nig=Ej(kig) - & . 27

As it happened for the patch-like discontinuity, only when Y12 = Yo,
it has been possible to find the topology shown in Fig. 2(b) for the
equivalent admittance of the aperture discontinuity

—1

1 1
+Yia .

= +
Yll - Y12 )/22 - Y12

Yeq (28)
It is worthy to note here that the physical meaning of the partial volt-
ages shown in Fig. 2(b) is actually very appealing when there are two
apertures in the unit cell. In that case, Vj ; can be associated with the
voltage drop across the ith-aperture, characterized by an admittance
Yii — Y12, and with the branch having the admittance Y12 accounting
for the coupling between apertures. This interpretation correlates per-
fectly with the physical discussions given by some of the authors in
[14] for the case of compound gratings. In that paper, the proposed
equivalent circuit that modeled the compound grating structure was
heuristically derived from a physical rationale. Now, the mathemati-
cal basis for this model is given, and it also suggests how to find out
the way to extend the present procedure to deal also with apertures of
nonnegligible thickness.

In order to obtain the scattering parameters that relate different
modes, it should be noted that the amplitude V, of the electric field
is found to be

Vo =A1Nig+ A2 Nayg (29)
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and, therefore, the general cross-pol reflection coefficient can readily
be obtained as

Y'q(l)

1)

0,
Suq =
Yo

(A1 Nig+ A2 Naoy). (30)

C. Other Considerations

As discussed in [16], the presence of a layered environment to
the left/right of the aperture/patch discontinuity is simply taken into
account by replacing the Yq(l/ ) admittances of each harmonic with
the corresponding input admittances seen to the left(L)/right(R) of the
aperture by this harmonic, i.e.,

y(1/2) _ yWR)

q in,q

€1V

With respect to the numerical computation of Z;; in (14) as
well as Y;; in (26), the discussion about localized and propagative
modes/harmonics given, for instance, in [16] and [22] should be
considered. It means that, in a frequency sweep, only the explicit sum-
mation of very few terms in the infinite series has to be carried out for
each frequency point. The remaining part of the series can be identi-
fied with regular capacitance/inductance elements that are frequency
independent, and that have to be computed only once.

III. NUMERICAL RESULTS AND DISCUSSIONS
A. Array of Single Multiresonant Rectangular Scatterers

A first case to validate our circuit-model approach is the widely
studied array of rectangular patches printed on a dielectric slab [1],
[25]. In [16] and [17], it was discussed that the circuit-model approach
proposed by the authors (a single spatial profile was assumed) was cer-
tainly of wideband nature and that its limit of validity was imposed by
the presence of more than one resonance in the scatterer susceptible
to be excited by the impinging wave. In the case of normal incidence
and rectangular patches, this limit was found to be the third intrinsic
resonance of the dipole [17] (the second odd-symmetry resonance of
the metallic patch is not excited by the normally incident plane wave).
However, if the incidence is oblique/conical, the second odd resonance
can certainly be excited, thus lowering the limit of validity of the cir-
cuit model. This fact was widely discussed in connection with [16,
Fig. 10], which clearly showed that the use of a single spatial profile
could account for either the first or the second resonance of the metal-
lic dipole but not for both of them. This same structure is now revisited
and the results of the equivalent circuit proposed in this communica-
tion are shown in Fig. 3. Our results have been computed using the
following even and odd spatial profiles (taken directly from the first
and second modes of the associated rectangular waveguide):

nmwr x Y .
rect| — |rect| — | x
Wy Wy Wy

where n = 1,2 and rect(x) is the rectangular function.

It should be noted that the present approach has allowed us to study
the frequency behavior of this array of patches under oblique incidence
up to frequencies well inside the diffraction regime and that the com-
parison of our results with those provided by HFSS [24] is excellent.
Furthermore, the numerical effort required by the present quasi-
analytical methodology is almost negligible (less than 1 s for 1000
frequency points) in comparison with that required by commercial
electromagnetic simulators. Also, it should be pointed out that any res-
onance of the structure associated with reflections/transmissions in the

Tn(z,y) = cos( (32)
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Fig. 3. Magnitude of the reflection coefficient under oblique TM-incidence in
the zz-plane (o = 0°, § = 40°) for the same structure studied in [16, Fig. 10].
Following the notation employed in Fig. 1(b) [distances in mm]: 552) =3,
di1 =0,d2 =0.5,d3 =0, P, = Py =5, w; = 3.5, and wy = 0.5.

layered environment is rigorously accounted for by the methodology
employed in this communication. Thus, the only resonances that can
eventually limit the applicability of the present approach are those
related to the individual scatterers.

B. Array of Two/Three Rectangular Scatterers Per Unit Cell

If the unit cell of the periodic array under analysis has two
patches/apertures and the frequency band of interest is below the sec-
ond excitable resonance of each individual scatterer, then the spatial
profile in the scatterers (patches/apertures) can be written, in general,
as

F(p;w) = Ai(w)F1(p) + A2(w) F2(p)
= A1(W)F1(p = pe,1) + A2(w)F2(p — pc2)

(33)
(34)

where p. ; is the position of the center of scatterer j (j = 1,2) and
F;(p) is the assumed spatial profile when the scatterer j is centered
in the unit cell. Since the transformer ratios are actually related to the
Fourier transforms of the spatial profiles, it can be noted that

Fj(kig) = Fj(kyg)e Huares, (35)
Therefore, this simple consideration allows for the treatment of two
scatterers per unit cell under the reported given assumptions. Our
results for this situation are compared in Fig. 4(a) with the results
obtained with HFSS showing an excellent agreement in the complete
nondiffractive frequency regime.

With a similar strategy as before, it is also possible to study the case
of three scatterers per unit cell as long as the symmetry of the unit cell
allows us to write the unknown current (electric field) in the patches
(apertures) in the following way:

F(p;w) = A1(w)Fi(p — pe,1)

+ A2 (w) [Fo(=p — pe2) + Fa(p — pe2)].  (36)
Using these profiles, our results for an array with three dipoles per
unit cell is shown in Fig. 4(b). The agreement of our results with
those obtained from HFSS is very satisfactory. Again, it is important to
point out that the computation effort of our quasi-analytical approach
in the above two cases is negligible in comparison with that required
by commercial electromagnetic simulators.
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Fig. 4. Magnitude of the reflection coefficient under normal TM incidence
in the xz-plane (¢ = 0°) for an FSS whose unit cell has (a) two dipoles
and (b) three dipoles per unit cell with the following characteristics (dis-
tances in mm): E(TQ) =3.0,d =0, d2=0.5, d3 =0, P =Py =5,
and wg,1 = 2.5, wy 1 = 0.5, wg,2 = 3.5, wy 2 = 0.5. (@) pc,1 = (0,—1),
pe,2 = (0,1). () pc,1 = (0,0), pe,2 = (0, 1).

C. Conical Incidence

The so-called conical incidence appears when the incidence plane of
the impinging wave does not coincide with any of the principal planes
of the structure (¢ # 0,7/2, 7,37 /2) and the wave incidence is not
normal (6 # 0). This situation is considerably more involved than the
case of oblique incidence along principal planes. Some of the authors
of this communication dealt with this situation by means of a superpo-
sition of four auxiliary problems in [16]. Now, with the proposed use
of two spatial profiles, it is possible to study the case of conical inci-
dence by expressing the unknown current (electric field) in the patch
(aperture) as

F(piw) = Ai(w)Fu(p) X + A2(w) Fy(p) ¥ 37

where F..(p) and F,(p) are the assumed single spatial profiles asso-
ciated with problems whose incidence is along the principal planes of
the structure (namely, when the incident electric field is directed along
the axes x or y). Thus, for the case of a rectangular patch/aperture,
these functions can be written as (o« = x, y)

Falp) = cos(ﬂ)rect<i)rec‘c(i) .
Wa Wy Wy

The above assumption implies that the corresponding frequency limit
of validity will be determined by the appearance of the second

(3%
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Fig. 5. Reflection coefficient of a pair of coupled circular-ring FSS’s printed
on a dielectric slab of thickness d = 1 mm and &, = 2.2,tand = 9x 104
under normal incidence. The external radius of the patch is R = 4.82 mm and
the inner radius is 7; = 3.82mm. P, = Py = 10.64 mm.

excitable resonance of the scatterer. The same case already studied
in [16], where the cross-pol reflection coefficient was computed, has
been recomputed with the present methodology (although not explic-
itly shown here), and the agreement with HFSS results is even better
than in [16].

D. Array of Multiresonant Scatterers of Arbitrary Geometry

Next, it is considered the case of a periodic array of scatterers with
arbitrary geometry (no closed-form expressions for the spatial profiles
are generally available). Thus, Fig. 5 shows a comparison between our
results and those provided by HFSS for a pair of coupled circular-ring
FSS’s. The coupled structure has been solved by applying the even—
odd excitation technique [16], [23] in such a way that the same two first
excitable eigenfields extracted from the HFSS eigensolver tool (which
requires a very short computation time) have been repetitively used in
all the necessary computations. Our results in Fig. 5 are plotted for two
cases: 1) only the fundamental eigenfield is used in the expansion (1p);
2) the fundamental and the first high-order eigenfields are employed
(2p). The comparison of the corresponding curves clearly shows that
the introduction of the second spatial profile in the analysis consider-
ably extends the range of application of the circuit model approach,
since the addition of the second spatial profile makes that the second
resonance of the individual scatterer is better captured. Our data com-
puted with two spatial profiles show a reasonably good agreement with
HFSS in the complete nondiffractive regime.

IV. CONCLUSION

Two new equivalent circuit formulations are developed in this
communication to account for the plane wave scattering of planar
structures consisting of two-dimensional periodic arrays of metal
patches or apertures made in thin metal films. These periodic metal
grids are assumed to be printed on (or embedded in) a multilayered
dielectric medium. For highly symmetric unit cells, the formulations
yield specific realizable circuit topologies consisting of series and
shunt connections of quasi-analytically known impedances or admit-
tances, which add physical insight to the understanding of the periodic
structure operation. Asymmetrical cells do not result in simple specific
circuit topologies but quasi-analytical expressions for the discontinu-
ity admittance or impedance are still obtained. The derivation of the
equivalent circuits is based on the use of a linear combination of two
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orthogonal spatial profiles. These approximate profiles are obtained
from the solution of the 2-D eigenvalue problem associated with a
hollowpipe waveguide whose cross section is the geometry of the scat-
terer. The present formulation yields equivalent circuits for a chosen
pair of input/output modes with a much wider frequency band than
most available equivalent circuit formulations. The virtues and draw-
backs of the formulation have been illustrated through a set of selected
examples.
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