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Electron transfer in strongly coupled systems, appropriate to mixed-valence compounds, is studied
to explore the competition between electronic coherence and dissipation. A set of stochastic
equations is derived for a spin-boson Hamiltonian with large tunneling coupling matrix element
~adiabatic regime! and strong system-bath-coupling. The bath dynamics is treated classically while
the quantum character of the system is maintained. The bath dynamics is affected by the system
dynamics, the effect being included by a mean-field description, valid for the adiabatic regime.
Numerical solutions of the stochastic equations are presented and compared with exact quantum
mechanical results. The numerical implementation of the method is straightforward and the
long-time behavior of the system can be accessed. Analytic equilibrium solutions for the adiabatic
regime are obtained, and we find good agreement between the long-time solution of the stochastic
equations and these equilibrium solutions. We examine the dependence of the electronic population
on the initial preparation of the bath and find that the proportion between oscillation~coherence! and
decay ~dissipation! is quite sensitive to this initial condition. ©2000 American Institute of
Physics.@S0021-9606~00!50448-6#

I. INTRODUCTION

The phenomena of decoherence and relaxation in dissi-
pative quantum systems are a general problem in condensed-
phase chemistry and physics. Their study has stimulated the
development of several methods of analysis that rely on the
regime to be studied.1–18 The quantum nature of the interro-
gated system is always assumed, while the bath that couples
to the quantum system may be classical or quantum, depend-
ing on the values of its characteristic parameters, the system-
bath-coupling strength and the temperature,T. In many
cases, the potential energy relief of the quantum system sup-
ports two minima well separated by a barrier. Then, if the
temperature is low enough, a reduced description of the
quantum system in terms of its first two localized states is
adequate. The strength of the coupling between the two
states of the system,\V, relative to the cutoff energy of the
system-bath interaction\vc and tokBT are key to the kind
of approximation scheme to be used.

In this work, we continue the development of a semiclas-
sical method19–21 that we have found to be useful for study-
ing the competition between electronic coherence and
dephasing in optical spectroscopy, where a strong external
field is applied to a quantum system with just a few degrees
of freedom. The quantum system is coupled bi-linearly to a
bath of harmonic oscillators, providing a relaxation mecha-
nism. When restricted to a two-state system, the Hamiltonian

of the isolated system under the influence of an external field
may be written in pseudospin form,

HS52
DG0

2
sz1\V~ t !sx , ~1!

where DG0 is the free energy difference~asymmetry! and
V(t) is proportional to the external field that induces transi-
tions between the two states. In the case of strong field
spectroscopy,19,20 the parameterV(t) cannot be considered
small, and a treatment based on perturbation theory in the
strength of the external field is, therefore, not feasible.

WhenV(t) is large, there are multiple crossings between
the states and quantum coherence effects are expected to be
important. Then, a semiclassical approach can only be accu-
rate under special circumstances. In a previous study, re-
stricted to a ‘‘bath’’ consisting of one oscillator, we were
able to show by numerical calculation and Landau–Zener
analysis that semiclassical and quantum mechanical methods
will agree in an adiabatic limit that is guaranteed whenV(t)
is large enough.21 The approximation consists of replacing
expectation values of the products of system-oscillator op-
erators with products of their expectation values in the exact
equations of motion for the spin operators. In this fashion,
the differences in the force exerted on the two states is ef-
fectively averaged by the fast transitions induced by the large
value ofV(t). We found that the more classical the oscilla-
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tor, the more adiabatic the regime. Furthermore,V(t) does
not have to be extremely large~in terms of the value of the
corresponding Landau–Zener parameter! in order for this
semiclassical procedure to work quite well.

A similar system Hamiltonian has been applied by many
authors to study electron transfer~ET! reactions, withV(t)
5V being the tunneling coupling element.3,2,4,6ET reactions
in mixed-valence compounds22,23 are characterized by large
couplings between the electronic states~large V) and large
system-bath-couplings, rendering perturbation techniques in-
adequate. The case of largeV ET has stimulated several
theoretical developments.24–29

The spectral density describing the system-bath-coupling
is characterized by a cutoff frequency,vc . For typical polar
liquids and experiments atT5300 K, kBT.\vc .3 Thus, a
classical treatment of the bath seems adequate for these situ-
ations, although the quantum character of the system has to
be maintained. Therefore, the one-oscillator semiclassical
method just discussed should provide a good starting point
for this investigation, as it is best suited to largeV(t) and to
oscillators that can be treated classically from the thermal
(kBT.\vc) and quantum (V(t).vc) points of view.

Our calculations will be relevant in the analysis of pho-
toinitiated ET reactions30 involving three electronic states.
Before exciting with a laser pulse, the ground-state solute
(ug&) is stable and the solvent is thermally equilibrated to the
current electronic charge distribution. A laser pulse puts the
solute in an electronically excited state,u0&, with the solvent
distribution unchanged. This state will be our initial state for
a subsequent electron transfer process to a third electronic
state,u1&. The tunneling matrix elementV and the exother-
micity DG0 characterize the ET between theu0& and u1&
states,~cf. Fig. 1!. It is important to notice that the solvent is
initially in a nonequilibrium situation with respect to the
charge distribution of the initial state pertinent to the ET
process. There are two possibilities to consider:~a! V,vc

~fast bath!. Here, the bath relaxation toward equilibrium
takes place on a time scale that is short compared to the time

scale of the electron transfer. Then, the usual expression for
the ET rate obtained from a Golden Rule~GR! approach
under the assumption of an initially equilibrated solvent@for
a large enough reorganization energy (Er)] will suffice to
describe the process, at least during a relevant time range. On
the other hand,~b! V.vc ~slow bath!. The appropriate bath
initial condition is the nonequilibrium one. There can be sev-
eral different stages in the time evolution of the electronic
population. For short times, oscillations of the electronic
populations, arising from the coupling between theu0& and
u1& states can exist. These oscillations are probably too fast
to be observed experimentally.30 The amplitude of the oscil-
lations will decay due to the solvent fluctuations. As we shall
see, the proportion between oscillation and decay in the
overall time behavior will depend quite sensitively on the
initial condition of the bath. The influence of the initial con-
dition on population evolution has been pointed out by other
investigators.31,24

WhenV!vc ~the fast bath limit!, approximate perturba-
tive schemes have been developed to deal with the dynamics
of the reduced density operator for the system.7,8,15,9,10,32

Even thoughV is small, if the system-bath-coupling strength
is not too strong and for low enough temperature, coherent
oscillations can be found. IfEr gets large enough, then a rate
regime is obtained where the population decays exponen-
tially with rate constants given by the Marcus–Levich elec-
tron transfer~Golden Rule! expression.

Various numerical methods have also been developed to
obtain the dynamics of the matrix elements of the reduced
system density operator. The Tensor multiplication~Tens-
Mult! method of Makri and Makarov33,34 is based on a real
time path-integral formulation. The practical applicability of
the TensMult scheme relies on the fast decay of the memory
kernel of the influence functional and this is favored by fast
baths~large vc). The TensMult method describes correctly
the long-time behavior of dissipative quantum systems; the
density matrix has proven to reproduce the correct equilib-
rium values. In this paper, we mainly focus on slow baths,
V.vc . In this case, it is difficult to obtain reliable results
from the TensMult scheme.

Stock35,36 recently presented a semiclassical method ap-
propriate to the slow bath limit. In his method, the overall
density operator is assumed to factorize at all times into a
product of system and bath reduced density operators. The
system is described by a finite number of oscillators whose
frequencies are distributed in the same form for both diabatic
states. Consequently, the scheme is valid up to timest
!1/Dv, whereDv is the frequency separation between the
bath oscillators. In order to access the long-time behavior, a
large number of bath oscillators has to be considered, which
increases the computational effort. Pechukaset al.18 have
combined the Makri–Makarov and Stock procedures to give
promising results, when the bath spectral density can be par-
titioned into separate contributions from slow and fast bath
modes. They have also implemented a memory equation al-
gorithm for the fast bath part that introduces little loss of
accuracy and is numerically efficient.37

In this paper we focus on the regime of classical bath
dynamics (kBT.\vc) and mainly on the slow baths,V

FIG. 1. Schematic solvent free energy surfaces for a photoinitiated electron
transfer reaction. The lower surfaceug& corresponds to a neutral solute state
where the solvent equilibrium is independent of the solute’s presence,a
50. The solvent equilibrium points for the excited reactant,u0&, ~product,
u1&) states are displaced, relative to this neutral state, as parametrized by the
valuesa51(21), cf. Eq. ~5!. Photochemical excitationug&→u0& initiates
the reactionu0&↔u1&. If the excited state reaction is fast compared with
solvent equilibration times, then an appropriate solvent initial condition is
that of the ground equilibrium state,a50.
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.vc . This second condition precludes the use of perturba-
tion theory in the strength ofV. Furthermore, we will assume
that the system-bath-coupling energy, as characterized by
Er , is not necessarily small either. Our aim is to construct an
approximate stochastic description based on the idea that due
to the large value ofV, transitions among the diabatic states
are so fast on the time scale of the bath dynamics, that the
bath itself can only follow the system in an average sense, as
discussed above for the one-oscillator ‘‘bath.’’21 This proce-
dure provides a feedback of the electronic population into the
dynamics of the bath that is absolutely essential for obtaining
reasonable behavior for all times. In particular, the long-time
average behavior of the system density matrix agrees with
the predictions of an analytic expression for the equilibrium
density matrix that we derive in this work. This latter expres-
sion is based on tracing out the bath degrees of freedom from
the overall canonical density operator in the high-
temperature limit. The use of a stochastic description permits
the introduction of an infinite number of oscillators in a com-
pact fashion and, as we shall see, leads to a very efficient
numerical scheme.

The plan of the rest of the paper is as follows. In Sec. II,
we use the spin-boson Hamiltonian as a starting point to
derive a set of stochastic equations of motion for the matrix
elements of the system density operator and the stochastic
process representing the bath reaction coordinate. In Sec. III,
we obtain an expression for the equilibrium density matrix of
the system that is a generalization to larger values ofV of the
equilibrium density matrix adequate for smallV that is given
in terms of the standard reaction free energyDG0 and tem-
peratureT.4 In Sec. IV, we discuss the solution of the sto-
chastic equations for a wide range of parameter values. Our
concluding remarks are presented in Sec. V.

II. THE HAMILTONIAN AND EFFECTIVE EQUATIONS
OF MOTION

A model Hamiltonian frequently used to characterize an
electron transfer between donor and acceptor centers in con-
densed media is1,2,4,3

HT5(
j

F pj
2

2mj
1

1

2
mjv j

2S qj2
g j

mjv j
2
szD 2G

2
DG0

2
sz1\Vsx . ~2!

The two electronic states are denoted by the ketsu0& andu1&.
The solvent is represented by a set of independent harmonic
oscillators with shifted centers of oscillations. These shifts
depend substantially upon the electronic state of the solute
and reflect the differing interaction energies between the two
charge distributions of the solute with the solvent. Themj ’s
andv j ’s are, respectively, the oscillator masses and frequen-
cies, and theg j ’s are the solute-solvent coupling constants.
The s i ( i 5x,y,z) are the Pauli spin operators. Once the
solute is reduced to only two active states, it can be de-
scribed by a spin variable, and we shall use solute and spin
language interchangeably. The quantityDG0 is the standard

free-energy difference between reactants and products. The
electronic coupling elementV is responsible for the ET be-
tween reactants and products.

The equation of motion for the density operator of the
total systemrT(t) is

i\ṙT~ t !5@HT ,rT~ t !#. ~3!

We assume that the initial density operator can be repre-
sented as

rT~0!5rS~0! ^ rB~0!, ~4!

where rS(0) describes the initial state of the system, and
rB(0), theinitial density operator for the bath, is of the form

rB~0!5
1

ZB~b!
expF2b(

j
S pj

2

2mj
1

1

2
mjv j

2

3S qj2
ag j

mjv j
2D 2D G . ~5!

Here,ZB(b) is the normalization function. This distribution
describes an equilibrium ensemble of independent harmonic
oscillators with center of oscillations shifted by a quantity
parameterized bya. This shift reflects the fact that the sol-
vent equilibrium depends upon the solute charge distribution.
Adjustinga will permit us to fix the initial bath preparation.
The valuea51 corresponds to the standard initial condition
of nonadiabatic ET reactions, where the bath is equilibrated
to the charge distribution of the reactant state, while the
valuea50 would describe a bath at equilibrium with a neu-
tral reactant state. Finally, we shall consider that the system
is initially in a pure state of the formuf&^fu.

We will be interested in situations where the temperature
is large, compared to the characteristic energy of the bath.
Under these conditions, a classical description for the bath
dynamics, where theqj (t) are treated as ordinary functions
of time, is expected to be a good approximation. On the other
hand, the system evolution must be described quantum me-
chanically. When employing this approximation, a difficulty
arises: The coupling term2sz( jg jqj in the Hamiltonian,
Eq. ~2!, is an operator in the system Hilbert space that influ-
ences the bath dynamics. We will introduce an approxima-
tion for this term, in order to ensure that the bath variables
will maintain their classical character.

Following these considerations, our first step is to intro-
duce an effective Hamiltonian for the bath dynamics of the
form

H B
eff~q,p,t !5(

j
F pj

2

2mj
1

1

2
mjv j

2qj
2G2 f ~ t !(

j
g jqj .

~6!

The idea is to approximately incorporate the feedback of the
spin dynamics into the bath evolution equations with the
term 2 f (t)( jg jqj , where f (t) is a function of time that
contains information aboutsz(t). The explicit form of f (t)
will be specified below. Similar approximations have been
considered by other authors to analyze the influence of clas-
sical variables on the tunneling of quantum objects.16,35 This
approximation amounts to neglecting quantum correlations
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among the spin operators in the Heisenberg picture at differ-
ent times. According to Eq.~6!, the Hamiltonian equations
for the classical variablesq(t),p(t) are

q̇ j~ t !5
]H B

eff~q,p,t !

]pj
5

pj~ t !

mj
, ~7!

ṗ j~ t !52
]H B

eff~q,p,t !

]qj
52mjv j

2qj~ t !1g j f ~ t !. ~8!

This system of differential equations can be easily solved,
and the result forqj (t) is

qj~ t !5qj~0!cos~v j t !1
pj~0!

mjv j
sin~v j t !

1
g j

mjv j
E

0

t

ds f~s!sin~v j~ t2s!!. ~9!

The influence of the dynamical evolution of the bath into the
dynamics of the spin subsystem can then be described in
terms of an effective Hamiltonian for the spin variables,
given by

H S
eff~ t !52S DG0

2
1(

j
g jqj~ t ! Dsz1\Vsx

52
\

2 S DG0

\
1ha~ t !1

2a

\ (
j

g j
2

mjv j
2

3cos~v j t !1c~ t !D sz1\Vsx , ~10!

where

ha~ t !5
2

\ (
j

g jF S qj~0!2
ag j

mjv j
2D cos~v j t !

1
pj~0!

mjv j
sin~v j t !G , ~11!

and

c~ t !5
2

\E0

t

ds (
j

g j
2

mjv j
sin~v j~ t2s!! f ~s!. ~12!

If we introduce the spectral densityJ(v)

J~v!5
p

2 (
j

g j
2

mjv j
d~v2v j !, ~13!

we will have

(
j

g j
2

mjv j
2

cos~v j t !5
2

pE2`

`

dv
J~v!

v
cos~vt !. ~14!

From now on, we shall assume that the coupling constants
and the solvent frequencies are distributed with the Debye
spectral density38

J~v!5
Er

2

v/vc

11~v/vc!
2
u~v!, ~15!

and hence

(
j

g j
2

mjv j
2
cos~v j t !5

Er

2
e2vct. ~16!

With this assumption, one obtains

H S
eff~ t !52

\

2 S DG0

\
1ha~ t !1

aEr

\
e2vct1c~ t ! Dsz

1\Vsx , ~17!

and

c~ t !5
Ervc

\ E
0

t

dse2vc(t2s) f ~s!, ~18!

which is the solution of the differential equation

ċ~ t !52vcc~ t !1
Ervc

\
f ~ t !, ~19!

with the initial conditionc(0)50.
The system density operatorrS(t) develops in the

Schrödinger picture according to the effective dynamical
equation

i\ṙS~ t !5@H S
eff~ t !,rS~ t !#, ~20!

with the initial conditionuf&^fu. This differential equation
depends on the initial values$q(0),p(0)% through the sto-
chastic processha(t). According to Eqs.~5! and~11!, ha(t)
is the stationary, Markovian and Gaussian process known as
the Ornstein–Uhlenbeck~OU! process,39 and hence it is fully
specified by its average

^ha~ t !&B50, ~21!

and its second moment

^ha~ t !ha~ t8!&B5D2e2vcut2t8u, ~22!

where^ &B means the average over the bath degrees of free-
dom, andD5A2Er /(\2b). This process can be generated
by the solution of the stochastic differential equation

ḣa~ t !52vcha~ t !1w~ t !, ~23!

where w(t) is a zero-average white noise with correlation
function ^w(t)w(s)&52D2vcd(t2s). The initial valueha

5ha(0) is distributed according to the Gaussian distribution

P~ha!5
1

A2pD2
e2 ~ha

2 /2D2!. ~24!

It is important to note that, for a given realization of the OU
processha(t), the solution of Eq.~20! can be formally writ-
ten as

rS~ t !5U~ t !uf&^fuU†~ t !, ~25!

whereU(t) is the unitary evolution operator that satisfies the
equation

i\U̇~ t !5H S
eff~ t !U~ t !. ~26!

The initial condition isU(0)5I, with I the identity operator
in the system Hilbert space. Hence, Eq.~20! maintains the
normalization condition TrS(rS(t))51, where TrS is the
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trace in the system Hilbert space. AsrS(t) is an operator in
the system Hilbert space, it can be expanded in terms of the
identity and Pauli operators

rS~ t !5 1
2 @I1x~ t !sx1y~ t !sy1z~ t !sz#. ~27!

The above system of equations can be closed with a
choice for the functionf (t). Motivated by the largeV adia-
batic regime, where the coupling is large, compared with the
bath fluctuation speed, we choose21

f ~ t !5TrS~rS~ t !sz!5^0urS~ t !u0&2^1urS~ t !u1&5z~ t !.
~28!

Using Eqs.~27! and ~28!, in conjunction with Eqs.~20! and
~19!, we get

ẋ~ t !5FDG0

\
1ha~ t !1

aEr

\
e2vct1c~ t !Gy~ t !, ~29!

ẏ~ t !52FDG0

\
1ha~ t !1

aEr

\
e2vct1c~ t !Gx~ t !

22Vz~ t !, ~30!

ż~ t !52Vy~ t !, ~31!

ċ~ t !52vcc~ t !1
Ervc

\
z~ t !. ~32!

These differential equations, together with Eq.~23!, consti-
tute the set of stochastic differential equations that yield the
evolution ofrS(t). They must be solved with the initial con-
ditions x(0)52 Re@^0uf&^1uf&* #, y(0)522 Im@^0uf&
3^1uf&* #, z(0)52u^0uf&u221, c(0)50, and Eq.~24!.

Obviously, the actual system density operator is the one
that is obtained after averaging over the bath variables,
^rS(t)&, or, equivalently, after averaging over the realiza-
tions of the OU processha(t). If the initial system density
operator does not correspond to a pure state but to a mixture
of pure states of the formrS(0)5c1uf1&^f1u1c2uf2&
3^f2u, with c11c251, the method we have just described
must be applied to each pure state independently, obtaining
^rS

( j )(t)& ( j 51,2), and the final result will be

^rS~ t !&5c1^rS
(1)~ t !&1c2^rS

(2)~ t !&. ~33!

Finally, for the purposes of numerical analysis and pre-
sentation of the results, it is convenient to define the dimen-
sionless parameters t̃ 5vct, Ẽr5Er /(\vc), T̃

5(b\vc)
21, DG̃05DG0/(\vc), Ṽ5V/vc , and the di-

mensionless functionsh̃a( t̃ )5ha( t̃ /vc)/D and c̃( t̃ )
5\c( t̃ /vc)/Er . Using these definitions, Eqs.~29!–~32! and
Eq. ~23! can be expressed as

ẋ~ t̃ !5@DG̃01~2Ẽr T̃!1/2h̃a~ t̃ !1aẼre
2 t̃

1Ẽr c̃~ t̃ !#y~ t̃ !, ~34!

ẏ~ t̃ !52@DG̃01~2Ẽr T̃!1/2h̃a~ t̃ !1aẼre
2 t̃

1Ẽr c̃~ t̃ !#x~ t̃ !22Ṽz~ t̃ !, ~35!

ż~ t̃ !52Ṽy~ t̃ !, ~36!

ċ̃~ t̃ !52c̃~ t̃ !1z~ t̃ !, ~37!

h8 a~ t̃ !52h̃a~ t̃ !1w̃~ t̃ !, ~38!

where w̃( t̃ ) is a zero-average white noise with correlation
function ^w̃( t̃ )w̃( t̃ 8)&52d( t̃ 2 t̃ 8), and the initial value
h̃a(0) is distributed according to Eq.~24! with D51. The
interpretation of the above equations of motion is as follows:
Eq. ~38! describes the autonomous part of the bath dynamics
that gives rise to a level broadening in the effective Hamil-
tonian Eq.~17!. The initial displacement provides the expo-
nentially decaying terms proportional toaEr in the effective
Hamiltonian and the corresponding equations of motion. The
dynamics of the isolated system is determined by the param-
eters Ṽ and DG̃0. Equation~37! describes the part of the
bath dynamics affected by the system dynamics in terms of
the population differencez( t̃ ) and enters the system equa-
tions as a feedback term.

The presence of the feedbackc̃( t̃ ) in the equations of
motion is essential for the system to reach an equilibrium
that depends onDG̃0. When the feedback is ignored@c̃( t̃ )
50#, we find, by numerically solving Eqs.~34!–~38!, that

^z( t̃ )&→0 for all values ofDG̃0. The inclusion ofc̃( t̃ )
allows the population difference to relax to a value that de-
pends on DG̃0, only for DG̃050 do we obtain
lim t̃→`^z( t̃ )&→0. An analytic analysis of the behavior of the
equations of motion seems difficult, as the noise termh̃a( t̃ )
is multiplicative. We have not succeeded in finding closed
equations for the mean values.

III. THE EQUILIBRIUM DENSITY OPERATOR

In this section we shall obtain an approximate expression
for the systems’s equilibrium density operator that should be
correct for a classical bath. Let us stress that, in general,
especially when the bath is not classical, there is no rigorous
way to disentangle the system’s density operator from that of
the bath. Let us assume that the total equilibrium density
operator has the canonical form

rT
eq~b!5

1

ZT~b!
e2bHT, ~39!

where HT is the total Hamiltonian given by Eq.~2! and
ZT(b) is the total partition function. Our goal now is to trace
out the bath variables by considering them as classical quan-
tities. Hence, in the definition of the reduced density operator
of the system at equilibrium, we must replace the trace in the
bath Hilbert space, TrB , by an integral over phase space

rS
eq~b!5

1

Z~b!
TrB@e2bHT#→ 1

Z~b!
E E dq dpe2bHT.

~40!

Integrating over thep variables, one finds

rS
eq~b!5C~b!E E dqe2 b/2( jmjv j

2qj
2

3e~b/2!((DG012( jg j qj )sz22\Vsx), ~41!
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whereC(b) is a normalization factor.
If we defineh5(2/\)( jg jqj , then the integration over

the q variables can be easily carried out by inserting an ap-
propriate delta function to obtain

rS
eq~b!5C~b!E E dqe2 ~b/2!( jmjv j

2qj
2E

2`

`

dh

3d~h2~2/\!( jg jqj !e
~b/2!(A(h)sz22\Vsx)

5C8~b!E
2`

`

dhP~h!e~b/2!(A(h)sz22\Vsx), ~42!

where C8(b) is another normalization constant,A(h)
5DG01\h, andP(h) is given in Eq.~24!.

Using the identity40

e~b/2!(A(h)sz22\Vsx)5cosh~bE~h!!I

1
sinh~bE~h!!

E~h! FA~h!

2
sz2\VsxG ,

~43!

where E(h)5@(A(h)/2)21(V\)2#1/2, the normalization
constantC8(b) can be expressed in the form

C8~b!5S 2E
2`

`

dhP~h!cosh~bE~h!! D 21

. ~44!

Hence, if we write rS
eq(b)5 1

2@I1Xeq(b)sx1Yeq(b)sy

1Zeq(b)sz#, we obtain

Xeq~b!52\V
*2`

` dhP~h!sinh~bE~h!!/E~h!

*2`
` dhP~h!cosh~bE~h!!

, ~45!

Yeq~b!50, ~46!

Zeq~b!5
*2`

` dhP~h!A~h!sinh~bE~h!!/E~h!

2*2`
` dhP~h!cosh~bE~h!!

, ~47!

or, in dimensionless form,

Xeq~ T̃!52Ṽ
*2`

` dh̃P~ h̃ !sinh~Ẽ~ h̃ !/T̃!/Ẽ~ h̃ !

*2`
` dh̃P~ h̃ !cosh~Ẽ~ h̃ !/T̃!

, ~48!

Yeq~ T̃!50, ~49!

Zeq~ T̃!5
*2`

` dh̃P~ h̃ !Ã~ h̃ !sinh~Ẽ~ h̃ !/T̃!/Ẽ~ h̃ !

2*2`
` dh̃P~ h̃ !cosh~Ẽ~ h̃ !/T̃!

, ~50!

where h̃5h/D, Ã(h̃)5DG̃01(2Ẽr T̃)1/2h̃, Ẽ(h̃)
5@(Ã(h̃)/2)21(Ṽ)2#1/2, andP(h̃) is the Gaussian distribu-
tion defined in Eq.~24! with D51. These expressions can be
evaluated numerically quite readily. In the following section,
we will compare the equilibrium results with those obtained
from the long-time solution of the dynamical equations.

IV. RESULTS AND DISCUSSION

In this section, we will present numerical results based
on our equations of motion that illustrate the competition
between electronic coherence and relaxation induced by the
system-bath-coupling. Comparisons with other available

methods are made, when feasible. Throughout this section
we will use the dimensionless form of the equations, Eqs.
~34!–~38!, i.e., all frequencies are scaled with respect to the
bath frequencyvc . If vc550.0 cm21, then aṼ in the range
0.01– 100.0 corresponds toV50.5– 5000.0 cm21, which
covers the range of typical electronic couplings. The values
of reorganization energies,Ẽr , used below will be character-
istic of nonpolar and polar solvents. For convenience, we
will drop the tilde in what follows.

Our set of stochastic equations has been integrated using
a stochastic Runge–Kutta algorithm of second order in the
noise and the deterministic parts.41 For each initial value of
ha , drawn from the Gaussian distribution Eq.~24!, the equa-
tions are solved for a realization of the white noisew(t).
Mean values have been obtained withNtr510 000 trajecto-
ries. The integration time step has to be matched to the sys-
tem parameters, especially for large values ofV and DG0.
The system is initially prepared withx(0)5y(0)50, and
z(0)51, corresponding to unit population of stateu0& @cf.
Fig. ~1!#.

In panel ~a! of Fig. 2 we display the behavior of the
population differencê z(t)& for DG050.0, V560.0, Er

580.0, T54.0, corresponding to the strictly adiabatic limit
V@vc51.0, and for a nonequilibrium initial condition,a
50.0. This figure shows that the decay is slow and highly
oscillatory. The decay should be to zero sinceDG050 ~see
below!.

The semiclassical method of Stock35 is equivalent to our
method in the limit of an infinite number of bath oscillators.
One would, therefore, expect perfect agreement between the
two methods for time intervalst!1/Dv, whereDv is the
separation in frequency between the finite number of oscil-
lators used in Stock’s method. We have integrated Stock’s
equations withN5400 oscillators with frequencies uni-

FIG. 2. ~a! ^z(t)& for Ṽ560, Ẽr580.0, T̃54.0, DG̃050.0 anda50.0.
~All quantities are given in dimensionless units relative to the bath charac-

teristic frequency,vc .) For this large value ofṼ, there are fast oscillations
whose amplitude slowly decays to zero, the equal population state.~b! Com-
parison of our semiclassical stochastic method~solid line! and the semiclas-
sical method of Stock~plus signs!.
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formly distributed in the interval@vmin ,vmax#5@1023,10# for
a Debye spectral density. The initial conditions for the bath
oscillators are obtained from the classical action-angle vari-
ables

qj~0!5A2nj11sin~f j !,
~51!

pj~0!5A2nj11cos~f j !,

with random phasesf j and quantum numbersnj distributed
according to the Boltzmann distribution. For the integration
of the system of equations in Stock’s model, a fixed time
step Runge–Kutta method of second order has been used,
integrating Ntr52500 trajectories in order to obtain con-
verged results.

In panel~b! of Fig. 2, we compare our results with those
obtained using the scheme of Stock, which is also designed
to be accurate in the adiabatic limit. As expected, the agree-
ment between the two methods is very good in the observed
time interval. The difference for larger times is due to the
limited number of oscillators in the method of Stock; the
agreement may be further improved by increasing this
number.

The CPU time needed for 1000 trajectories on a Pentium
II ~400 MHz! was 1 min for our method and 290 min for the
method of Stock with the abovementioned parameters. This
difference stems from the fact that, in Stock’s method, the
equations of motion for allN bath oscillators have to be
integrated. This results in a system of 2N14 ordinary first
order differential equations, rendering the numerical solution
of this problem time consuming for a large number of bath
oscillators. On the other hand, the stochastic scheme requires
the numerical solution of a set of only five stochastic first
order differential equations. Although the necessary CPU
time for Stock’s method could be reduced by employing
faster integration algorithms such as the velocity Verlet
algorithm,42 the stochastic method will always be less nu-
merically demanding.

When Er is quite large, damping of̂z(t)& will be in
evidence, as shown in Fig. 3. Even thoughV is large, the
initial decay and oscillation goes over to exponential relax-
ation. Note that, for the equilibrium initial condition (a
51.0) used here, the solvent configurations are centered
around the reactant well minimum, such that their weight
around the crossing point of the electronic surfaces is small,
thus de-emphasizing theV-dependent oscillatory behavior of
^z(t)&. The ratio of the slopes of the decays for the two
values ofV is about 1.5, indicating that they are not inde-
pendent of the strength of the electronic coupling. That is, if
one were using a Marcus adiabatic ET rate expression,5 con-
sonant with a large value ofV, the rate ratio would be one,
since the reorganization energy is fixed here. In contrast with
the equilibrium initial condition used to construct Fig. 3, Fig.
4 shows that if we use the nonequilibrium initial condition
(a50.0) the oscillations are much more prominent and the
decay behavior, while still evident, starts from a much
smaller amplitude than fora51.0. The much larger weight
of solvent configurations around the crossing point of the
surfaces for this initial condition produces this behavior. We
also display in Fig. 4̂ z(t)& for the largerEr value of 40.0.

The decay is similar to theEr520.0 case, with a larger ini-
tial amplitude reflecting the increased solvent-solute interac-
tion. The feature of more pronounced oscillations for a non-
equilibrium initial condition agrees with the findings of other
investigators.24,25

Now we consider the predictions made by our stochastic
equations for the long-time average behavior, by comparing
their results with the analytic equilibrium values obtained by

FIG. 3. ^z(t)& for Ṽ54.0, Ẽr520.0, T̃52.0, DG̃050.0 and a51.0
~dashed line!. The initial condition has the bath equilibrated to the reactant

state. There is an initial fast decay due to the relatively large value ofṼ
followed by an exponential decay, due to the large reorganization energy,

Ẽr . Since initially there is little solvent population at the crossing point of
the surfaces~see text!, the crossover to relaxation behavior dominates. For a

larger electronic coupling,Ṽ58.0 ~solid line!, there is more initial oscilla-
tion, but ^z(t)& still goes over to an exponential decay, with a decay con-

stant about 1.5 times larger than that of theṼ54.0 case. The circles~boxes!

are exponential fits to the data forṼ54.0 (Ṽ58.0).

FIG. 4. ^z(t)& for Ṽ54.0, Ẽr520.0~solid line! and 40.0~dashed line! with

T̃52.0, G̃050.0 anda50.0. For the nonequilibrium initial condition, the
initial solvent population at the surface crossing is much larger than for the
data in Fig. 3 and the initial decay is more oscillatory. Nevertheless,^z(t)&
does go over to an exponential decay, with the largerẼr case starting from

a larger value. The boxes~circles! are exponential fits to the data forẼr

520.0 (Ẽr540.0).
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quadrature from Eqs.~48!–~50!. Note that the stochastic
equation formulation is not computationally demanding,
which permits us to readily obtain the long-time behavior. In
Fig. 5, we compare the analytic and numerical results for
values ofV that are sufficiently large to guarantee the accu-
racy of our theory. In Fig. 6, the comparison is made as a
function ofDG0. Clearly, the stochastic equations provide a
good account of the equilibrium behavior that is predicted by
Eqs.~48!–~50!. However, it must be pointed out that there is
no a priori reason that demands coincidence between these
results, as we discuss further in Sec. V. The key feature of
the stochastic equations responsible for obtaining nonzero
^z(`)& values, as must be the case whenDG0 is not zero, is
the dynamical feedbackfrom the system to the bath, as em-

bodied in Eqs.~29!–~32!, ~28!, and~18!. If inside the integral
definingc(t) in Eqs.~18! and~28! the value ofz(s) were set
to one, the resulting equations would lead to^z(`)&50 for
all DG0 values. This approximation would amount to ne-
glecting the influence of the dynamics of the solute~spin! on
the solvent~bath! fluctuations. Due to this dynamical cou-
pling, the evolution of the bath cannot be specified by an
autonomous stochastic process.

Our stochastic equations are appropriate whenV is suf-
ficiently large compared with the other characteristic fre-
quencies; nevertheless, it is interesting to investigate if they
give reasonable results for smaller values ofV. To carry out
this task, we will compare our results with numerical results
obtained using the tensor multiplication scheme of Makri
and Makarov.33,34 The practical implementation of this
scheme requiresV<vc , in order to obtain convergence
when a reasonable number of nonlocal memory terms are
taken into account (Dkmax'10). In what follows, we have
chosen parameter values where convergence can be achieved
with Dkmax59 in the TensMult algorithm, so that the results
of the TensMult algorithm can be considered exact.

In Fig. 7, we study the behavior of^x&, ^y&, and^z& for
the unbiased caseDG050 with V50.25 andT52.0 for
three different values of the reorganization energyEr

50.2, 0.5, and 1.0. These parameter values correspond to
relatively high-temperature and weak system-bath-coupling.
For all system-bath-couplings we find very good agreement
between the stochastic equation and the TensMult schemes
for ^z&. A similar conclusion was reached by Golosov
et al.18 in comparing the Stock and TensMult schemes. We
have also examined̂y& and find good agreement though the
deviations are larger here. However, we see that for^x&, the

FIG. 5. The dependence of^x(`)&, ^y(`)&, and ^z(`)& on the tunneling

coupling elementV for fixed T̃54.0, Ẽr580.0, andDG̃0580.0, as ob-
tained from the numerical solution of the stochastic equations, and the de-
pendence ofXeq, Yeq, Zeq obtained from the equilibrium distribution. All the
quantities are in dimensionless form.

FIG. 6. The dependence of^x(`)&, ^y(`)& and^z(`)&, on DG̃0 for fixed

T̃54.0, Ẽr580.0, andṼ560.0, as obtained from the numerical solution of
the stochastic equations, and the dependence ofXeq, Yeq andZeq, obtained
from the equilibrium distribution. All the quantities are in dimensionless
form.

FIG. 7. Comparison of the semiclassical stochastic method~lines! and the
numerically exact tensor multiplication scheme of Makri and Makarov

~symbols!. ~a! Ṽ50.5, Ẽr50.2, T̃52.0, DG̃050.0, anda51.0. ~b! As in

~a! but Er50.5. ~c! As in ~a! but Ẽr51.0. The agreement between^z(t)&
and^y(t)& is excellent for all times, while thêx(t)& behavior is only good
at short times. This deviation reflects the breakdown of our adiabatic ap-

proximation asṼ gets sufficiently small. Nevertheless, the population be-

havior is well described by our method. AsẼr increases thêz(t)& behavior
changes from an underdamped to an overdamped oscillatory decay.
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semiclassical method only agrees with the purely quantum
mechanical results for short times. The error in the long-time
behavior of ^x& suggests that this density-matrix element,
related to the phases, cannot be properly described by our
large-V approach. In the case of an Ohmic bath with expo-
nential cutoff, a transition from a coherent~weakly damped
oscillations! regime to an incoherent regime~overdamped
decay! can be observed as the system-bath-coupling is
increased.8 This transition also occurs when the Debye spec-
tral density is used, as shown in Fig. 7. The characteristics of
the spectral density are given mainly by its behavior at small
frequencies, and both the cutoff Ohmic and Debye spectral
densities are proportional tov at low frequencies.

A consequence of the structure of the stochastic equa-
tions of motion, when DG050, is that limt→`^z&
5 limt→`^y&50, as physically required. The demonstration
of this feature is obtained by exchangingu0& andu1& in Eqs.
~29!–~32! and setting the time derivatives to zero. This result
holds for all values ofV and indicates that the prediction of
^z(t)& ’s behavior from the stochastic equations may be rea-
sonable even for the fast-bath regime. On the other hand, the
limitations of our procedure to describe the long-time dy-
namics of̂ z(t)& for a fast bath will be evident for asymmet-
ric reactions, DG0Þ0, as will be discussed below~cf.
Fig. 10!.

While the stochastic equations of motion do not give
correct long-time results for small values ofV, they can still
provide useful information onceEr is sufficiently large. In
this regime, one anticipates that the initial decay of the reac-
tant state’s population will be exponential and the decay rate
will be given by the Golden Rule1,2

k0→15V2A p

ErkBT
expS 2

~Er1DG0!2

4ErkBT D . ~52!

In Fig. 8, we plot the short time reactant state population
decays forV50.2 and the solvent equilibrium (a51.0) and
nonequilibrium (a50.0) initial conditions. The equilibrium
one first has aV-related fast decay~not visible on the scale
of the figure! followed by a decay that agrees with the GR.
The nonequilibrium one has a transient behavior for about
two time units and then decays with a slope that is quite
close to the GR prediction. IfV is increased but still kept
smaller than the temperature, the Golden Rule should still be
an accurate description of the initial population decay. In
Fig. 9 we compare the GR with the solutions of the stochas-
tic equations forV51.0 and fora51.0 anda50.0. The
same behavior as in Fig. 8 is found. Interestingly, in the
nonequilibrium case, the decay of the fast transient approxi-
mately goes with theactivationlessGR rate. With this non-
equilibrium initial condition, there are many solvent configu-
rations centered around the crossing of the two diabatic
surfaces, so the initial time behavior effectively appears ac-
tivationless. The GR rate can also be obtained from the ini-
tial decay whenDG0Þ0, as shown in Fig. 10, where we
have plots for an exothermicDG0526.0 and an endother-
mic DG056.0 reaction. Also shown is the time evolution of
the reactant state populationP0(t)50.5@11^z(t)&# based on
the solution of the kinetic equations for the populations, with
their coefficients given by the forward and backward GR rate
constants. Based on the kinetic equation

Ṗ0~ t !52k0→1P0~ t !1k1→0P1~ t ! ~53!

with P0(t)1P1(t)51, the equilibrium reactant state popula-
tions should be'0.814 ('0.182) for DG056.0 (DG0

526.0). As noted above, we cannot expect the behavior of
our stochastic equations to be correct for small values ofV,
and the error in̂ z(t)& increases asDG0 increases. Note that
the stochastic equations are useful even in this regime as

FIG. 8. Short time behavior of the reactant state population,P0(t), for Ṽ

50.2, Ẽr540.0, T̃54.0, DG̃050.0, anda51.0 ~dashed line! anda50.0
~solid line!. The essentially immediate exponential decay fora51.0 and the
exponential decay after the transient fora50.0, the nonequilibrium initial
condition, over a time interval where the population decay is small, occurs
with close to the same decay rate. This decay rate agrees with the Golden
Rule value, cf. Eq.~52! in the text, indicating the validity of a rate regime

for sufficiently smallṼ and largeẼr .

FIG. 9. P0(t) for Ṽ51, Ẽr540.0, T̃54.0, DG̃050.0, and a51.0
~dashed line! anda50.0 ~solid line!. The short time decay fora51.0 and
the short time decay after the transient fora50.0 are well described by the
Golden Rule expression. For longer times, the numerical results approach
the equilibrium value. The transient behavior~up to '2 time units! for a
50.0 is described by an activationless Golden Rule expression due to the
relatively large initial population at the crossing of the surfaces~see text!.
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their short time behavior does yield correct forward and
backward~using an initial condition of unit population either
in the reactant or product state! rate constants, and they can
be used in the usual kinetic equations to predict the behavior
for all times.

V. CONCLUDING REMARKS

The derivation of the stochastic equations of motion pre-
sented above was motivated by the important physical re-
gime of photoinitiated electron transfer reactions. These of-
ten are characterized by large electronic coupling, strong
solute-solvent coupling, low solvent frequencies~for outer-
sphere reactions!, and high-temperature, summarized quali-
tatively by V@vc and T@vc , and offer the possibility of
exploring effects arising from nonequilibrium solvent initial
conditions. For large-V, guided by the Landau–Zener theo-
ry’s indication that averaged surfaces are appropriate here,
the quantum mechanics of the surface crossing events can be
greatly simplified by the effective Hamiltonian in Eq.~6!.
We previously found this with a one-oscillator analysis21 and
expect that the approximation would still be valid for a bath
of oscillators, though it should be stressed that we know of
no proof of this assertion.

The approach we have taken to investigate the long-time
consequences of our stochastic equations is to compare them
with an expression for the equilibrium density operator that
we have obtained by analytic methods under the assumption
that the bath variables are classical.@In other work we will
show using path integral methods that this equilibrium den-
sity operator is the leading term in a perturbation series in
(\vc / kBT)2(Er / 2kBT).] The resulting density operator
yields reactant and product state populations that depend
upon V. This is a generalization of the smallV standard
result of chemical kinetics where the equilibrium populations
are governed by the exothermicity. It is reassuring that the

long-time solutions of the stochastic equations agree with
these equilibrium predictions. What is essential for obtaining
this behavior is the dynamic feedback of the spin into the
bath degrees of freedom, as expressed by the convolution of
the bath relaxation exp(2vct) and the time dependence of
the solute population difference,z(t) @cf. Eq. ~12!#. The con-
volution structure represents the delay in the influence of the
constantly changing population difference on the solvent dy-
namics. The population difference is always being driven by
V; thus the solvent coordinate must always try to re-
equilibrate to the instantaneous value ofz(t), with the sol-
vent response time measured byvc .

The competition between the population oscillations in-
duced byV and the damping effects embodied in theEr

system-bath-coupling leads to the transition between under-
damped and overdamped behavior. IfEr is increased suffi-
ciently, ^z& goes over to essentially an exponential decay
regime that can be characterized as a rate process. However,
for large-V, there is no direct connection of this decay rate to
that predicted by the Marcus–Levich expression.2,5 A transi-
tion between underdamped and overdamped dynamics is
well known for small V8–10,15,32 and our work shows an
analogous transition for large-V. The competition between
oscillation and decay depends sensitively on the initial
preparation of the bath. Our results indicate that for photoin-
duced electron transfer reactions withV@vc , nonequilib-
rium initial conditions are more favorable for the observation
of oscillations.

The numerical efficiency of our stochastic formulation
permits us to readily explore the behavior of the system over
a wide range of parameter space. Even though the stochastic
equations cannot be correct for all times whenV becomes
small, they may still provide useful information over a short
time regime. Indeed, we showed that the stochastic equations
lead to an initial decay of̂ z(t)& that coincides with the
predictions obtained from the kinetic equations@cf. Eq. ~53!#
with coefficients given by the Golden Rule. At longer times,
however, the stochastic equation based solutions do not co-
incide with those of the kinetic equations that must be cor-
rect for sufficiently smallV and sufficiently largeEr ~inco-
herent regime!. This becomes especially evident in the
equilibrium behavior where the stochastic equations predict
populations that contradict the correct values by increasing
amounts asDG0 increases. The lack of long-time validity of
our stochastic equations for smallV is not a serious problem
since in this regime~and also in the coherent regime of small
Er) there are several perturbation-theory based
methods8–10,15,32that properly describe the time behavior.

In conclusion, the stochastic equations of motion with
their feature of the feedback from the system’s population
difference into the bath mode dynamics provide a reasonable
description of the dynamics for all times whenV@vc and
T@vc . We are currently exploring the validity of our ap-
proximations via a path integral formulation.
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