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Abstract

This work considers a scheduling problem identified in a factory producing cus-
tomised Heating, Ventilation and Air Conditioning (HVAC) equipment. More specifi-
cally, the metal folding section is modelled as unrelated parallel machines with machine
eligibility and sequence-dependent setup times. The objective under consideration is
the minimisation of the total tardiness. The problem is known to be NP-hard so approx-
imate methods are needed to solve real-size instances. In order to embed the scheduling
procedure into a decision support system providing high-quality solutions in nearly real
time, our goal is to develop fast, efficient constructive heuristics for the problem. To this
end, we select existing heuristics for related problems and adapt them to the problem
under consideration. In addition, we propose a set of heuristics with novel repair and
improvement phases. The performance of the methods adapted and our proposals are
compared with the optimal/approximate solutions obtained by a solver for an MILP
in two sets of instances with small and medium sizes. Additionally, big-size instances
(representing more realistic cases for our company) have been solved using the proposed
constructive heuristics, providing efficient solutions in negligible computational times.
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1 Introduction
Manufacturing highly customised products requires machines capable to efficiently perform a large
number of different operations. Although, in many cases, these machines exhibit a varying degree of
flexibility (usually at the expense of requiring relatively high setup times among operations), there
may be operations that must be carried out using specific machinery. At the shop-floor scheduling
level, this translates into a manufacturing scenario where a job can be only processed on a subset
of all machines available –machine eligibility–, and where, in these eligible machines, there may be
substantial setup times depending on the specific characteristics of the job to be processed.

In this paper, we address the problem of scheduling jobs in unrelated parallel machines with
sequence-dependent setup times where not all jobs can be processed on all machines, with the ob-
jective of minimising the total tardiness of the jobs. Our work is motivated by a scheduling problem
identified in the metal folding section of a factory producing customised Heating, Ventilation and
Air Conditioning (HVAC) equipment for large facilities (i.e. airports, shopping malls, etc.). We
focus on a particularly complex problem within this factory (see Section 2 for details), which is the
manufacturing of the different metal pieces that constitute the boxes and ducts of the air handling
units. Given their specific characteristics –size, shape, thickness, etc.– (in some cases they are one-
of-a-kind product) together with the large number of these pieces per box, the folding process is
carried out by a mix of automated/manual machines, each one with different characteristics and
performance, arranged in parallel.

A due date for each metal piece can be established by offsetting the equipment’s due date
according to the estimated assembly –last step in the process– time, which operates on a FIFO
basis. However, it is not advantageous to fold the pieces using FIFO, as the time required to
prepare the tools in the folding machines –usually much higher than the processing time itself–
is clearly highly sequence-dependent. It is then convenient to process consecutively products with
similar shapes so tool changes are minimised. At the same time, not all folding machines can process
the dimensions and thickness of the different pieces. All these characteristics conform a scheduling
problem on unrelated parallel machines with setup times and machine eligibility. In the company,
this problem was being solved according to the experience of the section’s foreman, although, in
view of the high number of pieces that have to be scheduled in a shift –around 200–, rather simple
rules were used to assign the jobs to the machines, and the schedule of the jobs within each machine
was later carried out by each machine supervisor on each shift, who most of the times tried to
minimise setup times without a real visibility of the due date of the jobs. As a consequence, delays
and expediting ‘hot jobs’ were not uncommon. The initial idea of our research was to explore
whether a more formal, model-based, approach for the problem could be used to obtain better
schedules. A primary objective of the company is that the jobs are completed not later than their
due date, however, the tightness of some of the due dates may render the problem infeasible, so the
problem has been modelled with total tardiness objective minimization. The scheduling problem
in parallel machines with total tardiness objective is already NP-hard, so it is the problem under
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consideration and, as a consequence, we focus on developing procedures to provide high-quality
(but not necessarily optimal) solutions for a large number of jobs in very short time intervals. More
specifically, we propose very fast constructive heuristics that outperform the available heuristics for
related problems, which were adapted to the problem under consideration.

The structure of the paper is as follows. The motivation is described in Section 2, while the
description of the problem and the related literature is presented in Section 3. The problem is
modelled as a Mixed Integer Linear Programming (MILP) model in Section 4, so small instances
can be solved to assess the performance of the heuristics proposed in Section 5. More specifically,
we propose adapted versions of two heuristics from the related literature and new heuristics. All
methods are tested on different sets of instances with small-, medium- and big-size instances in
Section 6. The computational experience is shown in Section 7. Finally, conclusions and future
research lines are presented in Section 8.

2 Background
As mentioned in the introduction, the problem under consideration takes place in a HVAC factory
located in Southern Spain. The equipments are manufactured in the facility which is divided in
two main parts: Metal Manufacturing and Assembly. The first part is devoted to manufacture the
different metal pieces of the equipment, while in the second the equipment is build by assembling
the metal parts together with the expansion valves, coils, compressors, and the electrical and control
systems. The main competitive advantage of the company is to provide the customers with highly
customized equipment in very short lead times. Therefore, Sales Managers promise very tight due
dates and, once a customer order arrives, the Engineering Department produces a bill of material
for each equipment. Since the assembly process is rather stable, due date fulfilment heavily depends
on the performance of the Metal Manufacturing Area.

Figure 1 shows a scheme of the layout of the Metal Manufacturing Area. Metal sheets enter in
the process as raw material using an Automatic Store and Retrieval System (AS/RS), where it is
buffered until it is cut in one of the three automated cutting machines. After the cut, each piece
obtained can be considered as a reference (job) and is placed in the AS/RS waiting to be folded.
The folding section is formed by three stations: the first one is composed by two Automatic Folding
machines fed by Robots (AFR), supervised by one or two workers who introduce the technical
drawing in the machines to carry out the corresponding folding; the second one is composed of two
Automatic Folding machines fed Manually (AFM), with one or two workers feeding and supervising
them; and finally, the third station is formed by five manual folding machines fed manually (MFM).
Each MFM is fed, operated and supervised by one worker. Depending on the characteristic of the
reference (thickness, size, complexity of the folding, ...), it can be folded only in a specific subset
of all/some AFR, AFM or MFM. For example, AFR are not able to fold long pieces of sheets,
and very small pieces should be processed by MFM. Furthermore, machines of the same type are
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Figure 1: Scheme of the metal manufacturing process/layout

not equal, since they are from different suppliers and age, therefore the processing times of each
machine within a type is not the same. Most of the time consumed in the folding process is devoted
to setup (i.e. changing tools, feeding, and loading the folding sequence in the case of AFR/AFM).
These setup times are not only dependent of the processing sequence –references with similar design
require the same tools and consequently less setup time is needed if processed consecutively– but
also on the specific machine: For example, the setup activities required for MFM (essentially tool
changing) are different to those for AFR (loading the folding programme).

If a reference is to be folded in one of the AFR, then it is moved from the AS/RS to the
corresponding station, where a robot feeds it to the AFR. Once folded, the robot removes the piece
and places it in a buffer. In contrast, the references to be folded in AFM or MFM are moved to
the picking area by the AS/RS, where one operator places them in the corresponding AFM or in
the buffer for MFM. Once folded, all references are transported in batches to the Painting Section.
The Painting Section consists of two painting lines operating under a FCFS policy, as the treatment
is usually the same for all references. Painted references are stored in the warehouse, where the
references wait to the assembly. If the reference must be insulated, it is moved to the corresponding
insulation workstation prior to be transported to the assembly area.

A preliminary analysis of the data reveals that the Folding Section constitutes the bottleneck
of the Metal Manufacturing Area given the higher capacity of the Cutting and Painting sections.
The main problems in the Folding Section stem from two causes: First, cutting is carried out using
a machine-proprietary cutting algorithm that optimises the number of pieces that can be obtained
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from a metal sheet without taken into account further constraints in the Folding Section. Secondly,
the scheduling of the references in the Folding section is carried out according to the experience
of the section’s foreman, using simple rules to assign jobs to machines and leaving the schedule of
jobs within each machine to the machine supervisor on each shift. The idea is then to redesign the
process so the scheduling in the Folding Section drives the cutting process and not vice versa.

By offsetting the estimated time of the assembly process and that of painting/insulation –which
operate under a FIFO policy– internal due dates for completing the folding of each reference can
be obtained. The fulfilment of these due dates is critical to ensure that the assembly takes place on
time. Therefore, the scheduling problem to be considered contains the following characteristics:

• Unrelated parallel machines, implying different processing times for each job (reference) on
each machine (folding machine);

• Machine eligibility, as each job can be processed in a subset of all available machines;

• Machine- and sequence-dependent setup times;

• Total tardiness minimisation objective. Note that, although the goal is to finish the jobs
before their due date, job tardiness is allowed in order to avoid infeasibility issues.

Once the scheduling problem has been identified and the corresponding data gathered/estimated,
the decision support system should be implemented by devising solution procedures adapted for the
problem, also taking into account the required decision interval (Dios and Framinan, 2016). In
our case, decision makers require fast methods to be able to iterate using different sets of jobs.
Therefore, we focus on fast, constructive heuristic methods that can be implemented in the decision
support system.

3 Problem Statement and Related literature
Using the notation by Graham et al. (1979), the problem under consideration can be denoted as
Rm|Mj , sijk|

∑
Tj . In this scheduling problem, n jobs have to be assigned to (and subsequently

sequenced on) a set M of m parallel machines. Each job j has a different processing time on each
machine i, denoted as pij , and a due date dj . Not all jobs can be processed on all machines, so for
each job j we have a subset of machines, denoted as Mj , where it can be processed. Additionally,
there are setup times for each machine and each job which are sequence-dependent. Therefore, if
job j is processed before job k in a machine i eligible for both jobs, the setup time is sijk. The
objective of the problem is to minimize the total tardiness, i.e.

∑
Tj where Tj = max{Cj − dj , 0},

with Cj the completion time of job j. This problem is NP-hard unless there is a solution where no
more than one job is assigned to each machine. Clearly, this case should verify that n ≤ m, which
does not constitute a case of interest. If this rather special case does not happen, then there is at
least one machine for which more than one job is assigned. Scheduling jobs in this machine with
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∑
Tj objective is well-known to be NP-hard (see e.g. Framinan et al., 2014), so our problem is also

NP-hard.
A number of papers related to scheduling on parallel machines based on real-world problems

have been published in the last years. Gravel et al. (2000) solve a parallel machine scheduling
problem inspired in an aluminium foundry considering objectives related to the metal flow; Dolgui
et al. (2010) consider a problem related to multi-product metal foundries; or more recently Fu et al.
(2017) tackle, in a metal packaging industry, an unrelated parallel machines scheduling problem
with job splitting and sequence-dependent setup times.

To the best of our knowledge, the problem has not been addressed in the literature, with the
exception of a very preliminary work by Carrasco et al. (2017). Some papers address the unrelated
parallel machines problem with machine eligibility and setup times with additional constraints.
Rambod and Rezaeian (2014) consider the Rm|Mj , sijk|Cmax problem with an additional constraint
related to the production of imperfect items and rework processes to achieve an acceptable quality
level for these imperfect items. They present an integer (non linear) programming model, and
apply Genetic and Bees Algorithms to provide approximate solutions for the problem. Afzalirad
and Rezaeian (2015) propose an integer (non linear) programming model to optimally solve the
Rm|Mj , sijk, rj , prec|

∑
Lj problem –for small instances–, as well as a Genetic Algorithm and an

Ant Colony Optimization algorithm to solve approximately large instances. Later, Afzalirad and
Rezaeian (2016) tackle the same problem but considering makespan objective, proposing a Genetic
Algorithm and an Artificial Immune System algorithm. Chen (2006) considers machine eligibility
and setup times dependent on the job family, i.e. when a job is scheduled after a job of a different
type. A Tabu Search based heuristic is proposed to solve the Rm|Mj , family-setup|max Tj problem.
Shahvari and Logendran (2017) consider the Rm|Mj , family-setup, rj , ai, LBf |Fl(

∑
wjCj ,

∑
wjTj)

problem with sequence and family dependent setup times, where ai indicates initial unavailability
periods for machines, and LBf implies a minimum size (lower bound) for batches. They present an
MILP model to solve the problem optimally. Additionally, they develop a metaheuristic based on
Tabu Search which solves problems with up to three families, 5 machines and 24 jobs.

Regarding unrelated parallel machine scheduling literature considering machine eligibility con-
straint (without setup times), Al-Salem and Armacost (2002) compare the optimal solutions for the
Rm|Mj |Cmax problem to those provided by a constructive heuristic for small instances. Afzalirad
and Shafipour (2015) propose a mathematical programming model and two Genetic Algorithms for
Rm|Mj |Cmax including resource constraints, i.e. additional resources must be available to process
jobs. Small-size instances of the Rm|Mj |Cmax problem with controllable processing times are solved
optimally by Low and Wu (2016) with an integer linear programming model, and big size instances
are solved approximately by two Ant Colony Optimization metaheuristics.

Finally, regarding unrelated parallel machine problems with setup times constraints (without
machine eligibility), the Rm|sijk|Cmax problem has been tackled using metaheuristics in the fol-
lowing references: Rabadi et al. (2006) propose a metaheuristic, denoted as Meta-RaPS, Arnaout
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et al. (2010) provide an Ant Colony Optimization algorithm; Vallada and Ruiz (2011) present two
Genetic Algorithms; Ying et al. (2012) a Simulated Annealing method; and finally, Diana et al.
(2015) present an Immune-inspired algorithm, using instances by Al-Salem and Armacost, 2002 to
compare their proposal to previous methods from the literature. A different objective and approach
is considered by Rocha et al. (2008) with an integer linear programming model to solve optimally
the Rm|sijk|Cmax +

∑
wjTj problem for small-size instances.

Summarizing, there are some contributions that address scheduling in parallel machines with
machine eligibility and setup times, but consider additional constraints that make the problem very
different, so adapting these solution procedures does not produce efficient methods for the problem
under consideration. Furthermore, most of them do not propose fast, constructive heuristics, which
is the focus of our research. On the other hand, from the analysis of the literature with machine
eligibility without setup times, Al-Salem and Armacost (2002) provide a constructive heuristic for
the Rm|Mj |Cmax problem which can be adapted to our case. We are not aware of constructive
heuristics in the literature on parallel machines considering setup times and, among the procedures
used to generate the initial schedules for the metaheuristics, the one proposed by Rabadi et al. (2006)
for Meta-RaPS metaheuristics is developed for Rm|Mj |Cmax and it seems the heuristic amenable
to be adapted for our problem, since Ying et al. (2012) generates the initial solutions randomly,
and Arnaout et al. (2010), Diana et al. (2015) and Vallada and Ruiz (2011) use initial solutions
specifically designed for other scheduling problems. Therefore, the methods that will be be adapted
to our problem are the construction method by Rabadi et al. (2006), and the heuristic by Al-Salem
and Armacost (2002). Both methods will be presented in Section 5 but, in order to check the
performance of these adaptations, we first present a MILP model in the next section.

4 Mixed Integer Linear Programming Model
In this section we present a Mixed Integer Linear Programming (MILP) model adapting the MILP
proposed by Vallada and Ruiz (2011) for Rm|sijk|Cmax, which in turn is based on Guinet (1993).
The data of the model is presented in the following:

i Index for the machines
j, k Index for the jobs
N Set of jobs
N∗ Set of jobs union a dummy job 0
M Set of machines
pij Processing time of job j in machine i
sijk Sequence-dependent setup time on machine i

if job j is scheduled before job k

dj Due date of job j

V Big number
Decision variables are:
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Xijk

1 if job j precedes job k on machine i

0 otherwise
Cij Completion time of job j on machine i
Tj Tardiness of job j

min
∑
j∈N

Tj (1)

s.t.

Tj ≥ Cij − dj ∀i ∈M, ∀j ∈ N (2)∑
i∈M

∑
j∈N∗

j 6= k

Xijk = 1 ∀k ∈ N (3)

∑
i∈M

∑
k∈N
j 6= k

Xijk ≤ 1 ∀j ∈ N (4)

∑
k∈N

Xi0k ≤ 1 ∀i ∈M (5)∑
h∈N∗
h6= j

Xihj ≥ Xijk ∀j, k ∈ N, j 6= k, ∀i ∈M (6)

Cik + V (1−Xijk) ≥ Cij + sijk + pik ∀j ∈ N∗, ∀k ∈ N, j 6= k, ∀i ∈M (7)

Ci0 = 0 ∀i ∈M (8)

Xijk ∈ {0, 1} ∀j 6= k ∈ N∗, ∀i ∈M (9)

Tj ≥ 0 ∀j ∈ N (10)

Cij ≥ 0 ∀j ∈ N, ∀i ∈M (11)

Equation (1) computes the total tardiness to be minimized. Constraint set (2) computes the
tardiness of each job j. Constraint set (3) ensures that each job has only one predecessor and it is
assigned to only one machine. Constraint set (4) imposes that the maximum number of successors
of job j is one. Constraint set (5) ensures that at least one job is assigned for each machine i.
Constraint set (6) checks, for each machine i, if job j is scheduled before job k on that machine,
j has at least one predecessor (i.e. at least the dummy job). Constraint set (7) imposes that a
job must not start to be processed until its predecessor has been completed. Constraint set (8)
guarantees that the dummy job is the first one to be assigned on each machine i. Constraint set
(9) defines the binary variables representing the precedences between jobs. Remaining sets (10 and
11) define the continuous variables of the model.

Note that the model presented is valid for the Rm|sijk|
∑
Tj problem, and the machine eligibility

constraint is not imposed in the model, but in the data by assigning a very large processing times
to those jobs on the machines where they cannot be processed.
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5 Constructive heuristics
Although the MILP model presented previously may provide optimal solutions for small-size in-
stances in reasonable computational times, this is not possible for realistic sizes due to the NP-hard
nature of the problem. In this section, we focus on the development of fast heuristics to obtain
good (but not necessarily optimal) solutions.

As the proposed problem has not been tackled previously (see Section 3), we adapt the existing
constructive heuristics by Al-Salem and Armacost (2002) and Rabadi et al. (2006) in Section 5.1.
Al-Salem and Armacost (2002) address the Rm|Mj |Cmax problem, so their constructive heuristic
focuses on the assignment to the machines, since the scheduling of jobs within each machine is
not relevant for makespan. Therefore, we adapt their proposal by considering

∑
Tj as objective

and schedule the jobs in the machines according to the machine- and sequence-dependent setup
times considerations. In contrast, the heuristic by Rabadi et al. (2006) addresses the Rm|sijk|Cmax
problem and does not consider machine eligibility, so it has been adapted to our problem avoiding
infeasible solutions, and the objective has been modified accordingly. Additionally, we also develop
specific constructive heuristics for the problem under consideration, which are described in Section
5.2.

Before describing these methods in detail, let us present the notation used in all the heuristics:
Mj := {i ∈ M : j can be processed on machine i} is the set of machines eligible for job j, whereas
Ni = {j ∈ N : i ∈ Mj} is the set of jobs that can be processed on machine i. Therefore, |Mj |
is the number of machines eligible for j and |Ni| is the number of jobs that can be processed on
machine i. Furthermore, we can define Jh = {j ∈ PJ : |Mj | = h} as the set of jobs with h eligible
machines, with PJ ⊆ N the set of pending jobs to be scheduled. These sets allow us to classify the
jobs according to their flexibility to be processed on the machines.

For each machine i and tuple of jobs k and j, the following two indicators SPikj and spij can
be defined, where B is a big number:

SPikj =

sikj + pij if i ∈Mj ∪Mk

B in the opposite case
(12)

spij =

pij + 1
|Ni−1|

∑
k 6=j/i∈Mk

sikj if i ∈Mj

B in the opposite case
(13)

Note that SPikj gives an indicator of the total processing times (i.e. including setup times) for
job j if this job is processed on machine i after job k. spij thus represents an aggregated estimate
of the total processing times of job j on machine i.

Furthermore, the following two indices for the machines can be defined:

i1 = arg min
i∈Mj

spij (14)
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i2 = arg min
i∈Mj−{i1}

spij (15)

where i1 indicates the preferred machine assignment for job j, and i2 indicates the second
preferred assignment. The ratio ρj can be computed for each job j to indicate the criticality of the
first preferred assignment with respect to the second one:

ρj =
spi1j
spi2j

(16)

Finally, we denote Ci the load of machine i (i.e. the completion time of the last job) which is
updated every time a new job is scheduled in this machine. The last job scheduled on machine i is
denoted by l(i).

The methods described in this section, included in Table 1, are: AA (α), AA RL(α) and
AA RI(α) adapted from Al-Salem and Armacost (2002), and RMA and RMA2 adapted from Rabadi
et al. (2006), described in Section 5.1; and the new heuristics H1 to H5 described in Section 5.2.
All of them consider the following three phases:

Phase 1 Construction: Construct a solution using one of the following methods: Algorithm 1,
Algorithm 2 (Section 5.1), Algorithm 3 or Algorithm 4 (Section 5.2).

Phase 2 Repair (optional): If the solution provided by Phase 1 results in an empty (i.e. no jobs
assigned) machine, then we apply the following procedure: Identify the job eligible for this
machine that it is causing the highest tardiness. If this job is scheduled in a machine with
more than one job assigned, then then job is removed and inserted in the empty machine.

Phase 3 Improvement (optional): Apply one of the following algorithms:

• ILee97: This algorithm is proposed by Lee (1997) for the 1|sijk|
∑
wjTj problem, so

it is applied to each machine (see Lee, 1997 for details).

• IP: If the solution provided by Phase 2 verifies that
∑
Tj > 0, for each machine

with total tardiness greater than 0 and more than one job assigned, the job gener-
ating the highest tardiness is assigned to the best position selected by the procedure
BestPosition Total (see Section 5.2 for details of this procedure).

5.1 Adapted constructive heuristics
Al-Salem and Armacost (2002) present a constructive heuristic depending on a given parameter
α > 0. As this heuristic is proposed for the Rm|Mj |Cmax problem, a straightforward adaptation
does not provide good solutions for our problem. Therefore, the original algorithm is adapted by
embedding some intelligence with respect to the constraints and the objective of our problem, i.e.
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Table 1: Proposed Methods

Method Phase 1 Phase 2 Phase 3 Parameter
AA(α) Algorithm 1 α ∈ {0.5, 0.7, 0.9}
AA RL(α) Algorithm 1 Repair ILee97 α ∈ {0.5, 0.7, 0.9}
AA RI(α) Algorithm 1 Repair IP α ∈ {0.5, 0.7, 0.9}
RMA Algorithm 2 – – –
RMA2 Algorithm 2 modified – – –
H1 Algorithm 3 – – –
H2 Algorithm 3 Repair IP –
H3 Algorithm 3 + EDD Repair IP –
H4 Algorithm 4 – – –
H5 Algorithm 4 Repair IP –

the machine- and sequence-dependent setup times and total tardiness. The resulting algorithm
is presented as Algorithm 1, and it has the same steps as in the original version regarding the
construction of the sequence depending on the eligibility of each job. In the first step, the jobs
that have only one eligible machine are assigned to that machine. Jobs with more than one eligible
machine are assigned to machine i1 (see Equation (14)) when ρj ≤ α, with ρj given in Equation
(16). Note that the definition of i1, i2 and ρj have been modified with respect to Al-Salem and
Armacost (2002) in order to include the setup times. If the condition ρj ≤ α is not verified, the
remaining jobs in each set Jh are sorted according to the Earliest Due Date (EDD) rule to avoid
tardiness, and are assigned to machines in order to balance the load across machines. Whenever
job j is assigned to the last position of machine i, Ci is computed accordingly taking into account
the setup times incurred between job j and the last job scheduled in this machine l(i).

Rabadi et al. (2006) propose a constructive heuristic for the Rm|sijk|Cmax problem to generate
an initial schedule for its metaheuristic Meta-RaPS. In Algorithm 2 we present the adaptation to
our problem. The procedure is similar to the original one, where in Step 1 the set of less loaded
machines is constructed, and in Step 2 the job with minimal value of SPil(i)j is selected, checking
in our adaptation the eligibility condition. Additionally, if there are no pending jobs that can be
assigned to any of the less-loaded machines, the job and machine are selected according to the
minimum value of Ci − SPil(i)j − dj . Steps 4 and 5 are similar to the original heuristic, changing
the computation of the objective function.

RMA2 is similar to RMA, but in Algorithm 2 Step 1 obtains the set of machines with minimal
total tardiness instead of the set of machines with minimal load. More specifically, it obtains
Tmin = {i ∈M : Ti = mink∈MTk}, with Tk the total tardiness of jobs scheduled in machine k, and
Ti the set of machines with minimum total tardiness. Step 2 selects j∗ and i∗ so they obtain the
minimal total tardiness (instead of the minimal value of SP ). Ties are broken in the same way than
in Algorithm 2.
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Algorithm 1 Constructive heuristic: Adapted from Al-Salem and Armacost (2002)
1: procedure AA(α)
2: Step 0
3: Set PJ = ∅
4: Tsum = 0
5: for i = 1, . . . ,m do
6: l(i) = 0; Ci = 0; assign = false
7: end for
8: Step 1
9: Let Π = (π1, . . . , πn) be the sequence of jobs in non-increasing order of dj

10: for j = 1, . . . , n do
11: if |Mπj | = 1 then
12: i∗ is the eligible machine of πj ; assign = true
13: else
14: if ρπj ≤ α then
15: i∗ = i1; assign = true
16: else
17: PJ = PJ ∪ {πj}
18: end if
19: end if
20: end for
21: if assign = true then
22: l(i∗) = πj
23: if Ci∗ = 0 then
24: Ci∗ = pi∗πj

25: else
26: Ci∗ = Ci∗ + SPi∗l(i)πj

27: end if
28: Tπj = max{Ci∗ − dπj , 0}; Tsum+ = Tπj

29: end if
30: Step 2
31: for h = 2, . . . ,m do
32: Let Πh be the sequence of jobs in Jh in non-increasing order of dj
33: for each j ∈ Πh do
34: i∗ = argmini∈Mj{Ci + spij}
35: l(i∗) = j
36: if Ci∗ = 0 then
37: Ci∗ = pi∗j
38: else
39: Ci∗ = Ci∗ + SPi∗l(i∗)j
40: end if
41: Tj = max{Ci∗ − dj , 0}; Tsum+ = Tj
42: end for
43: end for
44: end procedure
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Algorithm 2 Constructive heuristic: Adapted from Rabadi et al. (2006)
1: procedure RMA
2: Step 0
3: Set PJ = {1, . . . , n}
4: Tsum = 0
5: for i = 1, . . . ,m do
6: l(i) = 0; Ci = 0
7: end for
8: Step 1
9: Lmin = {i ∈M : Ci = mink∈MCk}; (set of machines with minimum load)

10: Step 2
11: Select j∗ ∈ PJ and i∗ ∈ Mj∗ ∩ Lmin such as they yield the minimal value for SPil(i)j (In

case of ties with respect to j, select j∗ so |Mj∗ | is minimal. In case of ties with respect to i,
select i∗ so |Ni∗ | is minimal).

12: if Mj ∩ Lmin = ∅ ∀j ∈ PJ (there are not pending jobs eligible for any machine in Lmin)
then

13: Select j∗ ∈ PJ and i∗ ∈Mj∗ such as Ci − SPil(i)j − dj is minimal (In case of ties, select
j∗ sp |Mj∗ | is minimal. In case of ties, select i∗ so |Ni∗ | is minimal).

14: end if
15: Step 3
16: l(i∗) = j∗

17: Step 4
18: if Ci∗ = 0 then
19: Ci∗ = pi∗j∗

20: else
21: Ci∗ = Ci∗ + SPi∗l(i∗)j∗

22: end if
23: Tj∗ = max{Ci∗ − dj∗ , 0}
24: PJ = PJ − {j∗}; Ni∗ = Ni∗ − {j∗}
25: Step 5
26: if PJ = ∅ then
27: Tsum =

∑
j∈N Tj and STOP

28: else
29: Go to Step 1
30: end if
31: end procedure
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5.2 New constructive heuristics
In this section we propose the new heuristics H1-H5. These heuristics use two different algorithms
for the Construction Phase (see Table 1) described in Algorithm 3 and Algorithm 4. Both algorithms
use the following methods:

• BestPosition(j, i): Job j is scheduled in the best position (i.e the position which provides the
minimal value of

∑
Tj) among all positions in its eligible machine i. However, if the tardiness

of the sequence on machine i prior to scheduling job j was zero and the tardiness on the
machine after inserting job j in a given position is also zero, then the position to insert job j
is the one with minimal value of

∑
(Cj − dj). This method returns the so-obtained position

k∗.

• BestPosition Total(j): Job j is assigned and scheduled in the best position (i.e. that with
minimal value of total tardiness) among all positions in all its eligible machines. This method
returns the machine i∗ and the position k∗.

Algorithm 3 generates the sets Jh of jobs with h eligible machines. For each value of h, each
job j ∈ Jh is assigned to its eligible machine (when h = 1), or to the less-loaded machine (in case
of ties, it is asssigned to the less eligible machine, i.e. the machine with lowest value of |Ni|) if
h > 1. If the selected machine i∗ is empty, then Ci = pi∗j . Otherwise, the position to insert j in
i∗ is obtained by BestPosition(j, i∗). H1 and H2 use Algorithm 3 in Phase 1 (Construction). H2
includes the phases 2 (Repair) and 3 (Improvement) explained previously. Heuristic H3 is similar
to H2, but the jobs in each set Jh are sorted in non-increasing order of due dates (EDD).

Algorithm 4 is similar to Algorithm 3, using the EDD order as in H3, but uses BestPosi-
tion Total(j) as criterion to select the machine if h > 1. Heuristics H4 and H5 use Algorithm
4 in Phase 1 (Construction). H5 includes the phases 2 (Repair) and 3 (Improvement) explained
previously.

6 Sets of instances
In order to test the methods presented in the previous section, instances representing different cases
have to be constructed. The following data are required for each instance: number of jobs n and
machines m; processing times, pij ; setup times sijk; due dates dj ; and the set of eligible machines
by a job j, Mj .

In this paper we have generated different sets of instances based on Vallada and Ruiz (2011)
for the Rm|sijk|Cmax problem, including due dates and machine eligibility to adapt them to our
problem. Therefore, processing times have been generated uniformly between 1 and 99, i.e. pij ∼
U [1, 99], and we have considered two of the four levels for setup times: sijk ∼ U [1, 49] and U [1, 124].
Regarding due dates, we have generated them using the uniform distribution U [C̃max(1 − τ −
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Algorithm 3 New Construction 1
1: procedure H1
2: Step 0
3: Set Jh = {j ∈ N/|Mj | = h}
4: Tsum = 0
5: for i = 1, . . . ,m do
6: Ci = 0
7: end for
8: Step 1
9: for h = 1, . . . ,m do

10: for each j ∈ Jh do
11: if h = 1 then
12: Let i∗ be the eligible machine of j
13: else
14: i∗ = argmini∈Mj Ci. In case of ties select i∗ such that |Ni| is lower
15: end if
16: if Ci∗ = 0 then
17: Assign j to i∗
18: Ci∗ = pi∗j
19: else
20: k∗=BestPosition(j, i∗)
21: Update Ci∗
22: end if
23: Update Tsum
24: Ni∗ = Ni∗ − {j}
25: end for
26: end for
27: end procedure
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Algorithm 4 New Construction 2
1: procedure H4
2: Step 0
3: Set Jh = {j ∈ N/|Mj | = h}
4: Tsum = 0
5: for i = 1, . . . ,m do
6: Ci = 0
7: end for
8: Step 1
9: for h = 1, . . . ,m do

10: Let Πh be the sequence of jobs in Jh in non-increasing order of dj
11: for each j ∈ Πh do
12: if h = 1 then
13: Let i∗ be the eligible machine of j
14: if Ci∗ = 0 then
15: Assign j to i∗
16: Ci∗ = pi∗j
17: else
18: k∗=BestPosition(j, i∗)
19: Update Ci∗
20: end if
21: else
22: (k∗, i∗)=BestPosition Total(j)
23: Update Ci∗
24: end if
25: Update Tsum
26: end for
27: end for
28: end procedure

16



R/2), C̃max(1 − τ + R/2)] (see for example Chen (2006), Lin et al. (2010) and Lee et al. (2013))
considering the parameters τ ∈ {0.2, 0.4} and R ∈ {0.2, 0.4} where

C̃max = max
j∈N

∑
i∈Mj

pij +
∑n

k=1 sikj

n

|Mj |
· n
m

The procedure adopted for the generation of machine eligibility is described in Algorithm 5.
This method is a combination of the proposals by Alagöz and Azizoğlu (2003) and Gokhale and
Mathirajan (2012), so we control the probabilities by a constant, denoted p, and the number of
eligible machines for each job. Values of p are taken from {50, 80, 100}.

Algorithm 5 Machine eligibility procedure
1: procedure Machine Eligibility Procedure(p)
2: for j = 1, . . . , n do
3: Generate a random number k ∈ [1, 100]
4: if k ≤ p then
5: |Mj| ∈ U [1,m/2]
6: else
7: |Mj| ∈ U [1,m]
8: end if
9: Select randomly |Mj| machines eligible for j

10: end for
11: if ∃i ∈M such as i /∈Mj ∀j ∈ N then
12: Assign randomly a job to i
13: end if
14: end procedure

We have considered different values of n and m to generate three sets of instances depending
on these parameters. 10 instances per combination have been constructed.

• Small-size instances: n = {6, 8, 10, 12} and m = {2, 3, 4, 5} in the same way than in Vallada
and Ruiz (2011). In total, a set of 3,840 instances have been solved optimally using the MILP
model to provide an exact comparison for the constructive heuristics proposed.

• Medium-size instances: n = {15, 20, 25, 30, 35, 40} and m = {2, 4, 6, 8}. This set of 5,760
instances has been generated to test the limits of the MILP model, as it was able to solve
the small instances given by Vallada and Ruiz (2011) in negligible computational time (see
Section 7).

• Big-size instances: n = {50, 100, 150, 200, 250} and m = {10, 15, 20, 25, 30}, in the same way
than Vallada and Ruiz (2011). This set contains 6,000 instances with sizes similar to the ones
described in Section 3.
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7 Computational Experiments
In this section, the MILP (Section 4) and the constructive heuristics (Section 5) are evaluated using
the sets of instances described in Section 6. Heuristics have been implemented in C#. Additionally,
the MILP model has been implemented in C# using the solver Gurobi (Gurobi Optimization Inc.,
2017) with a time limit of 100 seconds.

In order to determine the best method among those proposed, we compare FOIM the objective
value for each method M for each instance I using the relative deviation index (Fernandez-Viagas
and Framinan, 2015) as follows:

RDIIM = FOIM −BestI
WorstI −BestI

Where BestI and WorstI are the best and worst total tardiness value provided by all methods
respectively. Additionally, for each instance I and for each method M we have registered the
computational time. The average RDI for a given method for a given set of instances is denoted
ARDI.

We have carried out a Design of Experiments (DoE) for each set of instances with the following
factors: Method, n, m, setup, p, τ and R. Therefore, the experiments consist of a full factorial
design with 10 observations per combination and response variable RDI. The levels for each factor
are the following:

• Method (different levels depending on the set of instances):

– Small and Medium sizes instances (17 levels): MILP, AA(0.5), AA(0.7), AA(0.9),
AA RL(0.5), AA RL(0.7), AA RL(0.9), AA RI(0.5), AA RI(0.7), AA RI(0.9), RMA,
RMA2, H1, H2, H3, H4, H5.

– Big sizes instances (16 levels): AA(0.5), AA(0.7), AA(0.9), AA RL(0.5), AA RL(0.7),
AA RL(0.9), AA RI(0.5), AA RI(0.7), AA RI(0.9), RMA, RMA2, H1, H2, H3, H4, H5.

• n (different levels depending on the set of instances):

– Small sizes instances (4 levels): 6, 8, 10, 12

– Medium sizes instances (6 levels): 15, 20, 25, 30, 35, 40

– Big sizes instances (5 levels): 50, 100, 150, 200, 250

• m (different levels depending on the set of instances):

– Small sizes instances (4 levels): 2, 3, 4, 5

– Medium sizes instances (4 levels): 2, 4, 6, 8

– Big sizes instances (5 levels): 10, 15, 20, 25, 30

18



• setup (2 levels): U [1, 49], U [1, 124]

• p (3 levels): 50, 80, 100

• τ (2 levels): 0.2, 0.4

• R (2 levels): 0.2, 0.4

7.1 Small-size instances
All 3,840 instances have been solved in 0.15 seconds on average. In order to test the performance
of the constructive heuristics against the optimal solutions, we have solved the instances using all
heuristic methods. The CPU times have been less than one millisecond per instance for all methods.

Table 2 shows the ARDI values provided for each level of the factors. It can be observed that the
best method for this set of instances is H5, with a total average of 5.863% respect to the optimum.
This is the best method for all levels of all factors as it can be observed in Table 2. AA RI(0.5),
AA RI(0.7) and H3 have similar performance but they provide an ARDI over 72% worse than
H5. RMA and RMA2 have the worst performance, so seems better to adapt methods designed for
machine eligibility constraint. Note that AA(α) is improved including the algorithm by Lee (1997),
AA RL(α), but the performance is better with the Repair and Improvement phases described in
Section 5, i.e. AA RI(α). In fact, all the best methods include the proposed Improvement and
Repair phases.

Figure 2 contains four graphics with Tukey 95% confidence intervals to analyse the influence of
the levels of the factor Method on the variable RDI. Figure 2(a) shows the global performance for all
methods. It can be seen that H5 is clearly the best method with statistically significant differences.
Additionally, Figures 2(b), 2(c) and 2(c) include the results for the factors presenting the most
relevant influence (n, setup and τ) and considering only the best methods in order to have a more
detailed view of the statistical differences among them. Hence, in Figure 2(b) it can be observed
that H5 improves its performance when n increases, with statistical differences for all levels of this
factor to the rest of methods. From Figure 2(c) we conclude that all methods provide better results
when setup times are generated in U [1, 124], being again H5 the best method statistically different
to the others for both levels. In the same way, in Figure 2(d) we can observe that all methods are
more efficient when τ is 0.2. H5 is the best for both levels with statistic differences.

7.2 Medium-size instances
This set of instances has been solved using the MILP solver with a time limit of 100 seconds,
and also using the constructive heuristics to compare the results. In this case the RDI values are
computed with respect to the minimum obtained for all methods since not all instances (5,699 out
of 5,760, 98.96%) have been solved optimally within the time limit. For this reason, in Table 3 the
ARDI of the MILP is different to zero. Taking into account that for some instances the solver has
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(a) Average RDI (b) Average RDI depending on n

(c) Average RDI depending on setup (d) Average RDI depending on τ

Figure 2: Tukey confidence intervals 95% Small Sizes Instances

reached the time limit of 100 seconds, its average computational time is 7.98 seconds (see the last
row in Table 3), with an average of 48.19 seconds for the biggest size (n = 40 and m = 8).

Regarding constructive heuristics, in Table 3 it can be observed that H5 is the best heuristic for
this set of instances, with 1.654% of Average RDI. The second best performance is provided by H3
with 4.701% of ARDI. In the same way that the results for small-size instances, RMA and RMA2
do not provide good results. Average CPU times needed for all constructive heuristics are almost
negligible as it can be observed in the last row of Table 3.

Figure 3 shows the Tukey 95% confidence intervals. Figure 3(a) shows that H5 is the best
constructive heuristic. In Figure 3(b) it can be seen that H5 presents the best performance for all
values of n significantly different to the rest of constructive heuristics, and for the biggest value
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n = 40 there are not statistical differences between MILP and H2, H3 and H5. Regarding setup
times, Figure 3(c) shows that H5 is the best method and significantly different to the rest of the
methods for the two levels. However, Figure 3(d) shows a very good performance of H5 when
the parameter τ is 0.4, with statistical differences with the rest of the methods, but there are not
differences between H2 and H3 when τ = 0.2.

(a) Average RDI (b) Average RDI depending on n

(c) Average RDI depending on setup (d) Average RDI depending on τ

Figure 3: Tukey confidence intervals 95% Medium Sizes Instances

7.3 Big-size instances
This set of instances has not been solved by the MILP model due to the computational requirements,
so the results regarding RDI are computed with respect to the minimal value obtained for all
methods. It can be observed in Table 4 that the best method for this set of instances is AA RI(0.5)
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with 1.377% of ARDI, being H5 very close with 1.460%. It can be observed that, for example, for
the factor τ , when it is 0.2, AA RI(0.5) is better than H5, and the opposite occurs when τ = 0.4.
Average CPU times in seconds have been included for all the methods in the last row of the Table
4, being all of them very fast.

Figure 4 shows the different graphics with Tukey 95% confidence intervals for the RDI. It can
be seen in Figure 4(a) that H5 and AA RI(0.5) do not present significant differences. Figure 4(b)
shows that AA RI(0.5) has a better performance than H5 for high number of jobs, being statistically
different when n = 250. However, there are not differences between these methods for the two levels
of the factor setup, as it can be observed in Figure 4(c). The conclusions observed in the Table 4
can be seen clearly in Figure 4(d), with H5 significantly better than AA RI(0.5) when τ = 0.4 being
the opposite for τ = 0.2.

8 Conclusions
In this paper we consider a scheduling problem identified in a manufacturing company where more
than 200 jobs must be scheduled in a set of unrelated parallel machines every day. Taking into ac-
count the different constraints of the manufacturing process, the machine layout and the company’s
objectives, the problem can be modelled as Rm|Mj , sijk|

∑
Tj , i.e. unrelated parallel machines with

machine eligibility and machine and sequence dependent setup times with objective the total tardi-
ness. In addition, the company for which this problem is being studied required very fast methods
to be embedded in a decision support system, so we focus on near real-time procedures to solve the
scheduling problem, more specifically on constructive heuristics given the NP-hard nature of the
problem.

First, the problem is modelled using an MILP model in order to be able to assess the performance
of the heuristic solutions with respect to the optimal values, at least for those (small) instances that
can be optimally solved in reasonable CPU times. Second, we adapt constructive heuristics found
in the literature for similar problems trying to include the characteristics of our problem. More
specifically, we have adapted the following methods:

• The constructive heuristic proposed by Al-Salem and Armacost (2002) for the Rm|Mj |Cmax
problem, denoted AA(α) in this paper, with α a parameter of the original algorithm;

• A refinement of the AA(α) heuristic that includes an improvement phase based on the
constructive heuristic developed by Lee (1997) for the 1|sijk|

∑
wjTj problem, denoted

AA RL(α), and

• The constructive heuristic proposed by Rabadi et al. (2006) as initial schedule for their meta-
heuristic for the Rm|sijk|Cmax problem.

Third, we propose different constructive heuristics, labelled H1-H5, where H2, H3 and H5 include
two phases named Improvement and Repair. In view of the good performance of AA(α), we have also
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implemented a version of this heuristic –denoted AA RI(α)– including the Repair and Improvement
phases.

All the aforementioned methods, including the MILP model using the solver Gurobi, have been
tested on three sets of instances: small-, medium- and big-size. Gurobi provides optimal values in
reasonable computational times for all small sizes and almost all medium sizes instances, but it is
not able to provide good solutions for the big-size instances in less than 100 seconds. Among the
heuristics, those including the repair and improvement phases provide the best performance, being
H5 and AA RI(0.5) the best ones with respect to the Average RDI. Particularly, H5 guarantees
high-quality solutions H5 for instances with more than 200 jobs in negligible CPU time (less than
0.012 seconds on average when n = 200). Furthermore and in contrast to AA RI(α), H5 does not
have any parameter, thus avoiding the need of calibration for its implementation.

As a future research line, we would like to study this problem with the setup times dependent
on the machine and on the family of jobs, since in the company there are references with reduced
sequence-dependent setup times if jobs belong to the same family (i.e. a similar design of the
parts). Additionally, it could be interesting to include weights in the objective function to capture
the higher priority of jobs belonging to urgent orders. Finally, another option would be to apply
metaheuristics to our problem, which could provide the scheduler with higher-quality solutions,
although they would require much higher CPU times.
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Gravel, M., Price, W. L., and Gagné, C. (2000). Scheduling jobs in an Alcan aluminium foundry
using a genetic algorithm. International Journal of Production Research, 38(13):3031–3041.

27



Guinet, A. (1993). Scheduling sequence-dependent jobs on identical parallel machines to minimize
completion time criteria. International Journal of Production Research, 31(7):1579–1594.

Gurobi Optimization Inc. (2017). Gurobi Optimizer Reference Manual. http://www.gurobi.com.

Lee, J.-H., Yu, J.-M., and Lee, D.-H. (2013). A tabu search algorithm for unrelated parallel ma-
chine scheduling with sequence- and machine-dependent setups: minimizing total tardiness. The
International Journal of Advanced Manufacturing Technology, 69(9-12):2081–2089.

Lee, Y. H. (1997). A heuristic to minimize the total weighted tardiness with sequence-dependent
setups. IIE Transactions (Institute of Industrial Engineers), 29(1):45–52.

Lin, S.-W., Lu, C.-C., and Ying, K.-C. (2010). Minimization of total tardiness on unrelated parallel
machines with sequence- and machine-dependent setup times under due date constraints. The
International Journal of Advanced Manufacturing Technology, 53(1-4):353–361.

Low, C. and Wu, G.-H. (2016). Unrelated parallel-machine scheduling with controllable processing
times and eligibility constraints to minimize the makespan. Journal of Industrial and Production
Engineering, 1015(February):1–8.

Rabadi, G., Moraga, R., and Al-Salem, A. (2006). Heuristics for the unrelated parallel machine
scheduling problem with setup times. Journal of Intelligent Manufacturing, 17:85–97.

Rambod, M. and Rezaeian, J. (2014). Robust meta-heuristics implementation for unrelated parallel
machines scheduling problem with rework processes and machine eligibility restrictions. Com-
puters & Industrial Engineering, 77:15–28.

Rocha, P. L., Ravetti, M. G., Mateus, G. R., and Pardalos, P. M. (2008). Exact algorithms for a
scheduling problem with unrelated parallel machines and sequence and machine-dependent setup
times. Computers & Operations Research, 35(4):1250–1264.

Shahvari, O. and Logendran, R. (2017). An Enhanced tabu search algorithm to minimize a bi-criteria
objective in batching and scheduling problems on unrelated-parallel machines with desired lower
bounds on batch sizes. Computers & Operations Research, 77:154–176.

Vallada, E. and Ruiz, R. (2011). A genetic algorithm for the unrelated parallel machine schedul-
ing problem with sequence dependent setup times. European Journal of Operational Research,
211(3):612–622.

Ying, K.-C., Lee, Z.-J., and Lin, S.-W. (2012). Makespan minimization for scheduling unrelated
parallel machines with setup times. Journal of Intelligent Manufacturing, 23(5):1795–1803.

28



(a) Average RDI (b) Average RDI depending on n

(c) Average RDI depending on setup (d) Average RDI depending on τ

Figure 4: Tukey confidence intervals 95% Big Sizes Instances
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