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ABSTRACT: 

 

A new structural model based on the premises widely used for describing the aerogels 

structure has been introduced. These structures have been described as an assembly of 

random-packed spheres in several hierarchically-ordered levels. A new algorithm for 

building our models by Computer simulation have been developed from these premises. 

Subsequently, some characterizing applications for obtaining the textural parameters as 

the specific surface, specific porous volume or the apparent density of the systems, based 

on the Monte Carlo technique and in geometrical considerations have been simulated for 

testing the ability of the models in explaining the structure of some real TMOS and TEOS 

aerogels. As a first approach to the study of the mechanical properties of the aerogels 

these models have been applied as well. Results support the idea that these models are a 

good way for explaining the structure of the aerogels. 

 

 
I. INTRODUCTION 
 
Silica aerogels are chemically inert, highly porous, nanostructured materials, synthesized 

by the well-known sol-gel method [1], and dried by the supercritical drying process 
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conceived by S. Kistler [2] for avoiding cracking. This way we obtain the silica aerogels, 

more porous materials than the conventionally-dried gels, also known as xerogels. Its 

particular structure is responsible for the most interesting properties of the aerogels, such 

as low thermal conductivity or very high specific surface area what can reach values like 

1000 m2/g or more. By the way, nowadays an aerogel is the solid with the lowest density 

ever synthesized [3], with a value of 1.9 mg/cm3.  Sonogels are obtained exposing a 

mixture of alkoxide and water to intense ultrasound [4,5,6]. This method does not require 

adding a common solvent (generally, methyl or ethyl alcohol) to mix homogeneously the 

system alkoxide-water. These gels are dense and their structure is fine and homogeneous, 

because of the absence of solvent for the sol obtaining and, mainly, by the initial cross-

linked state of reticulation induced by ultrasound. Gelation occurs in tenths of seconds. 

Other special characteristic of these gels after drying is that sonogels result in a particulate 

structure, contrary to gels obtained by hydrolysis of metallorganic compounds under acid 

catalyst without applying ultrasound. Sonogels have a very narrow pore size distribution, 

very high bulk density and surface/volume ratio, two or three times higher than gels 

prepared in alcohol solutions. These gels, do not fulfill the autosimilarity condition along 

one order of magnitude 7. 

The structure of the aerogels has been described as an assembly of random-packed 

spherical particles in several hierarchically-ordered levels [8,9]. The knowledge about the 

aerogel structure has been approached using computer simulation techniques that take 

inputs from several topics, like the understanding of the sol-gel process, the structure 

formation process or the relationship between the structure and the mechanical 

properties. The structure formation process has been studied by Molecular Dynamics 

Technique [10] since Garofalini first applied it to the sol-gel process in 1994 [11] using the 

Feuston-Garofalini potential [12], concluding that the structure formation starts with a 
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slow growing process of the clusters, followed by the faster growing of the structure due 

to the cluster-cluster aggregation. A. Hasmy has gone deeper in this aspect studying the 

behaviour of the characteristic cluster size and the influence of the simulation box size 

[13].  Other authors as Gelb and Gubbins mainly have addressed their work to develop 

characterization applications based on the Monte Carlo technique for the porous structures 

generated by simulation [14]. They have worked with the Lennard-Jones potential for 

each element, and the Lorenz-Berthelot rules for mixing the inter-element potential.  

Other topic of interest consists of reproducing the formation and growing processes of the 

aerogels by computer, using the reaction or diffusion limited cluster aggregation (RLCA or 

DLCA) algorithms, or some modification of them [15], or the ballistic cluster-cluster 

aggregation [16]. Even simulation techniques have been used to test the validity of the 

BET [17] or the BJH [7] methods for analysing the adsorption/desorption isotherms.  

Working in the structure-mechanical properties relationship, Scherer [18] have used 

structures generated with DLCA-modified algorithms characterizing them by their fractal 

dimension, to achieve the power law exponent and they have presented some models to 

explain the structure-properties relationship [19,20]. As for Woignier et col., they have 

worked with DLCA-generated structures [21], introducing a new technique for 

characterizing this porous systems [22]. They conclude that the pore size distribution and 

the hydroxyl content are relevant for describing and understanding the mechanical 

properties of these materials [23]. In a previous work, Woignier and Phallipou proposed 

one approach starting from a cubic structural model [24] and using the Rumpf expression 

for the tensile strength of a rigid assembly of cohesive spheres [25]. Emmerlig and Fricke 

studied this problem, exactly elasticity and conductivity, through the scaling properties 

obtained by their simulated aerogel structures [8].  
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In this we are proposing a new algorithm based on the premise of random-packed spheres 

in several hierarchically-ordered levels for building the Cluster Models, together with an 

approach to the mechanical properties of these materials based on these models. The aim 

of this technique is to build structural models of the real systems. Its best performance is 

its versatility: tuning the geometric parameters of the model we can obtain very different 

assemblies of random-packed spheres for representing very different systems. The main 

structural parameters in this model are the elementary particle radius, the number of 

hierarchical levels and the contact distance and shells of each level. The density is just a 

reference to estimate the number of hierarchic levels since the density is strongly 

dependent of this parameter. However, systems made by this procedure are not supposed 

to describe the growing process of real systems, but they belong to what has been called 

static models [26] in the sense that these models describe the final state of the real 

systems, providing a new tool for the structural studies. 

 

II. CLUSTER STRUCTURAL MODEL 

From the premise that the aerogel structure can be described by an assembly of random-

packed spheres in several hierarchically-ordered levels, we developed an algorithm for 

building structural models. We have made use of an AMD Athlon 1700 (1.46GHz) 

processor that spent few seconds in building those systems. Along this work the particle 

diameter has been used as a reduced unit to describe the models.  

We discarded using cubic simulation boxes for building the models in spite of being the 

most recommended technique, but we built a spherical system. This is because the 

algorithm premise of self-similarity in several hierarchically-ordered levels is easy to 

implement within a spherical symmetry simply substituting each sphere of the system for 

a spherical assembly of spheres.  Cubic simulation boxes do have been used for those 
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characterizing applications that are boundary-dependent and finite size-dependent to 

permit periodic boundary conditions be applied.  To obtain a cubic box for characterizing 

the system, we just cropped the biggest cubic box inside our spherical system.  

 

1. Algorithm 

The Cluster model algorithm works this way: first we place one elementary sphere of 

diameter 1 in the centre of our system. Then we place randomly other elementary spheres 

coating the first one’s surface so the first random shell is built. Any sphere has to satisfy 

one condition to be placed: it has to be in contact at least with another one.  The criterion 

to be in contact is understood as to be at a distance between the minimum and maximum 

contact distances previously defined, thus avoiding the existence of free spheres. With this 

purpose, the distance within the contact range is chosen randomly. We let it grow as 

many shells of random placed spheres as we consider necessary for building our wished 

model. Once finished this process, this aggregate is taken as the basic aggregate. Its size 

is measured and another aggregate is built with secondary spheres of diameter equal to 

the diameter of the basic aggregate. After building this new aggregate, each secondary 

sphere is replaced by one basic aggregate obtaining a two-level hierarchically-ordered 

assembly of random-packed spheres. Then, the system size is measured again and its size 

is taken as the diameter of one tertiary sphere. An aggregate of tertiary spheres is built 

then and, finally, each tertiary sphere is replaced by one two-level system, obtaining this 

way a three-level hierarchically-ordered system (Figure 1). This process can be repeated 

as many times as necessary. Typical values of our models are 60.000 particles organised 

in 2 shells of random-packed spheres and three hierarchical levels; their contact distances, 

d, are found in the interval (0.9D < d < 1.0D), D being the particle diameter (Figure 2). 
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Although autosimilarity is potentially present in the Cluster Models as a consequence of its 

generation algorithm, in the present case we have not gone in a fractal description 

because the structure of sonogels is not autosimilar along on order of magnitude.  In the 

future we will emulate fractal structure of those aerogels that does present a fractal 

dimension well defined. 

 

2. Characterization techniques 

Some applications for characterizing the models have been developed to calculate textural 

parameters of the simulated structures. The comparison of the calculated values with their 

actual counterparts checks the validity of the models. Along this work we try to build 

Cluster models with the same structural parameters than the real aerogels. We take a real 

system as a target and we work tuning the geometric parameters in the building algorithm 

in order to obtain its corresponding model, that is, the model with the same texture than 

the real system. 

In this work we present results from this strategy applied to real systems from previous 

works.  

The parameters that we tried to reproduce are: 

Density: we consider our system formed by an assembly of pure silica spheres of density 

2.2 g/cm3, so once known the number of spheres, it is known the system specific mass. In 

some identified cases, when we are trying to emulate a system whose elemental particles 

are described to have a determined density [20, 27] we consider the mass of our 

elemental sphere with this particular value (2.09 g/cm3, 1.85 g/cm3) instead of the 

registered density for the bulk silica.  This difference may be caused by longer Si-O bond 

distances [28] or not having detected some kind of microporosity by the characterization 

method used. On the other hand, we consider the volume overlapped between spheres as 
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counted twice in the mass calculation (volume shared by three spheres is negligible). 

Consequently we subtract once the overlapped mass. 

Specific surface: the theory describes the real physisorption experiment starting with 

the formation of a nitrogen monolayer on the surface of the system to characterize. This 

monolayer does not cover the whole external surface of the material, but only the 

accessible surface to the nitrogen. Taking this into account, among the different 

definitions of surface area [17], the one calculated in this work is called the accessible 

surface area. We considered a spherical model of the nitrogen molecule of 16.2 Å2 of 

cross section what gives a radius of 0.227 nm, and we defined the reduced radius of the 

elemental silica sphere in reference to this. Then, we obtained by Monte Carlo method the 

external accessible surface to the nitrogen molecule in our system. This is a widely used 

method [14,17,29,30] for characterizing structural models for porous materials. 

Specific porous volume and porosity: we calculated by Monte Carlo the volume 

accessible to a nitrogen sphere inside our system. In this point we had to consider the 

finite volume correction presented by Sandra Gavalda [31]: the volume obtained by this 

technique is lower than the expected accessible volume due to the omission of the volume 

between the centre of the nitrogen spheres and the surface of our system. For fixing this, 

Sandra Gavalda proposed adding the volume calculated conventionally by Monte Carlo to 

the resulting volume from multiplying the specific surface by the nitrogen sphere radius. 

Porosity is obtained automatically next to this parameter, reducing the values and 

expressing them in the percentage not occupied by the system. 

Apparent density: Since our system is defined in several hierarchical levels, we know 

the number of spheres involved in building any of the levels and the volume occupied by 

those spheres that are forming it. Consequently, we obtain the density at the different 



 8 

levels, from the lowest – the elementary particle – to the highest, also called apparent 

density. 

 

III. RESULTS AND DISCUSSION 

We applied this simulation technique to build several systems for explaining the structure 

of some real systems. As a first application, we took from a previous work [27] the texture 

parameters of two aerogels and we built their corresponding hierarchical models. As a 

second application, we face the problem between the structure and mechanical properties, 

similar to what has been done by Woignier [20]. 

 

1. Simulation of structures 

In [24] the studied items were two aerogels prepared from TEOS. Different cluster models 

for describing those aerogels’ structures were generated. Both sets of data are shown in 

Table 1.  The models corresponding to the first aerogel was a three hierarchical level 

arrangement of packing spheres. The elementary particles of this system were described 

in the original work as spheres of radius of 1.1 nm with a density of 2.09 g/cm3. We 

considered these values for defining our system, so the resulting models were based on 

the real data.  

The goal of this part of the work was to build successfully the corresponding models to the 

real system, starting from the experimental structural parameters. The presented models 

reproduce the textural values of the real systems, as it was expected. We can see how 

models built as an assembly of random packed spheres of hierarchically arranged can 

reproduce quite well the texture of the real aerogels. Parameters of the resulting models 

are also shown in Table 1. 
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2. Mechanical properties 

In [24], a simple structural model was applied to explain the mechanical properties of 

these materials. A study about the relationship between the normalized strength and the 

porosity was presented. 

The normalized strength of aerogels from TMOS as silica precursor was obtained by three-

point flexural tests and diametral compression tests (also known as “Brazilian test”, ASTM 

#D3967 [32]). For explaining the behaviour of this parameter and its dependence with the 

porosity, they used a structural model of cubic cells in which the edges are formed by 

spherical silica beads. The cohesion of the systems is explained as a function of the 

overlapping volume between neighbour spheres, taking into account the Rumpf’s 

expression for the tensile strength of a rigid assembly of cohesive spheres of radius R 

[25]: 

2R32

KF9




         

Equation 1 

 

where  is the volume fraction of solid, related to the porosity P as (1-P), and K is the 

mean coordination number. The factor F, given by Equation 2, is the bonding force 

between two overlapped spheres of dense silica with an overlapping neck radius a: 

 

2
0 aF         

Equation 2 

 

where σ0 is the mechanical strength of dense silica glass. Thus, the tensile strength is 

normalized as follows: 
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Equation 3       

  

In Figure 3 are represented results of the experimental values of the reduced modulus 

based on the structural models applied in [24] besides those resulting from applying our 

Cluster models. As it can be seen, in spite of the simplicity of the model, Woignier et col. 

describe qualitatively the behaviour of the normalized strength of the aerogels. 

With the aim of improve quantitatively this result, we modified the final expression of the 

normalized strength of the aerogels (¡Error! No se encuentra el origen de la 

referencia.). It shows that this parameter is directly proportional to the relative area of 

the maximum circle of the overlapped zone, i.e., /0  (a/R)2. Instead of this, we have 

assumed that the normalized strength should be shared volume dependent.  From the 

expression of a spherical cap ( 

 

 

 

 

 

 

 

 

 

 

Figure 4),  

 

V(h) = Rh2 – h3/3     

Equation 4       
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The reduced shared volume by two overlapped spheres , at a distance d, can be 

calculated by 

3
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Equation 5 

 

what gives, in reduced units, the final expression for the introduced parameter  
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4
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Equation 6 

Considering this way, the factor (a/R)2 has been substituted by this new one that accounts 

for the relative overlapped volume in the whole system 
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Equation 7 

and this expression has been used for explaining the mechanical behaviour working with 

the Cluster Models. Structural Cluster models have been developed corresponding to the 

samples studied, and applied the modified expression similar to that used in [24] (Figure 

3). This assumption was only considered in order to find an expression that improves the 

Woignier’s results that took the cohesive force between two overlapping spheres as to be 

neck-area dependent (Equation 2). We consider replacing this assumption in the final 

expression of the reduced force by the assumption of shared-volume dependent. 

The values obtained for the Woignier’s systems are shown in Table 2. The result for the 

last system (94% porosity) cannot be reproduced due to the size of the needed system. 

For obtaining models with porosities greater than 90%, systems of several hundreds of 

thousands particles has to be considered. Several months of computing time in our 
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facilities should be employed only for the preliminary studies, so we could not afford this 

problem presently. 

As it can be seen in Figure 3, when using Rumpf’s expression the Cluster model and the 

Woignier’s model results are quite alike, even both models describe roughly qualitatively 

the influence of the porosity in this normalized strength. However, their values are 

deviated above the experimental data. For improving this, the proposed modified 

expression has been tested using the Cluster models. Results confirm the improvement of 

the data: not only is the behaviour of the strength described qualitatively but also 

quantitatively. Cluster models plus modified expression give very good values, close to the 

experimental data.  

 

IV. CONCLUSSION 

 

An algorithm for a new structural model for the aerogels has been developed by 

describing the aerogels as an assembly of random packed silica spheres arranged in 

several hierarchically ordered levels. These new models have been named Cluster Models.   

The generated Cluster Models reproduce satisfactorily both structural and textural 

parameters of real systems. The performance of this approach can be improved finely 

tuning the geometrical parameters of the building algorithm and spending more 

computing time in this work.  

Regarding the application of these models to relate structure and mechanical properties, 

the overlapped volume between neighbouring spheres is responsible of the bonding force 

and consequently of the system cohesion. A modified expression from that proposed [24] 

was applied to the Cluster Models. Results describe perfectly the dependence of the 

strength with porosity, from a qualitative point of view. Quantitatively these models 
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describe better the actual behaviour than previously published results. These results 

support the idea of considering the Cluster Models as a good tool to explain the aerogels 

structure. 

More characterization techniques of these models are needed for a more completely 

comparison with the real systems, as the pore size distribution curves or the pair 

correlation function in order to simulate small-angle scattering experiments. Works in 

these topics are in progress. 
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FIGURES 

Figure 1:  Cluster model algorithm diagram.  
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Figure 2: Two examples of Cluster models with 3 shells of random-packed spheres and 2 hierarchical levels 
(left), and with 2 shells of random-packed spheres and three hierarchical levels (right).  
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Figure 3: Comparative results of the normalized strength from experimental tests, Woignier’s theoretical 
model, Cluster model with the original Rumpf’s expression and the modified expression. Values and their 

error bars in Cluster model data are the result of the average of at least 5 repeats of the same system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

80 84 88 92 97

0

2

4

6

8


/

0
 *

1
0

2

  Experimental

  Woignier's model

  Cluster models

  Cluster models-modified expression

Porosity (%)



 18 

Figure 4: Two-dimensional diagram of the spherical cap, with height h, and the base radius or overlapping 
neck radius a, and sphere radius R. 
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TABLES 

Table 1. Structural parameters of the real aerogels and of its corresponding cluster models. 

 

Table 2. Structural parameters of the Woignier’s aerogels (left) and of their corresponding cluster models. 

Errors in models’ results concern to standard error from at least 10 iterations.  

 
EXPERIMENTAL 

 

 
MODELS 

 

Porosity (%) 
Specific 
surface 
(m2/g) 

Density 
(g/cm3) 

Porosity (%) 
Specific 
surface 
(m2/g) 

Density 
(g/cm3) 

78 450 0.41 77±1 459±5 0.41±0.02 

80 400 .36 81±3 404±2 0.36±0.02 

82 250 0.33 83±2 253±9 0.34±0.02 

88 350 0.23 88±2 340±3 0.20±0.01 

90 300 0.19 90±5 307±4 0.19±0.02 

 

 

 

REAL SYSTEM 

 

Apparent density: 0,83 g/cm3 

Specific surface: 387-407 m2/g 

Specific porous volume: 0,73-0,74 cm3/g 

 

MODELS 

 

Apparent 

density  

(g/cm3) 

Specific 

surface 

(m2/g) 

Porous 

volume  

(cm3/g) 

0,80 384 0,72 

0,81 376 0,88 

 

 

REAL SYSTEM 

 

Elemental sphere radius: 1,2 nm 

First aggregate radius: 4,5 nm 

Specific surface: 640 m2/g 

 

 

MODELS 

Aggregate 

radius (nm) 

Specific surface 

(m2/g) 

4,5 612 

4,4 669 
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