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We present a qualitative analysis on the influence of truncating a long-ranged 
potential on the critical behavior of a fluid described by the Percus-Y evick equation. 
It is shown that a nonclassical equation of state for truncated potentials can be 
compatible with a classical one in the long-range limit. Our main assumption is that­
the dominant part of the difference between both equations of state is a regular 
function driven by the asymptotic behavior of the direct correlation function. The 
results are applied to the case of a Leonard-Jones potential. Comparison with 
available numerical results is quite satisfactory. 

I. INTRODUCTION 

In the last few years, a great attention has been 
devoted to the study of the behavior predicted in the 
critical region by the approximate integral equations for 
fluids. One of the most widely studied is the Percus­
Yevick (PY) equation. Both analytical1- 3 and numeri­
cal4-6 studies show that the PY approximation predicts 
classical values for the critical exponents. However, the 
exact solution of the PY equation for the so-called sticky­
hard~sphere model1 gives rise to a compressibility equation 
of state leading to nonclassical scaling functions in the 
critical region.2 As a consequence, some nonclassical 
features occur, one of them being a strong asymmetry of 
the critical isotherm with respect to the critical point. 1•2 

A recent analysis of the PY equation for a lattice gas 
model with nearest neighbor interaction reveals the same 
nonclassical features. 3 

For more realistic interactions, numerical procedures 
are needed to solve the PY equation. From the numerical 
solution for a truncated Lennard-Janes (TLJ) potential 
by Henderson and Murphy,4 Fishman and Fisher pointed 
out the possible existence of a certain asymmetry on the 
critical isotherm. A stronger asymmetry seems to arise 
when a potential with an attractive Yukawa tail is consid­
ered. 5 On the other hand, a numerical study for the 
riontruncated Lennard-Janes (LJ) potential6 indicated a 
purely classical behavior of the PY approximation. 

These results support the idea2 that the PY approx­
imation exhibits.a nonuniversal critical behavior in which, 
although the critical exponents are always classical, the 
amplitude ratios, namely the one measuring the "degree" 
of asymmetry of the critical isotherm, take values depen­
dent on the details (in particular, on the range) of the 
interaction potential. Our conjecture is that, in the limit 
of long-ranged potentials, the scaling functions for the 
equation of state become classical and the critical isotherm 
is symmetrical. Here, an interaction potential is said to 
be short ranged if it asymptotically decays faster than any 
negative power of the distance. So, a potential with an 
attrl:lctive Yukawa tail or any truncated potential has a 
short range, while the LJ potential is long ranged. 

In this paper we present a simple phenomenological 
analysis showing the plausibility of the above conjecture. 
In Sec. II we show that the classical PY equation of state 
for a long-ranged potential can be compatible with the . · 
nonclassical equation of state for a truncated potential, 
provided that the main difference between both equations 
of state comes from the asymptotic behavior of the direct 
correlation function. Moreover, it is possible to relate the 
critical coordinates and amplitudes for the truncated 

. potential to the ones corresponding to the long-ranged 
potential. Even more, we are able to derive equations for 
the change of the critical parameters as the truncation 
distance increases. 

In Sec. III we apply our analysis to the LJ potential. 
Starting from the values of the critical coordinates and 
amplitudes corresponding to the TU considered by Hen­
derson and Murphy,4 we predict the corresponding values 
for the LJ potential, as well as for other TLJ potentials. 
Comparison with previous results, when possible, is quite 
satisfactory, despite the poor accuracy of the values of 
Ref. 4. 

II. THE ANALYSIS 

The compressibility equation of state reads 

x-1 =- - = 1 - 41rp dr r2C(r), 1 (ap) Loo 
ksT op T 0 

(l) 

.where Pis the pressure, pis the number density, Tis the 
temperature, k8 is the Boltzmann constant, and C(r) is 
the direct correlation function. The PY approximation 
consists of closing the Ornstein-Zernike relation by 
means of the equation 

C(r) = g(r)[ 1 - eu(r)/ksT], (2) 

where u(r) is the interaction potential and g(r) is the 
radial distribution function, which tends to unity when r 
is large. An important property of the PY approximation 
is that the asymptotic behavior of the direct correlation 
function C(r) is given by the interaction potential u(r). 
More concretely, if one assumes that the physical condition 

4312 J. Chern. Phys. 82 (9), 1 May 1985 0021-9606/85/094312-05$02.10 © 1985 American Institute of Physics 



J. J. Brey and A. Santos: Critical behavior of the Percus-Yevick equation 4313 

g(r) --> 1 as r--> oo holds in the PY approximation, Eq. 
(2) implies 

u(r) 
C(r) ~- keT (3) 

for r large enough, and this will be assumed true even at 
the critical point. 

Now, let u(r) be a long-ranged potential, say the U 
potential. We introduce the potential uR(r) obtained by 
truncating u(r) at r = R, i.e., 

uR(r) = u(r), r :s; R, 

= 0, r>R. 

The compressibility equation of state for uR(r) is 

XR 1 = 1 - 41rp LR dr r2CR(r), 

(4) 

(5) 

CR(r) being the PY direct correlation funCtion for this 
potential, and where we have taken into account that 

CR(r) = 0, r > R. 

At given density and temperature, we have 

x- 1 - XR 1 = -41rp Leo dr r2LlR(r), 

where 

(6) 

(7) 

LlR(r) == C(r) - CR(r). (8) 

The asymptotic behavior of this function is given by 

) 
u(r) - uR(r) 

LlR(r ~ - keT . (9) 

To be concrete, let us assume that Eq. (9) holds for r 
> r0 and consider R > r0 • Then, LlR{r) for r0 < r :s; R is 
given by terms that are negligible as compared with u(r)/ 
kBT. We write 

ro < r :s; R, 

r>R. (10) 

We expect, for such values of R, C(r), and CR(r) to 
be very close for r < R. More precisely, we assume that 

ILR dr rnLlR(r)l ~ I Leo dr rnLlR(r)l 

~leo dr rnl u(r) I 
R kBT 

(11) 

for n ;;;;.. 2, when u(r) is a long-ranged potential. As a 
matter of fact, our definition of long-ranged potentials 
implies that there is a value no such that the right-hand 
side of Eq. (11) diverges for n > no. However, although 
the validity of the inequality ( 11) for a given n implies 
that it holds for n + 1, the reverse is not true. 

The assumption (11) for n = 2 allows us to write 

-1 -1 p 
X - XR ~ - kBT WR, (12) 

where 

wR == -411" Leo dr r2u(r). (13) 

Equation (12) is our main physical ansatz. Its plau­
sibility lies on the long-range character of the interaction 
potential u(r), and on the behavior (10), which is a 
consequence of the law (3). For short-range potentials, 
the right-hand side of Eq. (11) exists for all n and there 
is no reason to expect inequality ( 11) to hold. Of course, 
deeper theoretical and numerical analysis is needed in 
order to check the validity of Eq. (12). 

Notice that we cannot use Eq. (12) to write 

-1 -1 p ( ) XR' - XR ~ - kBT wx - wR , (14) 

unless R' --> oo for a given R. The reason is that terms 
that have been neglected upon writing Eq. (12) can be 
relevant as compared with the right-hand side ofEq. (14). 

Now, suppose that the PY compressibility equation 
of state for uR(r) takes in the region around the critical 
point (Pc,R, Tc,R) the form obtained for sticky hard 
spheres1

•
2 and also for the lattice gas model with nearest 

neighbor interaction,3 i.e., 

kBTXR 1 = {[BR(T- Tc,R) + A~(A.R + 1)2(p - Pc,R)2
]

112 

- AR(A.R- 1)(p- Pc,R)} 2
, (15) 

whereAR, BR, and XR are critical amplitudes. Along the 
critical isochore p = Pc,R, one has 

kBTXR 1 = BR(T- Tc,R), 

p = Pc,R> T- Tc,R--> o+, (16) 

which corresponds to the classical critical exponent 'Y 
= 1. The critical exponent o also takes its classical value 
(o = 3) since 

kBTXR1 
;____ 4A~(p- Pc,R)2

, T = Tc.R> p- Pc.R--> o+, 

T = Tc.R, p - Pc.R--> o-. 
(17) 

Nevertheless, the critical isotherm is asymmetrical around 
the critical point, unless A.R = 1. 

The coordinates (Pc.R, Tc,R) of the critical point 
depend on the range R of the potential. For TU potentials, 
Watts7 showed that both the critical density and temper­
ature increase as R does. Let us define the shifts of the 
critical coordinates as 

(18) 

(19) 

where (Pc, Tc) is the critical point corresponding to the 
non truncated potential. In the spirit of our ansatz ( 12), 
we admit that XR ami tR are small enough, so that the 
critical point (pc, Tc) and its immediate vicinity lie in the 
critical region around (Pc.R> Tc,R), where Eq. (15) holds. 
In fact, the results reported by Henderson and Murphy 
for a TU potential4 show that laws ( 16) and ( 17) extend 
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until, at least, T ~ 1.3Tc,R and p ~ 1.2Pc,R• and the 
numerical study of Ref. 6 for the LJ potential leads to Tc 
~ 1.01 Tc,R and Pc ~ 1.04Pc,R. 

In summary, Eq. (12) implies that, if Eq. (15) 
describes the asymptotic PY equation of state in the 
critical region for a truncated potential, we have 

koTx-' 

= -pwR + {[BR(T- Tc + tR) + A1U'R + 1)2(p - Pc 

(20) 

for the nontruncated potential. The presence of the term 
-pwR on the right-hand side of Eq. (20) makes xR and tR 
to be nonzero, and, therefore, x- 1 becomes a regular 
function of p and Tat the critical point (Pc, Tc). So, near 
the critical point, Eq. (20) reduces to 

koTx- 1 = 4A2(p - Pc)2 + B(T- Tc), .. ,... (21) 

where 

(22) 

(23) 

and the critical point is given by 

x- 1 = l.- = o. 
I 

a _,1 
c ap c 

(24) 

Equations (24) allow us to obtain xR and tR in terms of 
the parameters describing the critical region for the trun­
cated potential: 

WR 1 + 2AR(>'R- l)(pcfwR) 112 

XR = AR 8ARAR- (AR- 1)(wRIPc)112 ' 

w2 (A + 1)2 

t 
_ R R 

R-
BR 

16A1AR(PcfwR)- 4AR(AR- 1)(pcfwR)112 - 1 
x--~~~~----~~--~~~-----

[8ARAR- (AR- 1)(wRfPc)112f 

(25) 

(26) 

Strictly speaking, Eq. (25) is an implicit equation for xR, 
as Pc = Pc,R + xR. In the same way, one gets 

BR 8ARAR- (AR- 1)(wRIPc)112 
B = - --:.C......::-=-----'-c:..:_--7'--.:..::....:....::.:..__ 

2AR (AR + 1)2 (27) 

2 wRIPc{ B 2 4A = -·-
4

- 1 + BR [16ARAR(pcfwR) 

- 4AR(AR - 1)(pcfwR)112 - l]} . (28) 

The asymptotic equation of state (21) is fully classical. 
In particular, the critical isotherm is symmetrical. In 
other words, AR _, 1 when R _, oo, i.e., when wR _, 0. 
In this limit, we also have xR _, 0, tR _, 0, AR _, A, and 
BR _,B. 

Equations (25)-(28) allow us to predict the values of 
Pc, To A, and B from the knowledge of Pc,R• Tc,R, AR, 

BR, and AR for a given R. This process cannot be 
reversed, as one of the parameters, say AR, would be left 
undetermined. The physical reason is that we have been 
able, with the help of assumption (12), to derive Eq. (21) 
from Eq. (15), but it is impossible to get Eq. (15) from 
Eq. (21). 

Nevertheless, one can study the way in which the 
critical coordinates and amplitudes behave as R tends to 
infinity. The structure of Eqs. (25)-(28) suggests writing 

(29) 

AR = A + A(l>w}fZ + A<2>wR + O(wJfZ), (30) 

BR = B + B(l>w}/2 + B<2>wR + O(wJ{Z), (31) 

xR = wR[x<o> + x(l>w}/2 + O(wR)], (32) 

tR = wR[t<O> + t(l>w}/2 + t<2>wR + O(wJ{Z)], (33) 

where the coefficients are independent of R. Substitution 
of Eqs. (29)-(33) into Eqs. (25)-(28) allows to express all 
the coefficients in terms of two of them, say A (I) and A (2). 

The result is 

A< 1> = - :i_ A(l) 
2 ' 

(34) 

A(2) = :i_ (AM - A(2) + 3A(l) ) 
2 8AVPc ' 

(35) 

B<'> = 0, (36) 

B(2) = !!_ ( A<l)2 + ~) 
4 2AVPc ' 

(37) 

x<o> =fPc (A (I)+ _1_) 
4A 2AVPc ' 

(38) 

x<l) = fPc (A<2>- A0 )2) 
4A ' 

(39) 

t(O) = Pc 
B' 

(40) 

t(l) = 0, (41) 

t<2> = - fPc (A<!)+ _1_) . 
8AB 2AVPc 

(42) 

In the next section, we will use these expressions to 
obtain numerical values for the LJ potential. 

Ill. APPLICATION TO THE LENNARD-JONES 
(6, 12) POTENTIAL 

Let us consider the LJ (6, 12) potential 

u(r) = 4(r- 12 - r-6 ), (43) 

where usual units of length and energy have been chosen. 
The corresponding parameter wR, defined in Eq. (13), is 
then 

. 1611' _3( R-6
) 

WR = -3- R 1 - -3- ' (44) 

so that w}/2 
- R-312• 
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From a numerical solution of the PY equation for 
the LJ potential, in which behavior (3) was assumed to 
hold for r > r0 = 5, a classical critical behavior of the 
form given by Eq. (21) was found.6 The critical coordinates 
and amplitudes were 

Pc ~ 0.288, 

Tc ~ 1.320, 

A~ 2.013, 

B ~ 2.474. 

(45). 

(46) 

(47) 

(48) 

It must be said that these values might be affected by 
errors because of the numerical algorithm, 8 namely the 
choice of r0 • 

On the other hand, Henderson and Murphy4 ob­
tained, for a TU potential with R = 6, 

Pc,R ~ 0.278, 

Tc,R ~ 1.311. 

,--
•(49) 

(50) 

These authors do not quote values of the critical ampli­
tudes. Nevertheless, using their Figs. 3 and 4, we have 
estimated 

AR ~ 1.847, 

AR ~ 1.245, 

BR ~ 2.459. 

(51) 

(52) 

(53) 

Obviously, not all the figures are significant. As a matter 
of fact, Fishman and Fisher estimated A.R = 1.28 ± 0.03. 
As our calculations in this section have a mainly qualitative 
and illustrative ·character, we are not interested in the 
study of the propagation of errors coming from the 
uncertainties of the values (49)-(53). 

Although the value R = 6 is probably not large 
enough io apply in detail th,e analysis of Sec. II, we can 
insert values (49)-(53) into Eqs. (25)-(28) in order to 
estimate the values predicted for the U potential. The 
result is 

Pc ~ 0.284, 

Tc ~ 1.320, 

A~ 2.027, 

B ~ 2.413. 

(54) 

(55) 

(56) 

(57) 

The agreement with the values (45)-(48) is fairly 
satisfactory. 

Now, we are going to estimate the coefficients in the 
expansions (29)-(33). By taking advantage from the fact 
that Bo> = 0 [Eq. (36)], 'one could compute B<2> from BR 
and B, provided that terms of order higher than wR in 
Eq. (31) can be neglected. Although for R = 6 it is wl/2 

~ 0.28, we have used Henderson and Murphy's results 
as they are the only ones we are aware of. In this way, 
one gets 

B<2> ~ 0.595 5. (58) 

As A.R ~ 1, A_(Il must be non-negative. The positive root 
of Eq. (37) is 

A_(l) ~ 0.779 7. (59) 

Now, substitution of values (52) and (59) into Eq. (29) 
yields 

A_(2) ~ 0.358 9. (60) 

Finally, Eqs. (34), (35), (38)-(40), and (42) give 

A0 l ~ -0.790 3, 

A<2> ~ 0.526 6, 

x<o> ~ 0.081 68, 

x(ll ~ 0.003 615, 

t(O) ~ 0.117 8, 

t(2) ~ -0.016 93. 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

As a test of consistency, let us notice that from Eqs. ( 61 )­
(66) one reobtains Eqs. (49)-(51). 

We can make use of the values (56)-(62) to estimate 
the critical amplitudes when R is large enough (or, 
equivalently, wR is small enough). Table I shows the 
results for several values of R, as well as the corresponding 
critical coordinates obtained from Eqs. (25) and (26). Let 
us emphasize that the values listed in Table I must be 
seen as merely indicative, because of the uncertainties of 
the starting values (49)-(53) and the fact that the values 
of R here considered are smaller than those for which 
our analysis is expected to apply. However, comparison 
with the results obtained from numerical solutions of the 
PY equation is worthwhile.The agreement in the critical 

TABLE I. Critical coordinates imd amplitudes for Lennard-Jones potentials 
with several truncation distances R obtained, by themethod described in 
the text, from the results given in Ref. 4. The values between brackets 
correspond to numerical solutions of the Percus-Y evick equation. 

R Pc.R Tc.R AR AR BR 

3.5 0.225 1.276 1.739 1.628 2.645 
(0.268") (1.275") 

5.0 0.274 1.305 1.808 1.334 2.493 
(0.276") (1.305•) 

6.0 0.278b 1.311b 1.847c 1.245c 2.459d 

6.4 0.279 1.313 1.861 1.220 2.451 
(0.282<) (1.316") (2.540f) 

8.0 0.282 1.316 1.902 1.153 2.432 

10.0 0.283 1.318 1.934 1.107 2.423 

15.0 0.284 1.319 1.974 1.057 2.416 

(X) 0.284 1..320 2.027 1.000 2.413 
(0.2888) (1.3208) (2.0138) (l.OOOS) (2.4748) 

• Given in Ref. 7. 
b Given in Ref. 4. 
c Estimated from Fig. 4 of Ref. 4. 
d Estimated from Fig. 3 of Ref. 4. 
e Given in Ref. 9. 
r Estimated from Fig. 2 of Ref. 9. 
8 Given in Ref. 6. 
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temperature is fairly good, but there is a systematic 
deviation in the critical density. Comparison in the critical 
amplitudes is hardly possible, as they have been rarely 
studied. Apart from the values for the nontruncated 
potential, commented before, it is quite good the agree­
ment in BR for R = 6.4.9 

In summary, we have shown that in the PY approx­
imation a· nonclassical equation of state in the critical 
region for a truncated potential may be consistent with a 
fully classical one in the long range limit. The main point 
in our analysis is that the asymptotic behavior (3) is 
inherent to the PY approximation at any thermodynamical 
state. Thus, if the interaction is long ranged, it is justified 
to expect the right-hand side of Eq. (7) to be a regular 
function of density and temperature, even at the critical 
point. This suffices to prove the above consistency. In 
order to carry out explicit calculations we have assumed 
the validity of Eq. (12). r 

Therefore, the PY approximation seems to present 
a nonuniversal critical behavior, in such a way that the 

critical isotherm amplitude ratio deperids on the interac­
tion range, tending towards unity when the range becomes 
infinity. We have explicitly studied this for truncated 
Leonard-Jones potentials and found a satisfactory agree­
ment with previous results. Nevertheless, accurate nu­
merical solutions for several truncation distances l!fe 
required in order to check the reliability of the analysis 
presented here. 
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