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Abstract

Electric vehicle fleets and smart grids are two growing technologies. These tech-
nologies provided new possibilities to reduce pollution and increase energy efficiency.
In this sense, electric vehicles are used as mobile loads in the power grid. A distributed
charging prioritization methodology is proposed in this paper. The solution is based
on the concept of virtual power plants and the usage of evolutionary computation
algorithms. Additionally, the comparison of several evolutionary algorithms, genetic
algorithm, genetic algorithmwith evolution control, particle swarm optimization, and
hybrid solution are shown in order to evaluate the proposed architecture. The pro-
posed solution is presented to prevent the overload of the power grid.

Keywords: smart grids, vehicle-to-grid, electric vehicles, charging prioritization,
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1. Introduction

The electric vehicle (EV) means a new research field in smart grid (SG) ecosys-
tems [1]. Currently, the new generation of EV provides different technologies that
can be integrated in SGs [2]. However, these new technologies make the distribu-
tion grid management difficult [3, 4]. In particular, the EVs and the infrastructure
needed to charge them have provided a great quantity of new standards and tech-
nologies. Currently, there are several research lines related to EVs, fast-charging
networks (e.g., see [5], battery performance modeling [6], parasitic energy con-
sumption, EV promotional policies, and increase in the range of the battery in EV
[7], and other research lines related to EV energy management, contract models for
consumption vehicle, market model to adopt the EVs, distributed energy resources
management systems (DERMS), DER standards, faster charging technologies,
demand response management systems (DRMS), the role of aggregators in the V2G
(vehicle-to-grid), and energy efficiency (e.g., see [8], customer support, driver
support, etc.). Additionally, all these lines are influenced by current regulations,
and it could be very different among countries (e.g., the regulation between United
States and Europe is very different in energy management). The charging infra-
structure affects the SG on several levels. These levels concern transportation,
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distribution, and retailer levels. The main affected frameworks inside these levels
are energy management, distribution management, and demand response. The
energy management systems compound several functions [9]. One of them is the
control of energy flows. The charging of EV can be made in any point of the grid
that has a charging unit. If the system has information about the expected use of the
charging unit, the energy flow will be easier to manage [10, 11]. The distribution
management is related to distribution system operators (DSO). Usually, the charg-
ing infrastructure oversees DSOs. Thus, the DSOs must manage these facilities and
maintain the information about them. Finally, the demand response concerns
retailers and DSOs, and the main problem is demand curve flattening and price
management [12]. Nevertheless, the new paradigm proposed by standard organiza-
tions, like National Institute of Standards and Technology (NIST), International
Electrotechnical Commission (IEC), etc., related to the V2G proposed that the EV
could charge or discharge the batteries [13]. Thus, the EV is a power source in
specific scenarios. In these cases, the distributed resource management is affected
by the new V2G technologies as a distributed power resource in low voltage without
total availability, like some renewable energy resources, for example, wind and
solar energy [14].

This paper proposed a solution for fleet charging prioritization, based on
the concept of virtual power plant (VPP) and using distributed evolutionary
computation algorithms to optimize the prioritization of EV fleets at different
levels of SG ecosystems. A comparison of different evolutionary algorithms is
performed.

This paper shows the proposed solution, starting with a bibliographical review.
Then the architecture over different levels of SG is described, including the infor-
mation flows. The evolutionary algorithm is described at different levels of SG
ecosystem. Finally, the results of test the evolutionary algorithms are shown.

2. Bibliographic review

There are several research lines that are related with EVs, involving batteries (e.g.,
in [15], renewable energy [16], battery management systems [17, 18], energy man-
agement systems [19], charging spots [20, 21], driver assistance system [22], etc.).
The EVs in the last millennium [23] provided a scenario with several vehicles with
different types of vehicles: EVs, hybrid electric vehicles (HEVs), fuel cell vehicles, etc.
The introduction of EVs provides several advantages, like reduction in greenhouse gas
emissions [24]. But people’s acceptance is necessary of EVs for daily usage [85, 86]
and to have additional energy resources [23] in order to include the associated infra-
structure. Additionally, the acceptance of EVs for daily usage, one of the first EVs,
was the hybrid electric vehicle (HEV), and different types of HEVs were designed to
reduce power requirements and increase vehicle autonomy, charging duration, and
energy efficiency, selecting the appropriate battery [25]. Additionally, there are sev-
eral studies about the performance of batteries in Ref. [26] and battery degradation in
[27]. The new generation of EVs has several requirements not only in power but also
infrastructure in Ref. [28]. There are several studies to establish renewable energy
sources to support the charging of EVs and HEVs and cover the power requirements,
for example, based on wind energy [87, 88], photovoltaic resources [29], general
congestion of EV charging based on renewables [30], etc. However, SGs have pro-
vided a good scenario to integrate EVs and charging infrastructure.

Another solution could be the application of the queue theory [31]. The queue
theory has an application in several topics: boarding management in [32],
healthcare in Refs. [89, 90], dynamic facility layout problem in [33], optimization

2

Advanced Communication and Control Methods for Future Smartgrids



of traffic by means of signal-controlled management in [34], data acquisition in
[35], etc. Usually, these references manage only one queue or several independent
queues. However, there are more complex problems based on distributed software
systems [36], which provide more difficult applications of queue theory. In these
cases, queue theory should be adapted to a distributed environment. This paper
proposes a novel solution to avoid this complexity.

There are other manners to manage the EV fleets that involve directly or indi-
rectly the demand concept, improving the accuracy of energy forecasting [37]. The
driver pattern modeling could improve fleet management, increasing the efficiency
and sustainability and it could be used to forecast demand, some of these cases are:
vehicular driving patterns in the Edinburgh region and to offer an option of battery
electric vehicles for sustainable mobility is estimated in Ref. [38]; usage patterns
and the user perception are the main objectives of a longitudinal assessment of the
viability of EV for daily use study in Ref. [39]; the usage of autonomous vehicles
and eco-routing like in [40]; or, ridesharing of shared autonomous vehicle fleet
[41]. There are other examples oriented to transport management which includes in
different ways the concept of demand: a bi-level optimization framework for EV
fleet charging based on a realistic EV fleet model including a transport demand sub-
model is proposed in Ref. [42]. Other references treated the problem from the point
of view of the congestion management of the electrical distribution network in case
of limited overall capacity, for example, a distributed control algorithm for optimal
charging is proposed in reference [43], or depending on the routing problem [44],
allowing partial battery recharging with hybrid fleets (conventional and electric
vehicles). Other references provided a solution to integrate renewable energy
sources, investigating the possibilities to integrate additionally loads of uncertain
renewable energy sources by smart-charging strategies as is proposed in Ref. [45].

There are several algorithms which provide solutions related to peak saving in
demand curve. A real-time EV smart-charging method that not only considers
currently connected EVs but also uses a prediction of the EVs that are expected to
plug in the future is proposed in Ref. [46].

The authors in Ref. [47] propose VPPs as a new solution for the implementation
of technologies related to SGs, and several applications were developed to show the
advantages of VPPs. The authors of [48] proposed the integration of combined heat
and power (CHP) microunits based on VPP in a low voltage network from a
technical and economical point of view. The authors of [49] presented a new
concept where microgrids and other production or consumption units form a VPP.
The authors of [50] presented a concept VPP as a primary vehicle for delivering
cost-efficient integration of distributed energy resources (DER) into the existing
power systems. This study presented the technical and commercial functionality
facilitated through the VPP and concluded with case studies demonstrating the
benefit of aggregation and the use of the optimal power flow algorithm to charac-
terize VPPs. The authors of [51] proposed the concept of generic VPP (GVPP),
showing three case scenarios and overcoming challenges using a proposed solution
framework and service-oriented architecture (SOA) as a technology which could
aid in the implementation of GVPP. The authors of [52] provided a suitable soft-
ware framework to implement GVPP with SOA. The FENIX European Project [53]
delved into the concept of VPP and considered two types of VPP: the commercial
VPP (CVPP) that tackles the aggregation of small generating units with respect to
market integration and the technical VPP (TVPP) that tackles aggregation of these
units with respect to services that can be offered to the grid. The authors of [54]
described a general framework for future VPP to control low and medium voltage
for DER management. The authors of [55] presented a case study which shows how
a broker GVPP was developed based on the selection of appropriate functions. The
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EDISON Danish project [56] described an ICT-based distributed software integra-
tion based on VPPs and standards to accommodate communication and optimize
the coordination of EV fleets. The authors of [57] proposed an architecture for EV
fleet coordination based on V2G integrating VPP. The authors of [58] analyzed the
possibility of using EVs as an energy storage system (V2G) within a VPP structure.
The authors of [59] considered the EV as a mobile load and described a VPP
containing aggregated microgeneration sources and EV, but it is centered around
minimizing carbon emissions. The authors of [60] proposed and discussed three
approaches for grid integration of EVs through a VPP: control structure, resource
type, and aggregation. The authors of [61] presented a solution for integrating EVs
in the SG through unbundled smart metering and VPP technology dealing with
multiple objectives. The authors of [62] addressed the design of an EV test bed
which served as a multifunctional grid-interactive EV to test VPP or a generic EV
coordinator with different control strategies.

The common point of these references is the utilization of the VPP concept in a
simulation, but they only simulate the VPP which aggregates the information of EV.
Although the aggregation idea is not always implemented with a VPP, for example,
the authors in [63] proposed an aggregate battery modeling approach for EV fleet,
which is aimed for energy planning studies of EV-grid integration, they did not use
the concept of VPP. The present paper proposes the charging prioritization of EV
fleets to provide additional services [64], like EV fleet management or demand
forecasting.

Of course, there are not a lot of examples of EV fleet currently with a complete
charging infrastructure, notwithstanding several references papers in the simulation
focused in EV fleet simulation, for example, an evolutionary approach is proposed in
Ref. [65] or a planning simulation model is presented in Ref. [66] that evaluates the
feasibility of electric vehicle driving range when recharging is considered at home, at
work, or at quick charging stations. But some scenarios are more difficult to simulate,
for example, the use of electric modules which can be added or removed from a
freight vehicle proposed in Ref. [67]. However, the problem, in this case, is the
recharging of electric modules, which is done in different nodes or point of reception,
and they will have a charging infrastructure; the authors provide a good mathemati-
cal background to calculate the time windows of electric module availability. This
problem is similar to battery exchange infrastructures proposed in Ref. [68].

Additionally, a charging management could provide a good contribution to the
demand forecasting, although the different references did not treat the problem of
demand forecasting, but the scheduling and suitable assignment of EVs to charging
stations could provide information about the demand in the charging stations. For
example, the optimal solution provided in Ref. [69] could be a contribution for an
algorithm to provide an aggregated demand forecasting. Other solutions are ori-
ented to specific sectors or infrastructures: EV fleet parking determining the mini-
mum number of chargers that are required to charge all electric vehicles [70] or
estimating total daily impact of vehicles aggregated in parking lots on the grid [71],
taxi fleets [72], and taxi fleets with mixed electric and conventional vehicles [73].

On the other hand, some researchers have studied the impact of HEV and plug-
in HEV (PHEV) [74]. In this sense, decentralized algorithms for coordinating the
charging of multiple EVs have gained importance in recent years. The authors of
[75] compared several approaches based on centralized, decentralized, and hybrid
algorithm, with the latter showing better results. The authors of [76] introduced the
electric fleet size and mix vehicle routing problem with time windows and
recharging stations (E-FSMFTW) to model decisions to be made with regard to fleet
composition and vehicle routes, including the choice of recharging times and loca-
tions. The authors of [64] presented a review and classification of methods for
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smart charging of EVs for fleet operators, providing three control strategies and
their commonly used algorithms. Additionally, they studied service relationships
between fleet operators and four other actors in SGs.

3. Virtual power plants

The viewpoint of the proposed solution treats vehicles as a mobile load. In
this manner, the system must have data about these loads and the charging
prioritization. Thus, the system will have information about the expected
consumption or the expected generation of the resource (in the case of a fault in
the grid), such as a battery.

The proposed system works like a service for large companies with EV fleets.
The knowledge about the state and prioritization of vehicles may minimize the
impact of charging loads. These services provide new tariffs for retailers and new
policies for energy price management.

The conceptual architecture of the proposed solution is shown in Figure 1. The
proposed architecture is based on VPP concept [77]. Several VPPs are included. The
information is aggregated on the lower level. Then, the aggregated information is
sent by each lower VPP to a higher level. In this way, each VPP aggregates the data
and services from lower VPPs to higher VPPs. Each level may have one or more
VPPs, depending on the needs at each level and the power grid.

The information representation in different levels was based on an extension of
the Common Information Model (CIM) from IEC 61970, 61,968, and 62,325. The
interface information is based on the Component Interface Specification (CIS) from
the IEC. The Open Automated Demand Response (OpenADR) version 2.0 is
included in the VPP, but it is only enabled in some levels. The information repre-
sentation and interface description are beyond the scope of this paper.

Each higher VPP can perform evolutionary algorithms to generate commands or
instructions to modify the queues from lower VPPs. Additionally, lower VPPs can
perform the same evolutionary algorithms to request resources from other VPPs to
prioritize the charging of vehicles that cannot be charged at their charging stations.

4. The distributed evolutionary prioritization framework

The distributed evolutionary prioritization framework (DEPF) is implemented
in each VPP. The architecture of this framework is shown in Figure 2. The modules
are shown in Figure 2. Each module has specific functions:

• Asset management system. The asset management system is based on the
predictive maintenance of vehicles and charging stations. These modules
establish the maintenance periods and register the usage of all equipment
(vehicles and charging stations).

Figure 1.
Conceptual model of VPP.
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• Driver modeling. This module executes a modeling process of driver behavior.
This module provides a driver pattern, which is used to schedule the routes.

• Energy efficiency. This module applies different techniques to optimize the
energy consumption and reduce the maintenance periods and economic
impact.

• Real-time route scheduling. This module manages all information about vehicles,
routes, drivers, and external conditions to establish better prioritization in each
charging station.

• Information management. This module manages all information of this VPP for
reporting and visualization.

• Prioritization algorithm. The prioritization algorithm in this layer is based on
swarm intelligence.

• External coordination. This module sends information to higher layers and
gathers information about external requirements or vehicles to charge. This
module oversees communications with other VPPs (higher or lower) by using
CIS or OpenADR.

Figure 2.
Modules of distributed evolutionary prioritization framework.
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Some modules, such as external coordination, prioritization algorithm, and the
SoC module, are available for all VPPs. The other modules are enabled depending
on the available information in the VPPs.

The modules shown in blue are not included in this chapter. The asset manage-
ment system is in development and will not be described in this chapter.

The prioritization algorithm includes different options of evolutionary
computations, to test the best algorithm. Several approaches are tested: genetic
algorithm, genetic algorithm with evolution control, particle swarm optimization,
and a hybrid solution. All these algorithms use the information available from
the different modules. The information in each module is described in
Sections 4.1 to 4.4. The information is channeled through information
management module.

4.1 Available information

Much information about different entities is available, depending on the level of
VPP. This information is used to calculate the SoC, the best driver for each router,
and the prioritization at the charging stations of the company. When the route
needs an external charging station (out of company supply), the final prioritization
is assigned by higher VPP levels.

The available information is stored in a relational database management system
(RDBMS) that is based on the IEC CIM. This information includes the following
data: information about asset management, current configuration for prioritization
algorithm, technical information about charging stations, parametric information
about technical characteristics of different connection types for vehicles and charg-
ing stations, information about driver patterns, different measures gathered from
charging stations and power register, establishing the expected periods of availabil-
ity and nonavailability for each vehicle and charging station, information about
pending and assigned routes, technical information about vehicles and their batte-
ries, and information about traffic, roadwork, and topology. In addition, stored
information about previously calculated charging prioritization and real informa-
tion about charging stations. This information is stored to determine the difference
between the expected charging process and the real charging process. This infor-
mation will be useful to improve models for charging prioritization. Furthermore,
other historical information included historical information about usage of charging
stations, configuration of prioritization, drivers that will be used in the driver
pattern modeling, traffic related to roadworks, weather conditions, traffic condi-
tions and accidents, periods configured in the system, different routes stored in the
system, statistical information, mechanical problems and statistics from EVs, and
the execution, configuration, and results of configurations.

4.2 Driver patterns

Driver behavior is stored in driver patterns. The driver pattern is a model that
takes effect on the consumption of a vehicle in route scheduling. The driver pattern
affects the calculated SoC calculated for each section of a route; it depends on the
terrain topology and traffic data. Driver behavior is calculated according to the
historical data of a driver. If historical information about a driver is not available,
this pattern cannot be calculated.

The driver pattern consists of the deviation from the original predicted SoC. This
pattern considers information about traffic and weather to explain the variation
from the original predicted SoC.
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Although a default driver pattern can be defined, information about driver
patterns is currently unavailable. A default “average” driver pattern can be created
when a system has adequate information.

4.3 Real-time routing scheduling

This module controls several conditions that can modify the current prioritiza-
tion charging queues. This module notifies any change in the following conditions:
charging station availability, driver and EV availability, route modifications, traffic
and roadworks, and weather conditions.

The charging station availability updates the unavailability periods of
the corresponding charging stations, in this case, if the higher VPPs can send
commands or instructions to limit the consumption or availability of the
power supply.

On a route, the driver and EV availability is related to a driver (or EV). The
driver may have an accident or a driver (or EV) may notify temporary
unavailability. In this case, the module updates the calendar for the driver (or EV).
This new condition takes effect in the prioritization process by a fitness function of
evolutionary algorithms. Sometimes, the temporal unavailability of an EV can be
notified by the asset management module.

Three types of route modifications are possible: adding new stop, adding new
stop to charge an EV, and adding new stop to change drivers.

The traffic and work road modeling is translated into a penalty coefficient for
different sections of a route. In this case, the route scheduling algorithm may
provide the route with lesser penalties. These penalties take effect on the calculated
SoC and the driver selection. The penalty coefficient is stored for each geographical
zone and is associated with driver information. If a driver has a very high deviation
from the original predicted value, the penalty is increased. This pattern did not
consider any information about the origin of the traffic load. The pattern only
assigns a penalty coefficient according to the fluidity of traffic.

The weather conditions would take effect over the SoC module, prioritization
algorithm, and asset management module.

4.4 SoC module: estimation of EV consumption

The proposed solution is based on the SoC instantaneous value of each EV. These
algorithms require an estimation of some consumptions, according to its planned
route and alternative routes to achieve different recharging spots. This consumption
estimation is supported by a route planning tool. However, these estimations are not
trivial and relate to the distance or time of the trip [91, 92]. Other factors (e.g., road
[78] and vehicle characteristics, traffic [79], driving style [80], and weather condi-
tions) are essential for this estimation.

Typical approaches to estimating route consumptions must be reviewed and
briefly explain the architecture that supports the main algorithm in this chapter.
The two approaches can be easily distinguished in the literature:

• Knowledge-based models are the most common approach. This type of model
performs a consumption characterization based on records of vehicle
operations using computational intelligence techniques, such as artificial
neural networks (ANNs) [81] and fuzzy neural networks (FNNs) [82].
However, these techniques have the disadvantage of requiring a large amount
of data, which must contain different conditions to model realistic vehicle
behaviors in as many situations as possible.
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• They are analytical models (also known as longitudinal models) that study the
necessary energy to move a vehicle by analyzing the losses along its different
mechanical and electronic elements [43, 93]. Thus, these models are typically
more complex than knowledge-based models. However, analytical models do
not require as much information as knowledge-based models because their
parameters can be characterized based on information provided by a
manufacturer (i.e., New European Driving Cycle (NEDC) standards test) [83].

Based on these philosophies and due to the lack of availability of necessary sets
of registered data (especially in the initial phases of the project), an analytical model
was chosen to estimate the consumption of this system. It provides the different
SoCs that are associated with each route stage. This estimation is based on a model
that can be divided into two blocks (refer to Figure 3): the first block—the μStep
Driving Model (μSDM)—is responsible for estimating the driving profile. This
estimate consists of the velocity and elevation profiles accomplished by the ana-
lyzed EV. The velocity profile is constructed from the averaged inferred patterns for
different situations, which are characterized by the different input parameters. The
elevation profile is directly estimated from the route information (in each μStep).
A complete list of parameters in the model is shown in Table 1.

Figure 3.
Consumption model architecture.

Parameter Group Associated to

μStep distance μStep information μSDM

μStep start elevation μSDM

μStep final elevation μSDM

μStep estimated time μSDM

Traffic congestion level Traffic information μSDM

Driver style Driver information μSDM, LCP

Precipitation level Weather information μSDM, LCP

Average temperature μSDM, LCP

Sunrise/sunset time μSDM, LCP

ECO mode state EV dynamics variables μSDM, LCP

Additional mass (passengers, baggage, etc.) LCP

Initial SoC LCP

9

Forecasting Recharging Demand to Integrate Electric Vehicle Fleets in Smart Grids
DOI: http://dx.doi.org/10.5772/intechopen.88488



The second block of the model—the longitudinal consumption pattern (LCP)—
is responsible for estimating the consumptions and SoC variations associated with
the velocity and elevation profiles for each μStep. This consumption is obtained by
adding the different losses and consumptions that are required to generate these
profiles, which are associated with the trip. This analysis also considers the vehicle
configuration, as listed in Table 1.

The combination of part of the model and the initial SoC value enables the
estimation of the SoC at the end of a trip or part there of (as shown in Figure 4).

Parameter Group Associated to

Vehicle mass EV constant
characteristics

LCP

Eq. mass of rotating parts LCP

Maximum acceleration μSDM, LCP

Frontal area LCP

Friction resistance coefficient LCP

Drag coefficient LCP

Performance internal systems
(inverter + engine + transmission)

LCP

A/C consumption LCP

Heating consumption LCP

Cooling consumption LCP

Light consumption LCP

Power steering consumption LCP

Secondary consumptions (light panels, control systems,
etc.)

LCP

Battery performance LCP

Battery capacity LCP

Battery voltage LCP

Maximum recovery capacity LCP

Table 1.
List of consumption model inputs.

Figure 4.
Consumption and SoC estimation for a route.
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5. Prioritization algorithm

Three algorithms are proposed to prioritize the charging queues:

• Genetic algorithm (GA)

• Genetic algorithm with evolution control (GAEC) based on fitness evolution
curve

• Swarm intelligence based on particle swarm optimization (PSO)

These algorithms were applied in the same scenario and different layers to
determine the best combination of algorithms.

The application of these algorithms is performed after a preprocessing stage
after the following steps:

1.The routes are sorted by starting timestamp, route distance, and ending
timestamp.

2.The vehicles are sorted by range or battery capacity.

3.The drivers are sorted according to the difference between the real and
expected routes, in ascending order. The new drivers or drivers without
historical information are positioned in first place.

4.The charging stations are ordered by connector type, according to the
estimated charging period.

5.1 Genetic algorithm (GA)

The genetic algorithm (GA) [94, 95] is a bioinspired algorithm. This algorithm is
based on the evolution of populations, in which only the best individuals survive.
Everyone from a population is a possible solution to a problem, and a fitness value is
assigned according to an indicator that determines the distance from the final
solution. In each evolution, a new generation from the previous population is
created based on cross, mutation, and selection processes. After some evolutions
(iterations), the algorithm converges to a best solution or a solution that complies
with the threshold.

Algorithm 1. Genetic algorithm (GA): size p of population (P(t)), rate q of elitism, rate c of crossover
(default 0,9), and rate m of mutation (default 0,1).

1.Randomly generate p feasible solutions,
2. Save them in the population P(t),
3.Evaluation of the population P(t); thus, the fitness of each solution of the population P(t) are
determined.

4.Repeat
4.1. Select parents from the population P(t), number of elitism ne=p*q
4.2. Perform the crossover on parents by creating the new population P(t+1) with the

probability c.
4.3. Perform mutation of the population P(t+1) with the probability m.
4.4. Assess the population P(t+1).
4.5. If the stopping criteria are true, then return to step 3; otherwise, proceed to step 5.

5. If the threshold is active, then obtain all solutions for which the fitness value complies with the
threshold; otherwise, obtain the best solution (the best evaluation value).
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The stopping criteria are specified in the configuration of the prioritization
algorithm.

5.2 Genetic algorithm with evolution control (GAEC) based on fitness
evolution curve

The GAEC is a genetic algorithm with additional restrictions that influence the
probability of mutate and cross operators according to the fitness evolution curve.
The fitness evolution curve is created in each evolution and stores the best fitness
value of each evolution. The angle of the tangent line in each point of the fitness
evolution curve determines the probability of the operators.

Algorithm 2. Genetic algorithm with evolution control (GAEC): size p of the population (P(t)),
rate q of elitism.

1.Randomly generate p feasible solutions,
2. Save them in the population P(t),
3.Evaluation of the population P(t); thus, the fitness of each solution of the population P(t) are
determined.

4.Repeat
4.1. Select parents from the population P(t), number of elitism ne = p*q
4.2. Perform the crossover on parents by creating the new population P(t + 1) with the

probability based on the absolute value of the sine of the angle of the tangent line to the
fitness evolution curve.

4.3. Perform a mutation of the population P(t + 1) with the probability based on the absolute
value of the cosine of the angle of the tangent line to the fitness evolution curve.

4.4. Assess the population P(t + 1).
4.5. If the stopping criteria are true, then return to 3; otherwise, proceed to 5.

5. If the threshold is active, then obtain all solutions for which the fitness value complies with the
threshold; otherwise, obtain the best solution (the best evaluation value).

5.3 Particle swarm optimization (PSO) algorithm

The prioritization algorithm works as a swarm intelligence algorithm. The
application of the algorithm is performed after a preprocessing of information:

The prioritization algorithm is based on the parametric optimization until a
solution is obtained. This optimization is executed depending on the capabilities of a
system. The algorithm employs a PSO to establish the initial prioritization for the
charging stations in the company area. The canonical PSO model consists of a
swarm of particles, which are initialized with a population of random candidate
solutions. They iteratively move through the d-dimension problem space to search
for the new solutions, where the fitness f can be calculated as the certain quality
measure. Each particle has a position that is represented by the position-vector xid
(i is the index of the particle, and d is the dimension) and a velocity represented by
the velocity-vector vid. Each particle remembers its best position in the vector xi#,
and its j-th dimensional value is x#ij. The best position-vector among the swarm is
stored in the vector x*, and its j-th dimensional value is x*j. At the iteration time t,
the update of the velocity from the previous velocity to the new velocity is
determined by Eq. (1). The new position is determined by the sum of the previous
position, and the new velocity is determined by Eq. 2.

vid tþ 1ð Þ ¼ w ∗ vid tð Þ þ c1 ∗ψ1 ∗ pid tð Þ � xi tð Þ
� �

þ c2 ∗ψ2 ∗ pg tð Þ � xid tð Þ
� �

(1)
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xid tþ 1ð Þ ¼ xid tð Þ þ vid tþ 1ð Þ (2)

where c1 and c2 are constant weight factors, pi is the best position achieved by
particle i, pg is the best position obtained by the neighbors of particle i, ψ1 and ψ2

are random factors in the [0,1] interval, and w is the inertia weight. Some refer-
ences denote c1 and c2 as the self-recognition component and the coefficient of the
social component, respectively.

Different constraints can be applied to ensure convergence of the algorithm.

Algorithm 3. PSO Algorithm

1. Initialize particles
2.Repeat

2.1. Calculate the fitness values for each particle
2.2. Is the current fitness value better than pi?

2.2.1. Yes. Assign the current fitness as the new pi
2.2.2. No. Keep the previous pi

2.3. Assign the best particle’s pi value to pg
2.4. Calculate the velocity for each particle
2.5. Use each particle’s velocity value to update its data values

3.Until stopping criteria are satisfied.

5.4 Configuration of prioritization algorithms

The system enables different restrictions to be specified for the prioritization
algorithm: assignation prioritization of external charge, driver rest periods along a
route, driver rest periods between different routes, external charging priority,
external charging, maintenance periods for charging stations, maintenance periods
for vehicles, possibility of partial charging, possibility of reuse drivers, possibility of
several vehicles per route, possibility of specifying periods of unavailability of
charging stations, possibility of specifying periods of unavailability of drivers, pos-
sibility of specifying periods of unavailability of vehicles, rest periods between
vehicles that charge at charging stations, time interval to prioritize (1 day by
default), and usage balancing of charging stations.

The external charging priority takes effect in the way which system will assign
the first available slot in the queues to the external vehicles; however, the system
moves the vehicles of the lowest VPPs (if possible). Furthermore, the system may
accept a charging request from the different VPPs.

These parameters can be modified while the algorithm is running. These param-
eters take effect over the convergence of evolutionary algorithms because the
parameters can modify the fitness function.

The evolutionary algorithms are based on an iterative algorithm. In this case, the
proposed algorithms have several similarities. These algorithms have an end criteria
to control the iterative part of the algorithm. In the proposed algorithms, the end
criteria can be configured by the user by specifying one or more parameters:

• Maximum number of iterations: the optimization process is terminated after a
fixed number of iterations.

• Number of iterations without improvements: the optimization process is
terminated after a fixed number of interactions without any iterations and
without any improvement.
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• Minimum objective function error: the error between the obtained objective
function value and the best fitness value is less than a prefixed anticipated
threshold.

The value of these parameters is dependent on the size of the search space and the
complexity of the problem. These values are established by the default value
according to the number of vehicles, number of drivers, number of routes, and
number of charging stations, as well as the system characteristics in the installation
stage. Other parameters in the PSO algorithm are dependent on the same parameters:
maximum number of particles (swarm size or number of neighbors), maximum
velocity (vmax) for the PSO algorithm [84], maximum particle position (xi,max) for the
PSO algorithm [84] to retain the value of the particle position in the interval [�xi,max,
xi,max], inertia weight (w) for PSO algorithm, modifiers for random number genera-
tion, self-recognition component (must be a positive value), coefficient of the social
component (must be a positive value), and maximum and minimum velocities.

A GA and GAEC have similar parameters: population size, and, only in the GA,
the operator probabilities (mutation and crossover).

These factors are employed in the algorithm to fix the evolution of each particle
and dimension, in the case of PSO, or everyone in a population, in the case of a GA
and GAEC. The previously defined parameters and the parameters defined in this
section can modify the convergence of an algorithm. These parameters are auto-
matically adjusted in each evolution and running.

5.5 Fitness function

The fitness function is calculated to test the validity of a particle. The fitness
function is based on the following items: the number of routes that have been
assigned to a vehicle and driver for the time requirements to perform the route and
the number of routes that are assigned to a vehicle and driver but exceeds the time
requirements to perform the route are significantly penalized.

Additionally, the parameters that are configured in the system can modify the
final fitness value that is calculated for each solution: queue balancing of a charging
station, external charging, external charging priority, reuse of vehicles, reuse of
drivers, assignation prioritization of external charging, several vehicles per route,
instructions from higher VPPs, or presence of autonomous vehicles.

Several of these configurations can change at any time. Thus, the fitness value
can change for each generation of evolutionary algorithm.

The proposed fitness function is performed in the proposed evolutionary algo-
rithms. Thus, the fitness value is normalized in the interval [�1,1]. This fact sim-
plifies the comparison of different options.

6. Experimental results

The proposed algorithm was tested in different scenarios. These scenarios were
simulated using a computer. Several entities are created:

• Two smart business parks (A and B)with separate EV fleets. Company A is a
company in the logistics sector, and companyB is a company in the transport sector.

• Three public charging stations.

• Five private EVs.
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The different levels of VPPs are defined as shown in Figure 5. Each level runs
the DEPF. The VPP level at which the DEPF is performed determines the availabil-
ity of services, protocols, and data. Several VPP levels are proposed (Figure 5):

• Smart business VPP (SBVPP). This is the lowest level. At this level, all
information about vehicles, routes, and drivers from the same company is
available. Thus, the charging prioritization of the charging stations of the
company is treated at this level. The state of charge (SoC) is also calculated at
this level. Some routes may be very long, which may cause a vehicle to use a
charging station that is located outside of the company. This charging station
may be administered by another company or the corresponding power
distribution company. In this case, the algorithm sends the restrictions to
higher VPP levels to obtain a solution for the charging needs. This VPP
communication is based on CIS and OpenADR protocols.

• Distribution VPP (DVPP). At this level, information is aggregated from lower
levels, and information about retailers and the presence of charging stations is
stored. This information is sent to higher levels, such as an energy VPP
(EVPP). Additionally, the restrictions from an EVPP to the corresponding
retailer and SBVPP are addressed at this level. This VPP communication is
based on CIS and OpenADR protocols.

Figure 5.
Information aggregation between different VPP layers proposed.
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• Retailer VPP (RVPP). At this level, a retailer needs to know when vehicles
require charging at any point outside of the company points. The retailer can
use this information to offer different tariffs to a company. This level acts as an
intermediate between charging stations of different companies. This VPP
communication is based on OpenADR protocol.

• Energy VPP (EVPP). In this paper, the vehicles represent mobile loads. Thus, if
an energy management system has information about the expected charging
stations, it may take advantage of this information to improve the load flow
forecasting algorithms. The load flow forecasting algorithm is not an objective
of this paper. This paper proposes a distributed prioritization algorithm based
on the VPP concept for SGs. The prioritization algorithm that is performed at
this level treats the total load and establishes possible restrictions at any point
of the grid. This VPP communication is based on CIS and OpenADR protocols.

From the point of view of the power market:

• Two power retail companies. The first retailer has a contract to supply
company A. The second retailer has a contract to supply company B. The
retailer has three contracts to supply private consumers.

• One power distribution company.

• An EMS is simulated. This system is configured to randomly generate a power
consumption command in the EVPP. This power consumption command takes
effect on 171 routes: 68 routes from company A and 103 routes from company
B. This power consumption will be generated after a solution is obtained to
assess the algorithm and address any changes in conditions.

• Companies A and B have an SBVPP. The characteristics of these companies are
listed in Table 2. For each driver, EV, and charging station, some periods of
unavailability are defined to check the capability of the algorithms to manage
these contingencies.

• In this case, the private consumers are managed by the RVPP.

The evaluation of the proposed solution is conducted in several scenarios based
on algorithms: GA, GAEC, PSO, and hybrid solution. In case of hybrid solution, all
possible combinations (81 cases) were tested; however, only the best hybrid

Characteristics Company A Company B

Number of routes 200 300

Number of EVs 4 7

Number of drivers 3 6

Number of charging stations 2 2

Number of plugs by charging station 2 3

Power of charging stations DC 50 kW/AC 43 kVA DC 50 kW/AC 43 kVA

Time of fast charging (0–80%) 30 minutes 30 minutes

Table 2.
Characteristics of both companies with EV fleets.
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solution is shown in this chapter. The best hybrid solution applies PSO in SBVPP
and GAEC in the higher VPPs.

The proposed solution is evaluated by checking two aspects (Table 3); both
aspects are evaluated in the general best fitness curve:

• Convergence time (tc). Time to reach a solution. The convergence time is
measured in number of generations.

• Transient time (tt). Time to obtain a new solution when changes occur in the
conditions of the problem. The transient time is measured in a number of
generations.

The general best fitness curve for each scenario is shown in Figure 6. The first
part (until generation 17) of the curve is the search of the best solution to schedule
the routes (500 routes). The corresponding number of scheduled routes is shown in
Figure 7. After the best solution is obtained, the simulated EMS randomly generates
several commands in each scenario. In the case of the GA scenario, the command
was fired in generation 34 (Figure 6) with 258 scheduled routes (Figure 7); in the
GAEC scenario, the command was fired in generation 19 with 456 scheduled routes;
in the PSO scenario, the command was fired in generation 30 with 338 scheduled
routes; and in the hybrid scenario, the command was fired in generation 39 with 378
scheduled routes. The command takes effect in a different number of routes in each
scenario; the results did not agree with the fitness value (Figure 6) and the number
of scheduled routes (Figure 7) between different scenarios, because there are dif-
ferent scheduling solutions. When the command is fired, the fitness is updated with

Test scenarios tc (number of generations) tt (number of generations)

Only GA 16 5

Only GAEC 11 2

Only PSO 17 5

Hybrid solution 11 3

Table 3.
Evaluation parameters for each scenario.

Figure 6.
General best fitness curve.
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the new restrictions. This updating changed the value of the best solution by
converting it into another solution with lower fitness. However other solutions in
the same population generation could have a good fitness in the new scenario. In the
population (in the case of GA and GAEC) or swarm (in the case of PSO), several
solutions were reassessed. Although some solutions were not the best solutions in
the initial scenario, after the command was fired, the new fitness value improved,
and the solutions were sorted according to this new assessed fitness.

In the same manner, the transient time is less than the initial part of the algo-
rithm because the current solutions are disseminated in the space of possible solu-
tions. Thus, the solution is obtained at a faster rate.

According to the results, some conclusions are formed:

• GA and PSO exhibit the best trend.

• GAEC performs better in transient situations.

• The hybrid solution obtains better results because it takes advantage of all
evolutionary algorithms.

One of the most interesting effects is shown in Figure 6 in GAEC (fitness
GAEC) scenario. This algorithm has several steps. In these steps, the mutation
probability is increased, and the crossover is decreased. This fact disseminates the
solutions in the space of possible solutions, which increases the probability of
obtaining better solutions.

7. Conclusions

A novel solution for the distributed prioritization of charging station queues is
presented in this chapter. The proposed solution provides additional results:

• An algorithm to manage the EV fleet, to improve the efficiency of fleet.

• A model of mobile load inside a power grid. The algorithm provides a load
forecasting of mobile loads, and it again calculates in real time in case an
unexpected incident or an additional EV is added.

Figure 7.
Translate of general best fitness curve to the number of assigned routes.
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• The comparison between different energy management scenarios showing the
hybrid solution as the best solution to different scenarios.

• The aggregation in different levels decreases the response time of system at
different levels, allowing to respond in real time. In the consumer level, the EV
is charging with minimized waiting periods. In the retailer level, the retailer
can offer different rates and services according to the demand forecasting. In
the distribution and energy level, the asset management, the energy flow, and
the demand peak shaving are simplified based on demand forecasting.

• The reduction of waiting time to charge the EV. The prioritization takes into
account the minimization of the waiting time.

• The successful usage of CIM and CIS in a VPP-based environment.

Although the usage of EVs can be an excellent solution for decreasing pollution,
it may cause serious problems in the power grid. Several solutions could be applied
to solve this problem. In this chapter, the proposed solution is to establish prioriti-
zation queues that enable control of the mobile loads or EV charging by taking
advantage of the fact that this EV can only be plugged into charging stations. This
type of knowledge can help energy management systems and other participants of
power distribution to maintain a high quality of service and supply. Additionally,
this knowledge provides information for distributed energy resource systems in the
case of an alarm or emergency; in this case, the battery of EV (V2G) can serve as an
energy resource.
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