
A Multiplexed Mixed-Signal Fuzzy Architecture
Fernando Vidal-Verdu, Rafael Navas-Gonzhlez, Universidad de Mdaga, SPAIN

Angel Rodriguez-Vhzquez, Centro Nacional de hficroelectronica-Universidad de Sevilla, SPAIN

Abstract:

Analog circuits provide better aredpower efficiency
than their digital counterparts for low-medium precision
requirements [l]. This limit in precision, as well as the lack
of design tools when compared to the digital approach,
imposes a limit of complexity, hence fuzzy analog control-
lers are usually oriented to fast low-power systems with
low-medium complexity. This paper presents a strategy to
preserve most of the advantages of an analog implementa-
tion, while allowing a notorious increment of the system
complexity. Such strategy consists in implementing a
reduced number of rules, those that really determine the
output in a lattice controller, which we call analog core,
then this core is dynamically programmed to perform the
computation related to a specific rule set. The data to pro-
gram the analog core are stored in a memory, and consti-
tutes the whole knowledge base in a kind of virtual rule set.
HSPICE simulations from an exemplary controller are
shown to illustrate the viability of the proposal.

1. Introduction

The widespread interest in fuzzy logic technology
motivates the implementation of special purpose ASICs in
the electronics design field, whlch speed up the
computation of the fuzzy algorithm when required [2][3].
Such circuits can be digital [4] or analog [5][6] . Pipeline
techmques in the former allow to compute a very high
number of fuzzy rules per second, because the bandwidth
is limited by the delay of the standard cell in the used
technology. However, the input-output delay, which is
indeed the most important parameter in real time control, is
usually higher in the digital than in the analog
implementations. Analog implementations usually reports
low power and area consumption, and offer a natural
interface to sensors and actuators, because they do not need
converters in the signal path. In addition, the low
resolution, their usual drawback, does not seem a major
problem in fuzzy control applications, most of them
working below four bits [6]. However, since the fuzzy
algorithm involves global computation steps [7][8], like the
center of gravity, errors due to systematic or random causes
are aggregated in global computation nodes, so eventually
the total error becomes too large. This is specially true in
control applications, where lattice partitions of the universe
of discourse are common [SI. Such partitions suffer from
the curse of dimensionality, i.e. the number of rules grows
exponentially with the number of inputs, then the area and
power consumption. Thus, for medium complex systems
analog implementations begin to have problems to be
applied.

Recently, Masetti et al. have presented a digital
architecture that computes the system output only from the
set of rules that have a certain influence on it, that is those
rules with non zero output [9]. Such approach allows to
decrease the input-output delay by exploiting the local
feature of fuzzy basis functions. This paper presents a
mixed signal controller that is based on the same idea, but
performing the computations with analog circuits, thus
mostly preserving the advantages of analog
implementations. The presented controller has an analog
core that implements the rules that have influence on an
interpolation interval, which could be called the real rule
set, then multiplexes such core to provide an output for any
input value, among the whole knowledge which is
composed by the virtual rule set. The latter is actually just
a set of programming parameters stored in digital and
analog memories, and the multiplexing is realized by
means of digital techniques.

2. Architecture and Functional Description

The key of the proposed strategy lies on the concept of
active rule, as the rule that contributes to determine the
controller output. In a lattice partition like that depicted in
Fig. 1, for a bidimensional universe of discourse, any input
pair (x1,x.J in the light shaded interval Cli = [(Eli,Eli+l),
(E ~ ~ E ~ ~ + ~)] maps into an output determined by the rules
enclosed in the dark shaded interval, which are called

1

1

Fig. 1: Illustration of the active rule set: (a)
Lattice Partition; (b) interpolation Intervals

0-7803-4863-X/98 $10.0001998 EEE 1076

active rules. Any other rule of the knowledge base have a
null influence on the controller output. Fig.l(b) shows the
universe of discourse split into interpolation intervals, that
is, into intervals whose active rules set is different. In the
interpolation procedure [8], only the membership functions
associated to the active rules, and their associated singleton
values, are needed. Note also that only the membership
function piece that affects the output is needed. Thus, in the
case illustrated in Fig. l(b), only the thick pieces of the
membership functions associated to the labelsX,,, Xli+ ,, X2,
and X2,+l , and the singletons associated to the four active
rules consequents, y*+ Y*ifi+1). y*~ti/i and y*~i+l)~+l) are
needed to generate the output in the interval C,.
XI t-t) ANdLOG CORE

1 I

Fig. 2: General Architecture of a Controller
with Multiplexed Analog Core.

The Fig.2 shows a general architecture able to perform
the above procedure for a controller with A4 inputs and L
labels per input (thus LM rules), which involves the
following hgh level building blocks:

Analog core: this block performs the fuzzy
computation. It has a set of programming inputs
which are driven by the interval selector and the
digital memory blocks. These inputs set up the
analog core to work with the rule set that
determines the system output, which means to
spec@ the membership functions associated to the
rule antecedents as well as the singleton values
related to the consequents.
A/D Converters: these blocks allow to identify the
interpolation interval Cy associated to a given input.
They are A4 analog to digital converters, one per
input, with a resolution of i,(log2L) bits (that is, the
next superior integer of 10g2L). Thus, they provide a
word of Mi,(10g2L) bits, which encodes each
interpolation interval. This output digital word is
used later to select the membership functions in the
antecedent, as well as the singleton values
associated to the consequent of the active rules.
Interval selector: this block selects, from the digital
word provided by the converters, the voltage values
E, ,... Ek ,... EM that set up the input block of the
analog core to operate with the membership
functions associated to the active mles in such
interval.
Digital Memory: this block selects, from the digital
word provided by the converters, the singleton
programming values y l*,.. ..y,*... .y2* that configure

the rule block of Ihe analog core consequents of the
active rules. These are digital words of as many bits
as needed to encode the required set of singleton
values. The memory is extemally addressable to
read and write accesses for programming purposes.

Note that Fig.2 is d i d and even more useful for an
increasing number of injmts and labels. The number of out-
puts can also be higher with little effort because many
blocks can be shared by the circuitry dedicated to generate
each output. Specifically, each additional output involves
one digital memory block, and 2M rule blocks.

3. Functional blocks implementation

The previous section describes the functionality of the
blocks in Fig.2 Here we will propose CMOS
implementations for such blocks.

3.1. Analog core
The architecture of the analog core is shown in Fig.3. It

is the same architecture: than that of the fuzzy controller
described in [lo], but just 2M rules are needed here, and
only two membership functions per input. Building blocks
are also quite similar than those described in [lo], where
the reader can find more: details.

Fig. 3: Analog Core Architecture

However, some differences derived from the specific
multiplexing strategy ;re convenient to be highlighted
here. First, as said in the section 2., only the thick part of
the membership functiclns in Fig. 1 (b) are needed in each
interval. Hence, our membership function circuit must be
able to generate two pieces with slopes of opposite signs.
This is made in the simplest way by a differential pair, as
Fig.4(a) depicts. Moreover, the differential pair provides
two complementary curves, which can be exploited to save
the explicit complenienl. implementation if we perform the
minimum by means of a maximum plus complement
circuitry regarding the De Morgan's law [5] . Fig.4(b)
shows one high level building block that implements most
of the circuitry associated to each input in the first and
second layers of Fig.3. The proposed implementation has
voltages as inputs, while further processing is made in
current mode. Current (outputs of the differential pair are
re licated to generate 2"l outputs required to implement the
$rules that determine The output inside a specific interval.
Such currents are converted into voltages by the minimum
circuit input unit cell that is shaded in Fig.4(b). The

1077

minimum circuit input cell

membership circuit con?
(b) singleton weighting ciyuitly

xl(i+l,p f ;- One Rule block
4

Two Input blocks Rule Rg

Fig. 4: Analog Core Implementation; (a)
Membership Function Generation, (b) Input
Block and (c) Rule Block (d) Interface

voltage outputs of this block are attached to those provided
by the remaining input blocks. As a result, 2M rule
antecedents are implemented. The voltage outputs of these
antecedents feed rule blocks like that depicted in
Fig.4(c). Circuitry in Fig.4(c) implements the blocks in the
third and fourth layers of Fig.3, zis well as the minimum
circuit output stage. This stage belongs to the minimum
circuit that implements the minimum block in Fig.3, which
actually acts as the interface between the higher level input
and rule blocks. To illustrate this, Fig.Lt(d) shows an
exemplary interface to build the rule Rii in Fig. 1. In the
example of Fig. 1, we need 2 input blocks, which provide
four voltage outputs each (note that the differential pair
outputs are replicated to share the circuit and save area and
power consumption). To build the rule Rp the outputs
VGl(i+J) and VG20.+1 corresponding to the membership
functions Xl and X, +li, are connected to the minimum
output cell o!the rule bfiock associated to Rii Fig.4(d) is in
fact a minimum circuit where the complement at input is
saved because the complements are directly provided.
Note that Xl(j+l) .and X2Q+1) are the complements of XIi and
Xv respectively in the interpolation interval C- of Fig. 1.

The high level block in Fig.4(c) is very similar to the
rule block described in [lo]. However, the singleton
circuitry is slightly different. Since such cell is set up
dynamically by the digital word szo...sIs-l, the changes of
this word generate transitories in the output current. Such
transitories looked like quite large glitches in the output
current. The main cause of such glitches is the current
demanded by branches that do not contribute to the output
current, and whose transistors enter in ohmic region, when
they are selected again to report some current to the output.
A proposed solution keeps all transistors in saturation by
providing an alternative current path through current
switches driven by the complementary control signals
S ~ . . . S ~ ~ . ~ . A hgher power consumption is, again, the price
to pay for a better dynamic behavior. The system global
output is obtained by aggregating the rule blocks outputs,

Y

Y = c Yz (1)
1 = I...ZL

which is realized just by attachmg the rule block output
nodes, because the rule block outputs are currents.

3.2. A D Converters
Many possible implementations of A D converters have

been reported and could be used for this block. However,
since a resolution of i,(log,L) bits is required and L
(number of labels) rarely is higher than seven, a simple and
fast flash converter like that depicted in Fig.5 can be used.
Although it is a common flash converter, some details are
worthy to be commented here about its implementation.
First, the array of linear resistors generates twice voltage
levels than those needed for the AD conversion.
The’extra’ voltage levels are used as programming values
for the rule antecedent, thus they are a kind of analog read
only memory. Note also that this array of resistors can be
shared by all the converters (one per input) as long as the
comparators have high impedance inputs. Second, these
comparators are designed to have hysteresis, which is
needed to filter the noise associated to the system inputs
and avoid an unstable output due to unstable programming

1078

inputs to the analog core. Finally, a Gray coder converts a
thermometer scale into Gray code. Such output code is
used to minimize the transitions between logical values '0'
and '1' in the interconnection lines, which avoids risks of
spurious data due to the asynchronous operation and
minimizes the noise injected in the remaining circuitry
from these lines.

Fig. 5: AID Flash Converter

3.3. Interval selector
The interval selector block basically is an analog bus

whose analog data are selected digitally from the set of
reference voltages generated by the linear resistor array in
Fig.3(a), EI...EM The Fig.6 shows one of theMcells (one
per input) that constitute this block. A Gray decoder
provides the control signals that drive the transmission
gates form the digital word associated to an specific
interpolation interval and supplied by the A D converters.

Fig. 6: Interval Selector k Cell

3.4. Digital memory
The digital word of M x iP (log&) bits provided by the

A f D converters and associated to each interval in the input
space is used to address a digital memory. This memory
must provide the singleton values that are needed to
generate the output in each interval.Thus, the memory must
provide a word of 2M x S bits, where Sis the number of bits
per singleton value and 2M is the number of singleton
values that are necessary to program the analog core. It is

, J!$ 4% & L% ,
Analog Core

Fig. 7: Illustration of Analog Core Programming

very important to note that the order of these singleton
values inside the woid must fulfill the programming
requirements of the analog core. To explain it, let us show
the simple case of Fig.7, where the words needed to
program the analog core: in two adjacent intervals share two
singleton values (y*, and y*io+l)), but these singleton
values appear in different order in these words. A possible
strategy to implement the memory consists in storing one
word for each interval with the singleton values associated
to it in the proper location. However, this implies to
replicate each singleton value as many times as intervals
are related to it, which is 2'. A second strategy organizes
properly the data and multiplexes the memory output bus to
avoid redundancy, which is the strategy followed by the
exemplary controller of this paper. The multiplexing is not
made in time, the required data are put in the output bus in
one step. The Fig.8 shows the proposed memory
architecture that follows the latter approach. Singleton
values are distributed into zM-l memory cell arrays of

rows and L columns. Every memory cell LM-'/2M-'

Memory cell

E - x Sbits

ZM-I ..
ZM-'
. . e

Fig. 8: Digital memory architecture

1079

x2
Input

VI

Memory cell array 1
1 S i l L

col (i-1) col (i) col (i+l;

(L columns)

x1 Input

Memory cell array 2

301 (i-1) col (2) col (i+l)
1 l i < L

~~

(L columns)

..

.
. 1 . .

I Analog Core
b)

Fig. 9: Memory operation example

array stores pairs of singleton values which are needed to
be addressed simultaneously. The row selector selects
2'-1 rows simultaneously, g e l for each memory cell

array, to provid a set of L x 2
-

singleton values. The
column selector selects the correct singleton values from
this set, and controls the multiplexor to place them in the
right location to form the 2M x S output word, all in one
step. To illustrate the data distribution and memory
operation let us to show the situation for a bidimensional
case. The Fig.9(a) shows four generic adjacent intervals Cg
,C ,-l)J C 1-l)6-1),C10-], with their associated singleton
v i u e s h e s e values are distributed into two memory cell
arrays as the top of Fig.9(b) shows. The memory cell array
1 contains the rows with odd j index, while the memory cell
array 2 contains the rows with even j index. Both arrays
have L columns. Below these arrays in Fig.9(b) the result
of a row selection is shown for the four intervals in
Fig.9(a). All the singleton values needed to program the
analog core (enclosed in squares in the figure) are in the
resulting word. Finally the column selector selects these
singleton values and places them in the output bus. Note
that each singleton value appears in the right location (see
Fig.7). Although some tricky for internal accesses, the
memory is configured as a conventional FL4M for extemal
accesses.

4. Results and conclusions

This paper is intended to present a strategy to implement
high-medium complexity controllers while taking
advantage from analog design. An exemplary controller
has been designed and simulated to demonstrate the
viability of the proposal. Some performance aspects of
such controller are being improved currently to be
introduced in a silicon prototype. The controller was
designed with a CMOS 0 . 7 ~ technology and here we will
show some results from HSPICE simulations to illustrate
its viability. The controller architecture is that depicted in
Fig.2 with L=8, M=2 and S=4.

The Fig.lO(a) shows the controller output for a slow
transitory bidimensional sweep (a D.C. analysis had a lot of
convergence problems), where the singletons take the
maximum and minimum values alternatively, thus showing
clearly all the interpolation points.To illustrate the dynamic
behavior, a wise transitory analysis makes the system to
evolve through a trajectory that implies different scenarios
in the surface depicted in Fig.lO(a). The resulting
transitories are shown in Fig. 1 O(b) and Fig. 1 O(c), where the
curves correspond to static values of x2 (from top to the
medium level): 2.80V, 2.90V, 2.95V and 3V, while the
input x1 changes as indicated in the figure. The large
overshootings that Fig. 1O(c) shows are due to changes in
the boundary conditions of the destination point, i.e. in how
it 'sees' the active rules (see Fig.1). In Fig.10@) such
neighborhood was similar for the initial and the target
points, while it is different in Fig. 1O(c).

On the other hand, since the power of this strategy
grows with the system complexity, let us make some
simplifications to highlight such advantage over a fully
analog implementation. Let us consider the as-ea and power
consumption of the interval selector and AID converters
negligible when compared to that consumed by the analog
core and the memory (note that just one array of resistors is
needed in the system, no mind how many converters are).

1080

In addition, let us suppose a similar interconnection
area (which indeed must be much smaller in the
proposed strategy). Finally, since the digital memory
has the same size in both implementations, the above
assumptions allow to have an estimation for the area
and power saving in the ratio between the total number
of rules (Ly which should be implemented without
multiplexing and the number of active rules (29,
which are those physically implemented in the
proposal. Such ratio is,

a = (L / 2)
which is strongly dependent on the number of inputs
and labels per input, thus on system complexity.
Hence, the higher the value of CL in (2), the more suit-
able the proposed implementation is. Finally, remem-
ber that only the implemented rules, i.e. the active
rules, contributes to the error at output, which allows
the system expansion for a given error bound with
respect to a fully analog implementation.

(2)
M

5. References

K.A. Nishimura, “Optimum Partitioning of Ana-
log Mixed-Signal Circuits for Signal Process-
ing:. Memorandum No. ECBIERL M93167,
University of California at Berkeley. 1993
P.P. Bonissone et al., “Industrial Applications of
Fuzzy Logic at General Electric”, Proceedings of
the IEEE, Vol. 83, pp. 450-465, March 1995
A. Costa, A. de Gloria, P. Faraboschi, A. Pagni
and G. Rizzotto, “Hardware Solutions for Fuzzy
Control”. Proceedings of the IEEE, Vol. 83, pp.

H. Eichfeld, M. Klimke, M. Menke, J. Nolles and
T. Kiinemund, “A General-Purpose Fuzzy Infer-
ence Processory’, Proc. of the 4th Int. Con$ on
Microelectronics for Neural Networks and Fuzzy
System, Sept. 1994
E Vidal-Verd~ and A. Rodriguez-Vizquez,
“CMOS Design of Analog Neuro-Fuzzy Control-
lers using Building Blocks” IEEE Micro, August
1995.
T. Yamakawa, “A Fuzzy Inference Engine in
Nonlinear Analog Mode and Its Application to a
Fuzzy Logic Control”. IEEE Trans. on Neural
Networks, Vol. 4, pp. 496-522, May 1993.
J.S.R. Jang and C.T. Sun, ‘“euro-Fuzzy Model-
ing and Control”. Proceedings of the IEEE, Vol.

M. Brown and C. Harris, NeuroFuzzy Adaptive
Modeling and Control, prentice Hall Intema-
tional, 1994.
M. Masetti, E. Gandolfi, A. Gabrieli and F.
Boschetti, “4 Input VLSI Fuzzy Chip Design able
to process an Input Data Set every 320ns”, Pro-
ceedings of the JCIS’9.5, Wrightsville Beach,
North Carolina, USA, October 1995
E Vidal-Verdu, R. Navas and A. Rodriguez-
Vbquez, “A Modular CMOS Analog Fuzzy
Controller”, Proceedings of the FUZZ-IEEE’97,
Barcelona, Spain, July 1997.

422-434, March 1995.

83, pp. 378-406, March 1995.

Fig. I O : Results from an Exemplary Con.
troller; (a) Slow Transitory Bidimensiona
Sweep, (b) y (c) Transitories for Differeni
Scenarios

1081

