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Abstract – Revenue Management is a technique focus to 

decision rules for maximizing profit from sale of perish-
able inventory units. This paper deals with the special case 
of hotel revenue management, which can be solved using 
deterministic and stochastic mathematical programming 
techniques. We first describe the problem with a theoreti-
cal framework that sets the revenue maximization criteria 
for a hotel. We consider the general case of the problem 
that accept independent and group guests, with a general 
mixed integer linear programming model that maximize 
the total forecasting. Finally, we made comparisons be-
tween different proposed models and were found good-
quality solutions in short running times. 

Keywords: Yield Management; Group Revenue 
Management; Hotels; Mathematical Models.  

I. INTRODUCTION 
Recent years have seen an increased interest in using 

yield management techniques to maximize profitability 
in capacity constrained situations. Most of the charac-
teristics underlying this technique have been used be-
fore in different industries. Perishable firms, such as 
bakers, grocers, fresh fruit sellers or theatre managers, 
managed demand by varying prices in time. After US 
Airline Deregulation Act in 1978, any airline could 
operate any route at any frequency with whatever fares 
are chose, Smith et al. (1992). Companies adopted dif-
ferentiated pricing in order to be able to compete for 
price sensitive travellers, without giving up the revenue 
from their existing, full fare customers. 

Yield management, also referred to as revenue man-
agement, is a sophisticated form of supply and demand 
management that balances both pricing and inventory to 
maximize revenue for every available unit of capacity. 
An increasing number of service industries have recog-
nized the rapidly growing importance of yield manage-
ment in their ability to increase sales, especially profit-
ability. 

Services industries (such as airlines, hotels, rental car 
agencies, freight transport and broadcast advertising), 
have been able to market their services (seat on an air-
craft, room in a hotel, rent a car, spaces on coaches or 
advertising time periods) as a perishable product.  

In this way, Yield Management can be defined as sell 
the right inventory unit to the right customer at the right 
time. For Yield Management to be applicable the ser-
vice industry needs five conditions (Kimes 2000). 

1. Limited capacity. Yield Management is designed 
for capacity-constrained services firms. The units of 
inventory are sold in a short time with a fixed capacity, 
measured by the number of rooms or the number of 
seats.   

2. Market segmentation. Services industries make use 
of segmentation because these can choose between 
different types of customers. Arbitrary price is not al-
lowed, so the service should have some characteristic 
that distinguish it. So the same unit of capacity can be 
used to deliver many different services.  

3. Future demand is uncertain. Yield Management 
must be able to forecast the demand variability so that 
managers can increase the price during periods of high 
demand and decrease the price during periods of low 
demand. Services firms cannot quickly available capac-
ity to available demand. 

4. Perishable units of inventory. The inventory dis-
tinguishes service firms from manufacturing firms. 
Units of inventory services industries unsold after a 
specific date are wasted, services cannot be stored. 
These characteristics decide to sell services in advance.  

5. Appropriate cost and pricing structure. Many ser-
vices firms present a fixed capacity cost expensive and 
cannot be rapidly adjusted demand. In the same way 
additional cost associated to an additional visitor in 
unused capacity is very low. 

The revenue management models we study in this 
paper include group acceptance in hotels. Therefore, in 
this work we modelled the customer typology as indi-
vidual or group. We tested a variety of different rooms 
optimization algorithms, based on deterministic and 
stochastic programming techniques.   

The paper is organized as follow. In Section 2 we 
study the particular case where the forecasting demand 
is deterministic, in which groups are allowed or not. In 
Section 3 we formulate the problem as a stochastic 
model, without and with groups. That case is close to 
real-world situations, so the results were better. Compu-
tational comparisons are described in Section 4, using 
linear programming and mixed integer linear program-
ming problem. Finally, conclusions are drawn in Sec-
tion 5. 

II. DETERMINISTIC MODEL  
Yield management has focused mainly on forecast-

ing, reservation systems and optimization models. For a 
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compressive overview of the literature we refer to 
McGill and Van Ryzin (1999).  

The model needs to forecast the demand of customer 
and obtains the optimal allocation of rooms over the 
forecasted demand. Forecast is essentially in the hotel 
yield management system. For hotel forecasting we 
need historical information about arrivals by length of 
stay and rate category. We can use different methods 
(Lee, 1990): historical, advanced and combined book-
ing models.  

Traditional forecasting techniques were: moving av-
erage bookings, exponential smoothing and ARIMA 
times series models. Advanced booking models is used 
to predict customer pickup, it is the incremental book-
ings received during a certain time interval. The chosen 
methods were additive and multiplicative models. Hy-
brid models can be regression methods in which inde-
pendent variables were number of reservations on hand 
for a day particular day or economics parameters from 
customer countries and the dependent variable was the 
final number of rooms sold. 

It is not exit the best method, every hotel own par-
ticular characteristics, and a hotel may use a forecasting 
method depending on what period of calendar. In gen-
eral terms regression model, linear or loglinear regres-
sion, will be a good fitted data. Unpublished studies 
used combination forecasts,     

After using a good forecasting model, the system re-
lies on fills all available capacity and charges the high-
est unit price, this means that ensures that those custom-
ers most willing to pay for a room can do so. About 
optimization models, Williamson (1992) study the prob-
lem of maximizing revenue in the airline industry using 
a deterministic mathematical programming. In the hotel 
industry, let k denote departure day menus arrival day 
(length of stay), pj the rate class price, bi the capacity for 
the hotel on day i, dijk the demand forecasted to guest 
arriving on day i, staying during k days at j rate class 
and xijk the number of rooms reserved to guest with ijk 
characteristics. The hotel model is then formulated as 
follows: 
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The objective is to find the room allocation to maxi-
mize revenue from selling room and satisfies the capac-
ity constraints in a hotel. 

This integer problem solves relaxing to a linear pro-
gram because the constraint matrix is unimodular. The 
problem is able to solve with an associated network 
flow, nodes represent days and arcs represents rooms 

will sell to customers. In section 4 we show different 
examples compared the linear and network flow solu-
tion. 

We are thus solving a subproblem within an overall 
approach that integrates forecasting and reservation 
systems. In this way, it maximizes average profit per 
available unit, by anticipating the price sensitivity of 
different customers and anticipates selling to the highest 
paying customers. On the other hand, this process miti-
gates seasonality of demand, by shifting excess demand 
away from peak periods and into the off season.  

In these models we do not consider cancellations 
rooms, guests which no show after make a reservation. 
In due form, overbooking is not take into account here. 
Overbooking occurs when a hotel accepts more reserva-
tions than it has rooms available. It raises legal issues 
when hotel manager use airline overbooking as justifi-
cation for the practice. The difference is that specific 
federal laws, which do not apply to hotels, govern the 
airline industry. 

An extension of this model introduced by Svrcek 
(1991) includes group reservation. Groups are special 
clients because usually bookings are with time, request 
blocks of rooms, need conference space and are sensi-
tive about price. We will denote by i* the day of arrival, 
λg number of days the group wants to stay, µg group 
size, cg group rate and binary variable xg represent if 
acceptance or not this group. The group model is now 
formulated as follows: 
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This problem will be a mixed-integer programming 
model. 

In real situations, the group rate is usually negotiated 
with tour operators or travel agents. During negotiation 
the tour operators contacts with the reservation supervi-
sor and request a specific number of rooms for a time 
period. In addition, group needs extra services such as 
food and beverage, conference rooms, etc. In this re-
quest the hotel required the minimum profitable room 
for accept or reject decisions, and we will use it to con-
sider for auction theories. A method to calculate the 
minimum group rate is solved this problem twice. The 
first time we find the revenue without group, it chooses 
the first model. Then we calculate the revenue with the 
group, we solve the second model. This difference reve-
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nue value will be the minimum income that hotel needs 
to sell the room blocks the length of stay. Group re-
quests could displace individual customers paying 
higher fares. Some group customers may occupy rooms 
with higher expected marginal revenue than others 
customers. But the total group revenue may be higher 
than selling these rooms to individual customers. 

III. STOCHASTIC MODEL  
In this section we assume that demand is stochastic, 

so the number of allocates rooms could be different 
from the forecasting rooms. Here we consider a stochas-
tic programming with simple recourse problem. This 
case is equivalent to a separate objective function, a 
linear part or the left-hand side and functions of random 
variables in the right-hand side. These particular sto-
chastic problems do not cause severe computational 
difficulties, Kall and Wallace (1994).  De Boer et al. 
(2002) introduced a stochastic model for the airline 
industry. Suppose that the demand Dijk can take on only 
a limited number of discrete values 
{ },1 ,2 ,...ijk ijk ijk rd d d< < < . This discrete values are possi-
ble scenarios depends on customer demand. 
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In this model, the decision variables xijk,r is a integer 

variable which represent the part of demand Dijk that 

falls in the interval . Number of rooms 

reserved x

, 1 ,( ,ijk r ijk rd d− ]

) Pr( )ijk ijk r ijk ijk rx d x d−= = = . However, 

ijk is divide in possible scenarios, so we will 

find the decision variables xijk,r. The solution of this 

model, xijk,r will be different to zero when xijk,r-1 is equal 

to dijk,r-1, i.e. Pr(

the sum of x

, 1 ,

ijk,r rooms sold to customers in S scenarios 

will be agree with the daily capacity constraint. 

We solve a linear problem relaxation of the stochas-
tic model because the constraint matrix is unimodular in 
the same terms, so the solution consists of integer val-
ues. The deterministic model is a particular model be-
cause it considers only one demand scenario (over S 
possible). 

With three demand scenarios is enough to capture 
most of the extra revenue generated by extra customers. 
These demands are calculated from forecasting adding 

up and take away the standard deviation for every rate 
class price. 

Although we have used a stochastic model for indi-
vidual customer, we can use it with group. In this 
model, the objective function has a stochastic term with 
the group revenue that is modelled as a deterministic 
demand. 
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 We solve the problem in similar way, needing the 

minimum group rate of a new group. So with a forecast-
ing dijk the model built three different scenarios (with 
the standard deviations as limits) and could find it solv-
ing the model twice, in the same way of the determinis-
tic mixed linear integer problem.  

Another possibility is working solving if the scenar-
ios are more important than prices. Hence, the new 
group displace the less possibility scenario customers at 
first time, r=3. When this scenario is empty, the model 
going on to displace the below scenario. This way of 
operate was less real than the first one, so that we will 
not use it. 

IV. EXPERIMENTAL RESULTS 
The first stage in our computational experiences in-

volved the construction of a set of problems. To con-
struct a set of instances we considered a hotel with 200 
identical rooms and we have tested the deterministic 
and stochastic programming models for individual cus-
tomers and groups. Individual guests can be booked in 
five different rates, described in Table I. 

 
Table I-  Individual Price Classes 

Class Price  
Premiere / Luxury fare 250 € 
Business / Superior fare 175 € 
Standard / Normal fare 125 € 
Economy / Discount fare  90 € 
Supereconomy / Superdiscount fare  75 € 

 
Others inputs were randomly generated the time ho-

rizon of problems has been within the interval [0, 180] 
or maximum length of stay within the interval [0, 21]. 
For each SP problem are used three scenarios; low, 
average and high. For the probabilities, we are checked 
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three possibilities: p1 0.8/0.6/0.4; p2 0.6/0.4/0.2 and p3 
0.7/0.5/0.3. 

To test DP model and SP model, we solved the same 
set of problems using twice. Thus, four instances were 
randomly generated for each problem size, once for DP 
model and three, once for scenario, in the SP model. 
This means that in total we solved the SP model 24 
times. 

To examine the impact of stochastic programming 
we solved the same set of problems using DP, DGP, SP 
and SGP models. In order to measure the effectiveness 
of the proposed models, the average results show in the 
figure 1. Computations were done using CPLEX as a 
solver. 
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Figure 1-  The average revenue for problems by the DP, 

DGP, SP and SGP models 

Note that the revenue obtained by DP is bigger than 
SP models. The difference between deterministic and 
stochastic models is called the expected value of perfect 
information, EVPI. It shows how much one could ex-
pect to win if one were told what would happen before 
making one’s decision. It measures the value of ran-
domness, but it does not show that the deterministic 
models cannot function well. A small EVPI means that 
randomness plays a minor role in the model than if 
EVPI value is bigger. 

At the same time, group models obtained better solu-
tions than individual models. Because if the tour opera-
tor offer is worse than the expected revenue of individ-
ual customers, manager hotel refuse the group.  

The percentage errors have been computed with re-
spect the maximum revenue. The difference between 
them is less than 8%, so we will use SPG model to 
solve customer problems.  

Figure 2 shows the summary of time obtained by DP 
and the average time for SP and group models. The 
computing time required by the proposed models is very 
low. All running times are given in CPU seconds on an 
Intel Pentium III 850 MHz with 64 Mb of RAM. 
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Figure 2-  The average time for problems by the DP, DGP, 

SP and SGP models 

Note that: 
• DGP found best revenue solutions. Although 

with demands calculated from forecasting 
models, revenue decrease due to EVPI value.  

• With regard to computation time, the highest 
model is below four seconds.  

Therefore, we could conclude that the SGP model as-
sures quite satisfactory results with low computing 
requirements, and hence it could be reasonably used to 
solve much greater problems. 

V. CONCLUSION 
In this paper, we have studied an inventory perish-

able problem under limited capacity, which is differen-
tiated with price policies. First, we have considered a 
special case for the problem, which is modelled as de-
terministic programming. Then, stochastic program-
ming has been used to solve the same case. The quality 
of the solutions improved, if models are compared. 
Computational results indicated that the SGP model 
finds solutions of very good quality in a reasonable 
computation time. 
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