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Abstract: The important role that linear matrix inequalities have attained in the last
years makes it compulsory to include them in the education of a control engineer. As
the development of efficient semidefinite programming algorithms date from the early
nineties, there is a lack of teaching experience in this field (at least when it is compared
with other well established aspects of control theory). This paper proposes a simple way
to introduce linear matrix inequalities in a control course. The main objective of the paper
is to show that in the formulation of (robust) control problems as linear matrix inequalities
a very reduced number of elementary technical results are required. It is illustrated how to
introduce, in a progressive way, these technical results along with motivating examples.
All of this is done in such a way that it facilitates the assimilation of this important subject.
The presented methodology has been successfully applied for more than four years in a
doctoral course on control theory.
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1. INTRODUCTION

A great variety of control problems can be formu-
lated in a natural way using Linear Matrix Inequalities
(LMIs). From an historical point of view, the most
remarkable example can be found in the seminal work
of Lyapunov who, in 1890, showed that the stability of
the linear system ẋ = Ax is equivalent to the existence
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of a positive definite matrix P satisfying the LMI:
A>P+PA < 0. Some stability criteria for systems with
actuator nonlinearities that appeared in the 1940’s and
1950’s had a natural LMI interpretation. However, at
that time, the benefits of formulating a problem in LMI
form where very limited: there where no powerful
computers nor efficient algorithms to solve the related
semidefinite programming problem. This problem was
partially circumvented by some researches by reduc-
ing the solution of the LMIs to simple graphical crite-
ria like the Popov criterion and the Circle criterion.



The use of LMIs in the control context was seriously
compromised due to the lack of efficient algorithms
during most of the twentieth century. This situation
changed dramatically with the appearance of a new
generation of interior points algorithms that allowed
to solve problems formulated in LMI form in a very
efficient way (Nesterov and Nemirovskii, 1994). As
a result of this major breakthrough, the control com-
munity started to reinterpret previous analysis and
synthesis results from the LMI point of view. More-
over, a great number of new results were obtained
using the LMI framework. The publication in 1994 of
the book "Linear Matrix Inequalities in System and
Control Theory" (Boyd et al., 1994) and the appear-
ance of the LMI Control Toolbox for use with Matlab
(Gahinet et al., 1995) accelerated this process. Nowa-
days the use of LMIs is ubiquitous in many control
fields and there exists many efficient polynomial-time
solvers like SeDuMi, SDPT3, etc. Moreover, there ex-
ists some parsers, like the free-distribution YALMIP,
that serve as interface between the LMI formulation
and different solvers.

The important role that linear matrix inequalities have
attained makes mandatory to include them in the ed-
ucation of a control engineer. This paper proposes a
simple way to introduce linear matrix inequalities in
a control course. As there is no much teaching ex-
perience in this field we believe that this paper is of
potential interest to the control education community.

The main objective of the paper is to show that in the
formulation of (robust) control problems as linear ma-
trix inequalities a very reduced number of elementary
technical results are required. It is illustrated how to
introduce, in a progressive way, these technical results
along with motivating examples. In this way a sim-
ple and clear introduction to this important subject is
given to the students. The presented methodology has
been successfully applied for more than four years in
a doctoral course on control theory.

The paper is organized as follows: in section 2, the ba-
sic technical results required to manipulate linear ma-
trix inequalities are introduced. Some examples con-
cerning the formulation of analysis problems as LMIs
are introduced in section 3. A systematic strategy to
address synthesis problems is presented in section 4.
In section 5 it is shown the relevant role that plays the
Schur complement. Some hints on formulating robust
problems are presented in section 6. The paper draws
to a close with a section of conclusions.

2. PRELIMINARY NOTIONS ON LINEAR
MATRIX INEQUALITIES

In this section the main technical results required to
introduce the linear matrix inequalities in a control
course are summarized.

The following property, whose proof can be found
in any text book on linear algebra, states important
properties of a symmetric matrix.

Property 1.

(i) The inverse of a non singular symmetric matrix
is symmetric.

(ii) The eigenvalues of a symmetric real matrix are
real.

(iii) Given a symmetric real matrix H ∈ IRn×n,
x>Hx > 0, for every x 6= 0 if and only if all the
eigenvalues of H are strictly greater than zero.

Definition 1. A symmetric real matrix H is said to
be positive definite if all its eigenvalues are strictly
greater than zero. Analogously, a symmetric real ma-
trix H is said to be negative definite if all its eigenval-
ues are strictly smaller than zero.

Notation 1. Given symmetric matrices H and G, the
notation H > G means that H −G is positive definite.
Analogously, H < G denotes that H −G is negative
definite.

From property 1 and the previous notation results the
following property:

Property 2. Given a symmetric matrix H, x>Hx > 0,
for every x 6= 0 if and only if H > 0. Analogously,
x>Hx < 0, for every x 6= 0 if and only if H < 0.

As it will be shown in this paper, the following two
properties (Boyd et al., 1994) are very useful when
manipulating matrix inequalities in the context of con-
trol theory.

Property 3. Given a non singular matrix T : H > 0 if
and only if T>HT > 0. Analogously, H < 0 if and
only if T>HT < 0

Property 4. [Schur complement] The following ma-
trix inequalities :

{

H > 0
T −S>H−1S > 0

are satisfied if and only if
[

T S>

S H

]

> 0

The notion of linear matrix inequality is precisely
given in the following definition:

Definition 2. Given the matrix variables X1, X2, ...,
Xm, and the matrix function H(X1,X2, . . . ,Xm) we say
that the matrix inequality H(X1,X2, . . . ,Xm) > 0 (or
analogously H(X1,X2, . . . ,Xm) < 0) is a linear ma-
trix inequality (LMI) on the decision variables X1,
X2, ..., Xm if H(X1,X2, . . . ,Xm) is a symmetric ma-
trix for every X1, X2, ..., Xm and the dependence of



H(X1,X2, . . . ,Xm) with respect to X1, X2, ..., Xm is
affine.

Note that decision variables X1, X2, ..., Xm are matrices
that can be symmetric or not. For example, suppose
that X1 = W is assumed to be symmetric and X2 =
Y and X3 = Z are square matrices of appropriate
dimension, then the following inequalities are linear
matrix inequalities on the decision variables W =W>,
Y and Z:

W > 0

I−W +BY +Y>B>
< 0

[

W BY +CZ
Y>B> +Z>C> W

]

> 0

On the other hand, the following examples are not
linear matrix inequalities on the decision variables
W = W> and Y :

• BY > 0 is not an LMI because BY is not symmet-
ric for every Y .

• W +Y>W +WY < 0 is not an LMI because the
dependence with respect to W and Y is not affine.

The most important feature of linear matrix inequali-
ties is that they impose convex constraints on the deci-
sion variables. That is, suppose the following set of p
linear matrix inequalities on the decision variables X1,
X2, . . ., Xm:

Hi(X1,X2, . . . ,Xm) < 0, i = 1, . . . , p

Then the set of matrices X1, X2,. . . , Xm that simultane-
ously satisfy all the linear matrix inequalities is a con-
vex set. This stems from the fact that the inequalities
Hi(X1,X2, . . . ,Xm) < 0, i = 1, . . . , p can be rewritten
as l max(Hi(X1,X2, . . . ,Xm)) < 0, i = 1, . . . , p where
l max(·) stands for greatest eigenvalue. As l max(·) is
a convex function in the space of symmetric matrices
and Hi(X1,X2, . . . ,Xm) is an affine function of X1, X2,
. . . , Xm it is inferred that each LMI impose a convex
constraint on the decision variables.

The recently appeared efficient interior points algo-
rithms (Nesterov and Nemirovskii, 1994) take advan-
tage of the aforementioned convexity to obtain (if pos-
sible) a feasible solution for a given sets of LMIs. That
is, if there exists X1, X2, . . . , Xm satisfying simultane-
ously all the LMIs, the interior points algorithm finds
a solution with an affordable computational time.

As it will be shown in the following sections, a con-
siderable number of analysis and synthesis control
problems can be rewritten as LMIs on a given set of
matrix decision variables (normally parameters of the
controller or matrices defining a given quadratic Lya-
punov function). Once the control problem has been
formulated in LMI form, a feasible solution to the
problem can be obtained using specialized optimiza-
tion packages (for example, the LMI Control Toolbox
for Matlab (Gahinet et al., 1995)).

3. FORMULATING SIMPLE ANALYSIS
CONTROL PROBLEMS AS LMIS

In this section it is shown how to use the LMI frame-
work to solve some analysis control problems. This is
done by means of two illustrative examples that intro-
duce in a progressive way the some technical results
required to manipulate LMIs.

3.1 Example 1: Stability of a continuous-time linear
system

Consider the quadratic function V (x) = x>Px, where
P is a positive definite matrix. From the positive def-
initeness of P it results that

√
x>Px =

√

V (x) is a
weighted norm that serves as a measure of the dis-
tance to the origin x = 0. Given a linear continuous
system of the form ẋ = Ax, a natural way of proving
that the system is stable consists in proving that the
distance to the origin (measured as a given weighted
norm) is always decreasing. That is, the stability of
the system is guaranteed if there exists P > 0 such that
d
dt V (x) = d

dt (x
>Px) < 0, for all x 6= 0. This constraint

can be easily rewritten in LMI form:

d
dt

V (x) =
d
dt

(x>Px)

= ẋ>Px+ x>Pẋ = x>A>Px+ x>PAx

= x>(A>P+PA)x < 0, ∀x 6= 0

If P satisfies the previous constraints then V (x) con-
stitutes a Lyapunov function for the system. Taking
now into account property 2 it results that d

dt V (x) =

x>(A>P + PA)x < 0, ∀x 6= 0 if and only if A>P +
PA < 0. Therefore, the system is stable if there exists
P satisfying the following two LMIs:

{

A>P+PA < 0
P > 0

It can be shown that the existence of a matrix P
satisfying the previous LMIs is not only a sufficient
condition for the stability of the system but also a
necessary condition. That is, if ẋ = Ax is stable then
there exists P = P> > 0 such that the distance to the
origin (measured as

√
x>Px) is always decreasing.

3.2 Example 2: Stability of a discrete-time linear
system

Consider the system x(k + 1) = Ax(k), which, for
notational convenience, will be rewritten as: x+ = Ax,
where x+ denotes the successor state corresponding to
x. The same aforementioned ideas can be applied: the
system is stable if the distance to the origin (measured
by means of a certain weighted norm

√
x>Px) is

always decreasing. Therefore, the system is stable if



there is P > 0 such that (x+)>Px+ < x>Px, ∀x 6= 0.
That is,

x>A>PAx− x>Px < 0, ∀x 6= 0

x>(A>PA−P)x < 0, ∀x 6= 0

which, according to property 2 is equivalent to:
A>PA−P < 0. Therefore, the system is stable if there
exists P such that:

{

P > 0
A>PA−P < 0

4. FROM ANALYSIS TO SYNTHESIS

In this section it is presented how to formulate control
synthesis problems as LMIs. First, an example that
illustrates some of the difficulties encountered when
formulating a synthesis problem in LMI form is given.
After this, a simple strategy that allows in numerous
occasions to formulate control synthesis problems as
LMIs is presented.

4.1 Example: Linear control law for a continuous-time
system

Consider the system ẋ = Ax+Bu, where u denotes the
control action. As it will be shown in what follows,
the problem of obtaining a linear control law of the
form u = Kx such that the closed-loop system is stable
can be recast as an LMI. Consider the closed loop
system: ẋ = Ax+BKx = (A+BK)x. As it was proved
in subsection 3.1, the system ẋ = (A + BK)x is stable
if and only if there exists P = P> > 0 such that:

{

(A+BK)>P+P(A+BK) < 0
P > 0

(1)

In this way, if matrices P and K are found in such a
way that the previous matrix inequalities are satisfied
the control law u = Kx stabilizes the system and
V (x) = x>Px constitutes a Lyapunov function for the
closed loop system. However, it is important to remark
that the matrix inequality (A+BK)>P+P(A+BK) <

0 is not a linear matrix inequality on the decision
variables P and K. In effect, there are two non linear
terms in the matrix inequality: K>B>P and PBK.

The constraint P > 0 guarantees that P, and its in-
verse P−1 are non singular. Applying property 3, and
pre-multiplying and post-multiplying the inequalities
given in (1) by (P−1)> = P−1 and P−1 respectively,
the following equivalent inequalities are obtained:

{

P−1[(A+BK)>P+P(A+BK)]P−1
< 0

P−1PP−1
> 0

This is rewritten as:

{

P−1A> +P−1K>B> +AP−1 +BKP−1
< 0

P−1
> 0

Making now the following change of variable: W =
P−1 and Y = KP−1 the following LMIs on the decision
variables W and Y are obtained:

{

WA> +Y>B> +AW +BY < 0
W > 0

(2)

It is then concluded that if there exists W and Y
satisfying the previous LMIs then the control law
given by: u = Kx = YW−1x stabilizes the system.

4.2 Successful strategy to tackle the synthesis problem

The encountered situation found in the last example is
typical in synthesis problems: when trying to formu-
late a synthesis problem in terms of a gain matrix K
and a Lyapunov function V (x) = x>Px, the obtained
matrix inequalities contain generally non linear terms
that depend in a bilinear way on P and K. Fortu-
nately, this problem can be circumvented by a simple
strategy: if the non linear matrix inequality is pre-
multiplied and post-multiplied by an appropriate ma-
trix, the obtained matrix inequality can be recast as an
LMI by the change of variable: W = P−1, Y = KP−1.

The following strategy permits (when there are bilin-
ear terms on P and K, or there are simultaneously
terms on P and P−1 ) to formulate the synthesis prob-
lem as an LMI on the decision variables W = P−1 and
Y = PK:

(i) Pre-multiply and post-multiply the matrix in-
equality by a symmetric non singular matrix in
such a way that in the obtained matrix inequality
only terms on P−1 and K are present. This can be
achieved pre-multiplying and post-multiplying
by an appropriate matrix that depends in an affine
way on P−1.

(ii) Make the change of variable: W = P−1, Y =
KP−1. Normally, the obtained matrix inequality
will be an LMI on the decision variables W and
Y .

(iii) Obtain W and Y such that the corresponding
linear matrix inequalities are satisfied.

(iv) Obtain P and K from the equalities: P = W−1,
K = YW−1.

The proposed strategy can be applied to the syn-
thesis of state feedback controllers. If output feed-
back controllers are to be considered then there exists
a more involved "systematic" strategy to formulate
the synthesis problem in LMI form (see (Scherer et
al., 1997)).

4.3 Example: Pole-placement constraint

Given the system ẋ = Ax + Bu, obtain a feedback
control law of the form u = Kx in such a way that



the closed loop system ẋ = (A + BK)x satisfies the
following pole-placement specification: the real part
of all the eigenvalues of A+BK is strictly smaller than
−r , where r > 0. Taking into account that a system
ẋ = Ax is stable if and only if the real parts of the
eigenvalues of A are strictly negative, the aforemen-
tioned pole-placement design problem is equivalent
to the determination of a gain matrix K such that the
system ẋ = (A+BK + r I)x is stable.

As commented before, ẋ = (A+BK + r I)x is stable if
and only if there is a positive definite matrix P such
that: (A + BK + r I)>P + P(A + BK + r I) < 0. Note
that the obtained matrix inequality is not linear on the
decision variables P and K. We therefore apply the
strategy proposed in the last subsection: pre and post-
multiplying the inequality by P−1:

P−1[(A+BK + r I)>P+P(A+BK + r I)]P−1
< 0

P−1A> +P−1K>B> +AP−1 +BKP−1 +2r P−1
< 0

Making the change of variable: W = P−1, Y = KP−1 it
results that the pole-placement constraint is equivalent
to: WA> + AW + BY + Y>B> + 2r W < 0. As com-
mented before, the constraint P > 0 is equivalent to
W > 0. Therefore, if matrices W and Y are obtained
in such a way that W > 0 and WA> + AW + BY +
Y>B> + 2r W < 0, the control law u = Kx = YW−1x
satisfies the pole-placement constraint. More sophis-
ticated pole-placement constraints could have been
considered. See (Chilali and Gahinet, 1999).

5. SCHUR COMPLEMENT AND MORE
INVOLVED SYNTHESIS PROBLEMS

As it will be shown in this section by means of two
synthesis problems, the Schur complement constitutes
an important tool when formulating control problems
as LMIs.

5.1 State feedback for linear discrete-time systems

Consider now the problem of obtaining a linear state
feedback u = Kx for the discrete time system: x+ =
Ax+Bu. The closed loop system results in x+ = (A+
BK)x and, as it was shown in subsection 3.2, the
closed loop system x+ = (A + BK)x is stable if there
exists a matrix P such that:

{

P > 0
(A+BK)>P(A+BK)−P < 0

This can be rewritten as:

{

P > 0
P− (A+BK)>P(A+BK) > 0

Using the Schur complement (see property 4) it results
that the previous matrix inequalities are equivalent to
the following matrix inequality:

[

P (A+BK)>

(A+BK) P−1

]

> 0

Note that the obtained matrix inequality is not an
LMI because there are terms on P and P−1. In this
case, the strategy proposed in subsection 4.2 can be
applied. If the matrix inequality is pre-multiplied and
post-multiplied by the symmetric, non-singular matrix
[

P−1 0
0 I

]

, the following is obtained:

[

P−1 0
0 I

][

P (A+BK)>

(A+BK) P−1

][

P−1 0
0 I

]

> 0

[

P−1 P−1A> +P−1K>B>

AP−1 +BKP−1 P−1

]

> 0

Making now the change of variable: W = P−1, Y =
KP−1:

[

W WA> +Y>B>

AW +BY W

]

> 0 (3)

That is, if there exists matrices W and Y such that
the previous LMI is satisfied then the control law
u = Kx = YW−1x stabilizes the system. Moreover, it
can be shown that this is an if and only if result.

5.2 Constraints on the control action

Suppose a single-input system, that is, the control in-
put u(t) is assumed to be a scalar (the generalization to
multi-input systems is straightforward). Consider also
an initial condition x(0) and the synthesis problem
of obtaining a control law u(t) = Kx(t) such that the
initial condition x(0) is driven to the origin without
violating the following constraint on the control action
|u(t)| = |Kx(t)| ≤ umax, ∀t ≥ 0.

Obviously, K should be obtained in such a way that
the closed loop is stable. This can be accomplished
determining matrix P > 0 and K in such a way that
d
dt (x

>Px) < 0, ∀x 6= 0 (in case of a continuous-time
linear system) or (x+)>Px+ < x>Px, ∀x 6= 0 (in case
of a discrete-time linear system). As seen before,
these inequalities can be rewritten in LMI form in the
decision variables W = P−1 and Y = KP−1 (see LMIs
(2) and (3) respectively).

Suppose that x(0)>Px(0) < 1. As V (x) = x>Px is
forced to be a Lyapunov function, the evolution of the
system starting from this initial condition is confined
in the ellipsoid: { x : x>Px ≤ 1 }. Therefore, the
control constraint is satisfied if the maximum of |Kx|
in the ellipsoid { x : x>Px ≤ 1 } is smaller than



umax. Making now the change of variable: z = P
1
2 x,

the previous constraint can be rewritten as:

umax > max
z

|KP− 1
2 z|

s.t. z>z ≤ 1

The solution to the previous maximization problem is

z∗ = ± P− 1
2 K>√

KP−1K> . Thus, the control constraint will be
satisfied if:

umax > |KP− 1
2 z∗| =

√
KP−1K>

or equivalently: u2
max−KP−1K> > 0. As P is assumed

to be positive definite, the application of the Schur
complement yields:

[

u2
max K

K> P

]

> 0

Recall that in order to force V (x) = x>Px to be a
Lyapunov function, an LMI on the variables W = P−1

and Y = KP−1 is imposed. Therefore it is necessary
to rewrite the previous matrix inequality in terms of
W and Y . For that purpose, we follow the strategy
proposed in subsection 4.2: we pre and post-multiply
the matrix inequality by a symmetric matrix such that
the obtained inequality has only terms in P−1. That is,

we pre and post-multiply by
[

I 0
0 P−1

]

:

[

I 0
0 P−1

][

u2
max K

K> P

][

I 0
0 P−1

]

> 0

[

u2
max KP−1

P−1K> P−1

]

=

[

u2
max Y

Y> W

]

> 0 (4)

Note also that the constraint x(0)>Px(0) < 1 is rewrit-
ten, using the Schur complement, as:

[

1 x(0)>

x(0) P−1

]

=

[

1 x(0)>

x(0) W

]

> 0 (5)

Summing up, given x(0), and the system ẋ = Ax+Bu,
the constrained control synthesis problem is solved if
there exists W and Y such that the LMIs (4), (5) and
(2) are satisfied. On the other hand, given x(0), and
the discrete-time system x+ = Ax + Bu, the synthesis
problem is solved if there exists W and Y such that the
LMIs (4), (5) and (3) are satisfied.

6. EXTENSIONS TO DEAL WITH UNCERTAIN
PLANTS

One of the most remarkable features of LMIs is that, in
most cases, it is straightforward to convert a nominal
analysis (or synthesis) problem into a robust one.
For example, suppose that given a plant we have a
family of linear systems ẋ = Aix + Biu, i = 1, . . . ,q

that describe the dynamics of the system at different
operating points. In this context, the following robust
synthesis problem may arise: obtain matrix K such
that the feedback control law u = Kx stabilizes each of
the q considered plants. This is equivalent to impose
that the closed loop systems ẋ = (Ai + BiK)x, i =
1, . . . ,q are stable. As it has been shown in section 4.1,
if there exists W > 0 and Y such that AW +WA> +
BY + Y>B>Y < 0 then u = Kx = YW−1x stabilizes
the system ẋ = Ax+Bu. Therefore, u = Kx = YW−1x
stabilizes the q plants if:

{

W > 0
AiW +WA>

i +BiY +Y>B>
i < 0, i = 1, . . . ,q

A great variety of robust problems can be addressed
by means of the LMI framework. For a much more
detailed exposition, see (Boyd et al., 1994).

7. CONCLUSIONS

In this paper it has been shown how to introduce the
linear matrix inequalities in a control course. The main
contribution was not to provide an exhaustive collec-
tion of results relating control problems and LMIs but
to show that in order to pose analysis and synthesis
problems as LMIs a very reduced number of technical
results are required. A simple systematic strategy to
address synthesis problems is presented. The student
learns how to manipulate matrix inequalities by means
of a sequence of relevant examples of increasing com-
plexity.
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