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Identifying structures in the continuum: Application to 16Be
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Background: The population and decay of two-nucleon resonances offer exciting new opportunities to explore
dripline phenomena. A proper understanding of these systems requires a solid description of the three-body
(core + N + N ) continuum. The identification of a state with resonant character from the background of
nonresonant continuum states in the same energy range poses a theoretical challenge.
Purpose: Establish a robust theoretical framework to identify and characterize three-body resonances in a
discrete basis, and apply the method to the two-neutron unbound system 16Be.
Method: A resonance operator is proposed, which describes the sensitivity to changes in the potential.
Resonances, understood as normalizable states describing localized continuum structures, are identified from the
eigenstates of the resonance operator with large negative eigenvalues. For this purpose, the resonance operator is
diagonalized in a basis of Hamiltonian pseudostates, which in the present work are built within the hyperspherical
harmonics formalism using the analytical transformed harmonic oscillator basis. The energy and width of the
resonance are determined from its time dependence.
Results: The method is applied to 16Be in a 14Be + n + n model. An effective core + n potential, fitted to the
available experimental information on the binary subsystem 15Be, is employed. The 0+ ground state resonance
of 16Be presents a strong dineutron configuration. This favors the picture of a correlated two-neutron emission.
Fitting the three body interaction to the experimental two-neutron separation energy |S2n| = 1.35(10) MeV,
the computed width is �(0+) = 0.16 MeV. From the same Hamiltonian, a 2+ resonance is also predicted with
εr (2+) = 2.42 MeV and �(2+) = 0.40 MeV.
Conclusions: The dineutron configuration and the computed 0+ width are consistent with previous R-matrix
calculations for the true three-body continuum. The extracted values of the resonance energy and width converge
with the size of the pseudostate basis and are robust under changes in the basis parameters. This supports the
reliability of the method in describing the properties of unbound core + N + N systems in a discrete basis.
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I. INTRODUCTION

Recent advances in radioactive ion beam physics allow
us to explore dripline phenomena, where nuclear systems
exhibit exotic properties [1] and unusual decay modes [2].
Light nuclei away from stability are typically characterized
by few or no bound states, with the continuum playing a
fundamental role in shaping their structure properties [3] and
reaction dynamics [4]. The coupling to the continuum is a key
ingredient in theoretical models aiming to understand exotic
nuclei [5], and the effects are especially crucial in the case
of low-lying resonances [6–8]. This has a strong imprint, for
instance, on the electromagnetic response of two-neutron halo
nuclei and other weakly bound systems [9–11]. Moreover,
resonant states in unbound nuclei can be populated in transfer
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or knockout reactions induced by exotic projectiles [12–14].
In this context, two-nucleon decays have attracted renewed
attention [12,15–18]. The description of few-body resonances,
however, is not an easy task.

The intuitive concept of a resonance corresponds to a range
of continuum energy eigenstates that have a larger probability
amplitude within the potential well, as compared to other
nonresonant continuum states. This behavior in the contin-
uum allows to construct a wave packet, as a combination
of continuum states, that localizes the wave function inside
the potential well, and cancels the oscillations outside [19].
This can be done efficiently, for a single-channel case, in the
energy range within the vicinity of a phase shift that is a
multiple of π/2. For a multichannel problem, such as three-
body systems or two-body systems with core excitations, the
exact scattering problem can be solved and resonances can
be identified from the eigenphases obtained by diagonalizing
the S matrix [17,20,21]. For three-body systems comprising
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several charged particles, the Coulomb problem requires very
involved procedures [22]. Recent ab initio developments can
also explore continuum structures and phase shifts, but the
method demands large computational efforts and so far it is
limited to relatively light systems [3,23]. A possible alterna-
tive is to diagonalize the Hamiltonian in a square-integrable
basis.

In general, the diagonalization of the few-body Hamilto-
nian in a discrete basis is referred to as pseudostate (PS)
method [24], which provides a discrete set of positive-energy
eigenstates representing the continuum. For this purpose,
different bases can be employed [25–29]. As the basis size
is increased, however, the density of pseudostates becomes
larger, and the identification and study of resonances above
the nonresonant background is difficult. It is possible to
obtain phase shifts in a single-channel problem by using
pseudostates and following the Hazi and Taylor stabilization
criteria [30,31], but the extension to multichannel cases is
not trivial. In Ref. [18], it has been shown that three-body
resonances, understood as localized continuum structures,
can be associated to discrete eigenstates which are stable
with respect to changes in the basis parameters. However,
the method was restricted to a limited range of parameters
which have to be determined by trial and error. Moreover,
no information about the width of the state could be obtained
from this representation of the continuum.

It is the purpose of this work to establish a more robust
prescription to identify and characterize resonances using a
discrete basis. A resonance operator will be introduced to
single out localized continuum structures. Then, the reso-
nance parameters εr and � will be determined from its time
evolution. To apply the method to three-body systems, such
as halo nuclei or two-nucleon emitters, the hyperspherical
harmonic formalism [32,33] will be used. The method will be
tested on the unbound 16Be nucleus, whose 0+ ground state
has been recently claimed to decay via simultaneous two-
neutron emission [12]. To assess the validity of the results,
the resonance width will be compared to the exact three-body
scattering calculations [17] using the same interactions. In
addition, predictions for the 1− and 2+ continuum will be also
presented.

The paper is structured as follows. In Sec. II, the method to
identify and characterize few-body resonances is introduced,
together with the three-body framework used in this work. In
Sec. III, the formalism is applied to 16Be, and the reliability of
the theoretical approach is discussed by comparing with previ-
ous results. Finally, Sec. IV summarizes the main conclusions
and outlines possible further applications.

II. THEORETICAL FRAMEWORK

A. Resonance operator

Pseudostate approaches consist of solving a simple eigen-
value problem [24],

Ĥ |n〉 = εn|n〉, (1)

|n〉 =
∑
iβ

Dn
iβ |iβ〉, (2)

where {i, β} label the radial excitation of the basis and the
channel indexes (spins, orbital angular momenta, and total
angular momenta), respectively. The coefficients Dn

iβ are de-
termined by diagonalizing the few-body Hamiltonian in a
discrete basis (e.g., Refs. [25,34]), which requires just the
kinetic energy and potential matrix elements

Tiβ,i ′β ′ = 〈iβ|T̂ |i ′β ′〉, (3)

Viβ,i ′β ′ = 〈iβ|V̂ |i ′β ′〉. (4)

The solutions of Eq. (1) for negative-energy eigenvalues con-
verge to the bound states of the system as the basis size is
increased, while positive-energy eigenstates, or PS, provide a
discrete representation of the continuum. Those that appear
at relatively low energies can be extended nonresonant states
occupying all the available configuration space covered by
the basis functions and thus being characterized by small
values of the potential energy V and the kinetic energy T .
Alternatively, one can find localized PS exploring the range
of the nuclear interaction, with large negative values of V
and comparable T , and typically associated with continuum
structures such as resonances or virtual states. However, the
diagonalization of Ĥ in a large discrete basis mixes these two
types of states [8], which makes difficult the identification and
study of continuum structures.

To address this problem, a procedure will be established
to extract, from the large number of states that appear in the
description of the continuum in a discrete basis, a nonsta-
tionary state which has properties that can be associated to
a resonance. Thus, it will be required that:

(1) The state representing the resonance should be spe-
cially sensitive to the interaction. Indeed, if there is no
interaction, then no resonances appear in the contin-
uum.

(2) The resonant state obtained should be robust versus
changes in the basis set used.

(3) The resonant state should separate clearly from non-
resonant continuum states.

(4) The resonant state, in configuration space, should be a
square-normalizable state, with a large probability to
concentrate its components at short distances.

(5) The energy distribution of the resonant state should be
qualitatively similar to a Breit-Wigner.

(6) The time evolution of the state should resemble the
exponential decay of a resonance.

Following criterion (1), it is possible to introduce the op-
erator Ĥ (λ) = T̂ + λV̂ , which, for λ = 1, is simply reduced
to the Hamiltonian. Then, assuming that localized continuum
structures will be very sensitive to changes in the potential,
the following operator is considered

Ô = dĤ (λ)

dλ
Ĥ (λ)−1, (5)

i.e., the relative change of Ĥ (λ) with respect to λ. However,
the preceding operator is not Hermitian, as dĤ (λ)

dλ
does not

commute with Ĥ (λ)−1. Therefore, its symmetrized version
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FIG. 1. Typical spectra of (a) Ĥ and (b) M̂ . This example corre-
sponds to nonresonant 1− states and a 2+ resonance.

evaluated at λ = 1 is introduced,

M̂ = Ĥ−1/2V̂ Ĥ−1/2. (6)

The ansatz is that the eigenstates of the operator M̂ enable the
identification of resonances. From the matrix elements of the
potential given by Eq. (4), it is straightforward to write down
the matrix elements of this new operator M̂ as

〈n|M̂|n′〉 = ε−1/2
n 〈n|V̂ |n′〉ε−1/2

n′ . (7)

where 〈n|V̂ |n′〉 can be easily computed from the expansion of
the energy pseudostates in Eq. (2) as

〈n|V̂ |n′〉 =
∑
ββ ′

∑
ii ′

Dn
iβDn′

i ′β ′Viβ,i ′β ′ . (8)

The eigenstates of M̂ corresponding to the lowest eigenval-
ues m,

M̂|ψ〉 = m|ψ〉, (9)

are expected to characterize localized continuum structures
such as resonances. According to criteria (2)–(4) above, this
will be the case only if the state is clearly separated from
the rest of the spectrum, it is concentrated at short distances
and is stable under changes in the basis set used to describe
the system. These states are expanded in eigenstates of the
energy given by Eq. (2),

|ψ〉 =
∑

n

Cn|n〉, (10)

so that their energy distribution can be studied. This, together
with its time dependence, will be used in the following
sections to assess whether conditions (5) and (6) are fulfilled.

In Fig. 1, the method is illustrated by studying the 1−
and 2+ states of the halo nucleus 6He [29], in a large basis
of pseudostates. The spectra of Ĥ eigenvalues (left panel) is
characterized in both cases by a large density of states, from
which no resonant behavior can be disentangled. However the
spectra of M̂ eigenvalues (right panel) shows that a 2+ state
is clearly separated from the rest, while this is not the case
for 1− states. This 2+ state corresponds to an eigenvalue of
m = −18, indicating that the potential energy is significantly
larger than the total energy. The result suggests that this state,
which is not an eigenstate of the Hamiltonian, represents a
resonance. Besides, the fact that no 1− state can be similarly

singled out shows that, within the model used to describe 6He
[29], there is no evidence of a 1− resonance.

B. Time dependence and resonance parameters

As time evolves, states given by Eq. (10) become

|ψ (t )〉 =
∑

n

Cne
−iεnt |n〉, (11)

where t is the time divided by h̄. This means that the initial
state loses its character, and therefore it is possible to define a
time-dependent amplitude from a given initial state |ψo〉 as

a(t ) ≡ 〈ψo|ψ (t )〉 =
∑

n

|Cn|2e−iεnt . (12)

By definition, this amplitude equals 1 for t = 0. For a reso-
nance, one would expect [35]

ar (t ) = e−iεr t− �
2 t , (13)

given by the resonance energy εr and its width �. Note that the
state |ψ (t )〉 is described as a combination of a finite number
of energy eigenfunctions, and hence it cannot decay exponen-
tially for long enough times. Nevertheless, for a physically
motivated time range (e.g., associated to the time in which
the resonance is produced in a reaction), one may require
the time dependence of Eq. (12) to be as close as possible
to the resonance amplitude in Eq. (13). Thus, the resonance
parameters εr and � can be determined by minimizing the
resonance quality parameter

δ2(εr ,�) =
∫ ∞

0 W (t )|a(t ) − ar (t )|2dt∫ ∞
0 W (t )|a(t )|2dt

, (14)

which has the meaning of a quadratic deviation. Here, W (t )
is a time profile describing the relevant timescale. For con-
venience, it can be parametrized simply as W (t ) = e−xt ,
where x is a parameter with dimensions of energy. Thus,
h̄/x corresponds to a relevant timescale for the resonance
formation, such as a the collision time in which the resonance
is produced. Note that small x values will be related to long
times associated to the decay of the resonance. In order to
find the resonance parameters εr and � which best describe
the time evolution of a(t ), Eq. (14) can be minimized,

∂

∂εr

δ2(εr ,�) = 0, (15)

∂

∂�
δ2(εr ,�) = 0. (16)

From these conditions one gets

εr =
∑

n

εn|Cn|2
Qn(x)2

/ ∑
n

|Cn|2
Qn(x)2

(17)

and

1

(x + �)2 =
∑

n

|Cn|2Pn(x)

Qn(x)2
, (18)
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where

Qn(x) =
(

x + �

2

)2

+ (εn − εr )2, (19)

Pn(x) =
(

x + �

2

)2

− (εn − εr )2. (20)

In practice, Eq. (17) can be solved iteratively to obtain εr as a
function of (x + �/2). From this, and using Eq. (18), one gets
(x + �). In this way, the resonance parameters are obtained as
a function of x, i.e., εr (x) and �(x).

Once the resonance parameters which best describe the
time-dependent amplitude of the state have been determined,
the quality of the resonance can be assessed from Eq. (14).
This, as a function of x, is given by

δ2(x) = F (x) − 2E(x) + [x + �(x)]−1

F (x)
, (21)

where

F (x) =
∑
nm

|Cn|2|Cm|2 x

x2 + (εn − εm)2 , (22)

E(x) =
∑

n

[x + �(x)/2]|Cn|2
Qn(x)

. (23)

For large values of x, it is expected that δ2(x) → 0, since
the time profile W (t ) = e−xt will explore very short times
at which ar (t ) and a(t ) trivially coincide. Small values of x,
on the contrary, are more relevant to assess whether the state
|ψ (t )〉 corresponds to a resonance, since they explore longer
times.

C. Three-body systems

The method will be applied to identify and characterize
three-body resonances using the hyperspherical harmonics
formalism [32,33]. The eigenstates of the three-body Hamil-
tonian are expanded as

|n〉 ≡ �n(ρ,�) = ρ−5/2
∑

β

[∑
i

Dn
iβUiβ (ρ)

]
Yβ (�),

= ρ−5/2
∑

β

Rn
β (ρ)Yβ (�), (24)

where ρ2 = x2 + y2 is the hyper-radius and � = {α, x̂, ŷ}
combines all the angular dependence, with tan α = x/y the
hyperangle. Here {x, y} are the usual Jacobi coordinates
in Fig. 2. Note that there are three possible choices of

�x
�y

FIG. 2. Jacobi coordinates for a three-body system.

Jacobi coordinates, although a fixed set will be assumed
here for simplicity. The index i counts the number of ba-
sis functions, or hyper-radial excitations, and the label β ≡
{K, lx, ly, l, Sx, jab}j is typically referred to as channel, so
that Rn

β (ρ) is the radial wave function for each one. Functions
Yβ (�) are states of good total angular momentum j following
the coupling order:

Yβ (�) = {[
ϒ

lx ly
Klml

(�) ⊗ κsx

]
jab

⊗ φI

}
jμ

. (25)

In this expression, l = l x + l y, Sx is the total spin of the two
particles related by the x coordinate, and I represents the
spin of the third particle, which is assumed to be fixed. The
functions ϒ

lx ly
Klml

are the hyperspherical harmonics [32], and K
is the so-called hypermomentum. More details can be found,
for instance, in Ref. [18].

For the radial functions, the analytical transformed har-
monic oscillator (THO) [11,29,36] basis is used. By perform-
ing a local scale transformation on the harmonic oscillator
functions,

UTHO
iβ (ρ) =

√
ds

dρ
UHO

iK [s(ρ)]. (26)

the Gaussian asymptotic behavior is replaced by an exponen-
tial decay. Using the analytical form

s(ρ) = 1√
2b

⎡⎣ 1(
1
ρ

)4 + (
1

γ
√

ρ

)4

⎤⎦
1
4

, (27)

the parameters b and γ control the hyper-radial extension of
the basis, which is related to the density of pseudostates as a
function of the energy. As shown in Refs. [18,29], small γ (or
large b) values provide a higher concentration of discretized
continuum states close to the breakup threshold. The level
density after diagonalization is controlled by the ratio γ /b
[29,31]; therefore, it is reasonable to fix one (b) and use the
other as a parameter (γ ), as in Ref. [18].

The energy pseudostates |n〉 = �n are obtained by diag-
onalizing the three-body Hamiltonian in a given THO basis.
This requires the hyper-radial coupling potentials

Vβ ′β (ρ) = 〈Yβ (�)|V12 + V13 + V23|Yβ ′ (�)〉 + δββ ′V3b(ρ),
(28)

where Vij are the corresponding two-body interactions, fitted
by the known experimental information on the binary sub-
systems, and V3b(ρ) is a phenomenological three-body force.
The latter is typically introduced to account for effects not
explicitly included in a strict three-body picture [8,9,37,38],
and its parameters can be fixed to shift the three-body energies
without a significant change in the structure of the states. From
the hyper-radial couplings, the potential matrix elements re-
quired in Eq. (8) are simply

Viβ,i ′β ′ =
∫

dρUTHO
iβ (ρ)Vβ,β ′ (ρ)UTHO

i ′β ′ (ρ). (29)

Note that the expansion (24) involves infinite sums over β and
i. However, calculations are typically truncated by fixing a
maximum hypermomentum Kmax and a maximum number of
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16Be n + 15Be 2n + 14Be
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5/2+

FIG. 3. Decay of 16Be. Relative energies from Refs. [12,39].

hyper-radial excitations imax in each channel. These param-
eters should be chosen large enough to provide converged
results. Note that fixing K restricts lx and lx values to lx +
ly � K [32], such that no additional truncation is needed.

III. APPLICATION TO 16Be

The 16Be system has been recently populated in the
17B(p, 2p)16Be reaction [12]. Its ground state has been
identified as a broad 0+ resonance characterized by S2n =
−1.35(10) MeV and � = 0.8(1) MeV. The energy and angu-
lar correlations of the emitted neutrons suggested a simultane-
ous decay. This was consistent with the available information
on the binary subsystem 15Be [39]. In Fig. 3, the decay
path is illustrated. The structure of the 16Be ground state
was studied using the hyperspherical R-matrix method [17],
showing a dominant dineutron configuration in the resonance
wave function. This result was confirmed recently from a
simpler pseudostate approach [18].

A. Three-body model 14Be + n + n

In order to test the suitability of the method, the three-
body 14Be + n + n problem is solved in this work using the
same interactions as in Refs. [17,18]. For the n-n interaction,
the Gogny-Pires-Tourreil (GPT) [40] potential is used. This
parametrization includes central, spin-orbit, and tensor terms
and reproduces nucleon-nucleon scattering observables up
to 300 MeV. For the 14Be + n interaction, an l-dependent
Woods-Saxon potential with central and spin-orbit terms was
adjusted to reproduce the available experimental information
on 15Be, i.e., a d5/2 ground state 1.8(1) MeV above the
neutron-emission threshold and a width of 0.58(20) MeV
[39]. Note that these numbers, as well as the ground-state
energy of 16Be, might change once new data with better
energy resolution is available [41]. The 14Be + n potential
parameters are given in Ref. [18]. This potential produces
1s1/2, 1p3/2, and 1p1/2 Pauli states that have to be projected
out for the three-body calculations. For this purpose, different
prescriptions can be adopted [42]. Here, as in Refs. [17,18],
a supersymmetric potential is constructed [43]. This leads
to a phase-equivalent potential with shallow s and p terms,
which do not support 1s and 1p bound states. Although
this inert-core approximation might not be the most realistic
picture to describe 15,16Be, it is important in this context to
use the same prescription when dealing with Pauli states, thus
ensuring a sensible comparison between different three-body
calculations. Exploring the effect of different Pauli treatments
is beyond the scope of the present work. In addition to the
binary interactions, the phenomenological three-body force
introduced by Eq. (28) is also included. This is Gaussian
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FIG. 4. Eigenvalues m for 0+ states as a function of Kmax.
Calculations correspond to b = 1.4 fm, γ = 1.1 fm1/2, and imax =
20. In the last two spectra, the converged results with γ = 1.4 and
1.7 fm1/2 are also shown.

potential with ρ3b = 6 fm and v3b = −0.9 MeV, and it has
been adjusted to reproduce the two-neutron separation energy
in 16Be once calculations are converged.

Calculations are performed in two steps. First, the three-
body Hamiltonian in the Jacobi-T set, where the two valence
neutrons are related by the x coordinate, is diagonalized for 0+
states using a set of THO function with fixed basis parameters.
Then, the resulting energy eigenstates are used to diagonalize
the resonance operator M̂ in Eq. (6). In Fig. 4, the 0+
eigenvalues m are shown as a function of the maximum hyper-
momentum Kmax defining the model space. These calculations
were performed with THO basis parameters b = 1.4 fm and
γ = 1.1 fm1/2, and imax = 20 hyper-radial excitations, which
were enough to achieve convergence. From this plot, it is clear
that the operator M̂ divides the spectrum into two regions: (a)
the upper part, associated to spread, nonresonant continuum
states, and (b) the lowest, localized eigenstate which might
be interpreted as a resonance. The latter shows a fast con-
vergence, which resembles that of three-body bound states
(e.g., Refs. [29,36]). In Fig. 4, calculations with different
values of the γ parameter (and Kmax = 30) are also presented.
It is shown that the lowest eigenstate of M̂ is very stable
with respect to changes in the basis parameters, provided the
number of basis functions is large enough. This provides a
robust representation of the resonance, independent of the
basis extension, and it is a clear difference with respect to the
calculations in Ref. [18].

By combining Eqs. (10) and (24), the lowest eigenstate of
M̂ can be written as

ψ0(ρ,�) = ρ−5/2
∑

β

χβ0(ρ)Yβ (�), (30)

where χβ (ρ) are the radial wave functions obtained after
adding up the contributions from different energy eigenstates,

χβ (ρ) =
∑

n

CnR
n
β (ρ) =

∑
n

Cn

∑
i

Dn
iβUTHO

iβ (ρ). (31)
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The most important channels in this expansion are shown in
Fig. 5, where the dominance of an lx = 0 component in the
Jacobi-T system can be noticed. In Fig. 6, the total wave-
function probability is presented. The state is localized at short
hyper-radi, a behavior expected for a resonance described in
a discrete basis. The spatial correlations between the valence
neutrons are shown in Fig. 7, which presents three local max-
ima. The dominant one corresponds to the so-called dineutron
configuration, with the two neutrons close to each other at
some distance from the core. This result is consistent with
those presented in Refs. [17,18] for the ground-state reso-
nance of 16Be. The second maximum in Fig. 7 corresponds
to the cigarlike configuration, also observed in two-neutron
halo systems [32], with the two neutrons far from each other
but close to the core. Last, a third peak appears between the
dineutron and cigarlike components, where the three particles
are more equally spaced. This structure is sometimes called
triangle configuration [17].
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FIG. 6. Hyper-radial wave-function probability for the lowest 0+

eigenstate of M̂ .
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FIG. 7. Probability of the lowest 0+ state, with the scale in fm−2,
as a function of rx ≡ rnn and ry ≡ r(nn)-14Be.

B. Time evolution and resonance parameters

In the preceding section, the lowest eigenstate of the oper-
ator M̂ corresponding to 0+ states in 16Be has been identified
as the ground-state resonance of this system. Its resonance
parameters, i.e., εr and �, are yet to be determined. This can
be achieved by following the formalism presented in Sec. II B.
The procedure yields the energy and width as a function of the
parameter x, whose small values can be associated to long de-
cay times. The energy and width functions so obtained present
also a rather fast convergence pattern with respect to Kmax, as
can be seen in Fig. 8. These are obtained by solving Eqs. (17)
and (18) iteratively. The energy functions for Kmax = 28 and
30 differ by less than 1%. The small effect from higher K
values can be effectively simulated by fitting the Kmax =
30 result to the experimental two-neutron separation energy
in 16Be. Note that the three-body force employed in the
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FIG. 8. Resonance parameters (a) εr (x ) and (b) �(x ). Conver-
gence with respect to the maximum hypermomentum. With Kmax =
30, the resonance energy is converged within a 1% difference.
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FIG. 9. Resonance parameters εr (x ) and �(x ) for three different
THO bases, defined by their γ parameter, together with a linear
extrapolation for small values of x.

preceding section was fitted so that the resonance energy in
this plot is close to the experimental two-neutron separation
energy in 16Be. With the adopted Kmax value, the width
function is fully converged. In Fig. 8, it is shown that the
energy and width functions follow approximately a linear
trend, characterized by a small slope, for small values of x.
Then, a sudden drop of the resonance width is observed for
x values close to zero. This decrease can be easily explained
from Eqs. (18) and (19). The limit �(0) −→ 0 occurs when
a discrete energy εn, with a nonvanishing amplitude |Cn|2,
matches the resonance energy εr . Due to the discrete nature
of the basis, this will likely occur if the median of the energy
distribution characterizing the state is precisely an eigenvalue
of the Hamiltonian. This issue can be overcome by increasing
the level density around the resonance, i.e., by changing the
THO parameters controlling the radial extension of the basis.
To illustrate this, the energy and width functions are shown
in Fig. 9 for three different values of the transformation
parameter γ . It is observed that, for smaller γ (i.e., larger level
densities at low energies) the linear trend explores smaller
values of x before the sudden decrease in the width. Therefore,
this behavior can be extrapolated, providing an upper limit for
both the resonance energy and the width. This is also shown in
Fig. 9. Following this prescription, the parameters describing
the resonance, at x = 0, are εr (0+) = 1.34 MeV and �(0+) =
0.16 MeV. The latter is very close to the width obtained
in Ref. [17] using the hyperspherical R-matrix method to
solve the true three-body scattering problem, 0.17 MeV. This
confirms that the method here presented to identify and char-
acterize resonances in a discrete basis, using the definition of
the resonance operator M̂ and the time evolution of its lowest
eigenstate, provides reasonable results.

Note that the resonance width obtained both in the present
work and in the previous R-matrix calculations are sig-
nificantly smaller than the reported experimental value of
0.8 MeV [12]. In Ref. [17], this difference was attributed to the
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FIG. 10. Square root of the quality parameter for the 0+ reso-
nance in 16Be. The value x0 = 0.25 MeV at which the resonance
width �(x ) deviates from a linear character is highlighted.

experimental resolution. However, there might be deficiencies
in the three-body model affecting the resonance width, such
as the inert-core approximation or the treatment of Pauli states
introduced in Sec. III A. There is also the possibility that the
experimental energy distribution contained the contribution
from two unresolved resonances, e.g., the 0+ ground state and
the first 2+ excited state [41]. New experimental data with
improved energy resolution could help in this context.

Three-body resonances are multichannel states which do
not necessary follow a typical Breit-Wigner shape. The res-
onance quality parameter introduced in Eq. (14) is a mea-
sure of the quadratic deviation from this behavior. By using
Eq. (21), this quantity can be easily computed from the
energy and width functions εr (x) and �(x). This is shown
in Fig. 10. As discussed in Sec. II B, the quality parameter
at large x is trivially zero, since the exponential W (x) = e−xt

explores very short times. The limit x −→ 0, however, is not
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FIG. 11. Energy distribution of the 0+ ground-state resonance,
built as a histogram with a 0.25 MeV step. The solid line is a
Breit-Wigner shape with the adopted resonance parameters εr (0+) =
1.34 MeV and �(0+) = 0.16 MeV.
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FIG. 12. Eigenvalues m for (a) 1− and (b) 2+ states as a function of Kmax.

interesting either due to the sudden drop in the resonance
parameters produced by the discrete nature of the basis. To
get an idea about the quality of the resonance, one can look at
the value of δ2(x) where �(x) deviates from the linear trend,
i.e., x0 = 0.25 MeV in this case. This gives a small value
of

√
δ2(x0) = 0.14, which means that the deviation from a

single-channel resonance is of the order of 14%. A histogram
with the energy distribution of the resonance, corresponding
to Eq. (10), is shown in Fig. 11 using x0 as the step. The
distribution is slightly asymmetric but shows a trend that can
be qualitatively reproduced by a Breit-Winger resonance with
parameters εr (0+) = 1.34 MeV and �(0+) = 0.16 MeV. This
is consistent with the reported small value of δ2(x0).

C. Prediction of resonances: 1− and 2+ states

The present formalism has been applied to characterize
the 0+ ground-state resonance of 16Be, but the method can
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FIG. 13. Energy and width functions for the 2+ resonance in 16Be.

be easily extended to study the three-body continuum for
different angular-momentum states. The eigenvalues of M̂ for
1− and 2+ states, from the same Hamiltonian and using the
same THO basis and model space, are shown in Fig. 12 as a
function of Kmax. The procedure allows us to identify a clear
2+ resonance in the m eigenvalue plot, as opposed to what it is
observed for the 1− case. The energy and width functions for
this state are shown in Fig. 13, from which the linear extrapo-
lation gives εr (2+) = 2.42 MeV and �(2+) = 0.40 MeV. The
quality of the resonance in this case is

√
δ2(x0) = 0.25, so a

significant deviation is observed, as compared to that of the 0+
ground state. This is more clear in the energy distribution of
the state given in Fig. 14, compared to the Breit-Wigner shape
with the adopted resonance parameters.

It is worth noting that these calculations for the 2+ reso-
nance have been performed by keeping the same three-body
force used to adjust the 0+ state to the available experimen-
tal energy. However, it has been previously shown that the
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FIG. 14. The same as Fig. 11 but for the 2+ resonance.
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three-body potential required to reproduce the known infor-
mation on three-body energies might be different between
different angular-momentum states of a given system (see, for
instance, Refs. [22,27,36]). Therefore, the predicted values
for the energy and width of a 2+ resonance are somewhat
arbitrary. This calls for new experimental insight to better
constrain three-body models for 16Be.

IV. SUMMARY AND CONCLUSIONS

A new method to identify and characterize resonances
in a discrete basis has been presented. The formalism is
based on the sensitivity of resonant states to changes in the
potential operator. Resonances are identified as nonstationary
states, which are eigenstates of the resonance operator M̂ =
Ĥ−1/2V̂ Ĥ−1/2 corresponding to large negative eigenvalues.
The properties of the resonance, i.e., its energy and width, are
obtained from the time evolution of the state by introducing a
resonance quality parameter.

The method has been tested for the unbound three-body
system 16Be, of timely interest in the context of two-nucleon
emitters. The hyperspherical formalism has been used to
describe 14Be + n + n continuum states, using the analytical
THO basis within the PS approach. The binary potentials
employed in the calculations were the GPT n-n interaction
and a phenomenological core-n potential adjusted to the
available information of the 15Be system. To reproduce the
2n separation energy of 1.35 MeV, an additional three-body
force was included. The lowest 0+ eigenvalue of the resonance
operator has been identified as the ground state of 16Be. The
converged wave function presents a strong dineutron con-
figuration, confirming the findings from previous theoretical
works that favor the direct two-neutron emission. From the
time evolution, a width of �(0+) = 0.16 MeV is extracted,
which is consistent with previous R-matrix calculations of

the actual three-body scattering states. This narrow 0+ ground
state exhibits a small deviation with respect to an ideal Breit-
Wigner resonance. Following the same procedure, a 2+ ex-
cited state in 16Be is also predicted. Using the same three-body
Hamiltonian, the resonance appears at 2.42 MeV and shows
a width of 0.40 MeV. New experimental data are required
to confirm the existence of this 2+ resonance and better
constrain the three-body model for 16Be. In particular, the
large discrepancy between the experimental and theoretical
widths needs to be addressed. The formalism has been also
applied to the 1− continuum states, where no resonance is
predicted.

It should be stressed that this formalism produces a nor-
malizable wave function associated to the resonance. This will
allow to use reaction-theory calculations to obtain quantitative
values for the cross sections to populate the resonance from
different reaction channels. The present formalism can be eas-
ily extended to study the resonance properties of three-body
systems comprising several charged particles, for which the
solution of the actual three-body scattering problem poses a
challenge. Calculations for 6Be(4He + p + p) and 11O(9C +
p + p), the unbound mirror partners of the halo nuclei 6He
and 11Li, are in progress.
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