
Permutation Flowshop Scheduling with periodic
maintenance and makespan objective ∗

Paz Perez-Gonzalez1†, Victor Fernandez-Viagas1, Jose M. Framinan1

1 Industrial Management, School of Engineering, University of Seville,

Ave. Descubrimientos s/n, E41092 Seville, Spain, {pazperez, vfernandezviagas, framinan}@us.es

March 26, 2020

Abstract

In this paper, we address the permutation flowshop scheduling problem with cyclical

unavailability periods where no operation can be processed. Under this constraint, all

machines must stop at the same time due to the shift calendar (shift changes, nights,

weekends, etc.), or due to preventive deterministic and fixed maintenance activities.

For this reason, this constraint is known in the literature as periodic maintenance.

Although different decision problems dealing with the simultaneous scheduling of jobs

and maintenance activities have been studied in the literature, scheduling with peri-

odic maintenance has been only addressed for the single machine and parallel machines

layouts, and we are not aware of references tackling the flowshop. In this layout, dif-

ferent scheduling problems arise depending on the assumptions about the preemption

of the operations. Here we focus on scheduling jobs in a flowshop with the objective of

minimising the makespan assuming that the preemption of operations is not allowed,

and therefore, if an operation cannot be finished within the current availability period,

then it should be scheduled in the next one. The structure and hardness of the prob-

lem depending on the size of the availability periods is studied using Mixed Integer

Linear Programming and complete enumeration, in order to determine the range of

values for the availability period that makes the problem under consideration to be

substantially different than its classical (unconstrained) counterpart. For these cases,

specific heuristics with different computational complexity are developed, and an exten-

sive computational experience is carried out to establish the efficiency of the proposed

heuristics.

∗This is the Submmited Manuscript of an article published by Elsevier in Computers and Industrial
Engineering 143, 106369 available online: https://doi.org/10.1016/j.cie.2020.106369
†Corresponding author. Tel.: +34-954487214.

1

Keywords: Permutation flowshop scheduling, makespan, Heuristics, periodic main-

tenance, shift calendar, cyclical availability constraint

2

1 Introduction

In most manufacturing scheduling literature it is usually considered that machines are available

during all the scheduling horizon. However, a number of causes (such as e.g. scheduled stops,

machine breakdowns, etc.) may generate unavailability periods in the machines, so the jobs cannot

be processed in these periods. In this paper we are interested in a special case of unavailability

constraint, quite common in manufacturing companies, where all machines stop periodically after

a given time interval. Some examples of these unavailability periods can be produced by periodic

maintenance activities, breaks, end of shifts, etc. More specifically, our work is motivated by the

natural interruption of work in the factory between one shift and the next one. In this case, a

working shift has a constant duration and, since workers may change from a shift to the next one,

unfinished operations are not allowed. This is a usual practice in many manufacturing companies

with relatively complex manual operations, such as the assembly of wiring harness in the aerospace

industry, where shifts are formed by different teams of workers and having one worker to complete

the tasks of a previous worker is not desirable in terms of efficiency and quality of the operation. In

our research, this periodic unavailability constraint, denoted in the scheduling literature as periodic

maintenance, takes place in a flowshop layout where jobs are processed in the machines following

all of them the same route. Furthermore, the order of jobs in all machines is the same (permutation

assumption). Note that different scheduling problems can be defined depending on the assumption

regarding the preemption of the operations. In our paper, operation-related preemption is not

allowed, so if an operation cannot be finished in a working shift, then it should be scheduled in

the next one. This problem is denoted as Permutation Flowshop Scheduling Problem with Periodic

Maintenance (PFSP-PM), and the objective function to be minimised is the maximum completion

time of the jobs (makespan), which is known to be related to the maximisation of the production rate

(Framinan et al., 2014), being the most-studied objective in the permutation flowshop scheduling

literature (Fernandez-Viagas et al., 2017).

Although scheduling problems considering unavailability constraints have been widely studied

for different layouts (see e.g. Ma et al., 2009 for a review on the topic), this is not the case for

the flowshop layout, where only very specific cases have been addressed: Allaoui et al. (2006) and

3

Xu et al. (2018) consider an unavailability period on the first machine in a two-machine flowshop,

while Labidi et al. (2018) study the two-machine flowshop scheduling problem with unavailability

and additional new constraints such as no-wait and non-zero release dates. Finally, Perez-Gonzalez

and Framinan (2009) and Fernandez-Viagas and Framinan (2017) consider the m-machine flowshop

with an unavailability period on each machine only at the beginning of the scheduling horizon. On

the other hand, focusing on scheduling papers with periodic maintenance, the problem has been

studied for a single machine (see e.g. the recent papers by Angel-Bello et al., 2011; Yu et al., 2014;

Yazdani et al., 2018; Perez-Gonzalez and Framinan, 2018), and for parallel machines (see e.g. Kaabi

and Harrath, 2019). To the best of our knowledge, this constraint has not been considered in the

flowshop layout. Note that, since the single machine case with periodic maintenance is NP-hard in

the strong sense (Hsu et al., 2010; Low et al., 2010), PFSP-PM is NP-hard even for two machines, in

contrast to the classical counterpart (Permutation Flowshop Scheduling Problem or PFSP) where

Johnson’s rule is optimal for a two-machine flowshop. However, it is clear that, if the availability

periods are sufficiently long, it may be possible to schedule all jobs within the shift, therefore the

unavailability constraint would not apply, and efficient methods for PFSP could be used. Therefore,

it is of interest to establish the range of values of the availability periods that make the PFSP-PM

to be different than the PFSP. For these cases, specific approximate algorithms would have to be

developed, as it is foreseeable that borrowing methods from the PFSP may not yield good solutions

for PFSP-PM.

The remainder of the paper is structured as follows: The PSFS-PM problem is described and

formalised in Section 2. Some properties of the problem and a mixed integer linear programming

model (MILP) are presented in Section 3 in order to carry out a computational analysis to determine

the hardness of the problem and its relation with the classical PFSP. To do so, an extensive testbed

with different instance sizes and values of the availability periods is presented in Section 4. The

results of the analysis are discussed in Section 5. For the cases where the PFSP-PM is found to

be different than the PSFP, specific approximate procedures are proposed in Section 6. These

procedures are subsequently tested in an extensive computational experience in Section 7. Finally,

the conclusions obtained are presented in Section 8.

4

2 Notation and identification of related decision prob-

lems

The permutation flowshop scheduling problem consists of scheduling n jobs in m machines, such as

each job has an operation on each machine, and the route of the jobs is the same for all of them.

Operation of job j in machine i has a processing time pij . The permutation constraint is considered,

i.e. the sequence of jobs is the same for all machines, and the objective is the makespan, Cmax,

defined as the completion time of the last job in the last machine. Additionally, jobs are available

at the beginning of the scheduling horizon. Without further considerations, the so-defined problem

is the Permutation Flowshop Scheduling Problem (PFSP). In our problem, there is an additional

constraint related to the availability of the machines: i.e. each T units of time, all machines are not

available during τ units of time.

The most critical assumption with respect to the unavailability constraint considered in the

literature (Ma et al., 2009) is related to different hypotheses about the preemption of the jobs if

they cannot be completed within an availability period:

• Resumable case (rs). If an operation cannot be finished before the unavailability period, it

is preempted and it can continue when the machine is available again.

• Non-resumable case (nr). Preemption is not allowed and the disrupted operation has to

restart completely rather than continue.

• Semi-resumable case (sr). The disrupted operation will have to partially restart, usually

multiplying the remaining processing time by a factor α > 1.

Furthermore, in the permutation flowshop layout, each one of the above preemption-related

assumptions can be considered at operation level (see Figure 1), or at job level (see Figure 2).

By combining the assumptions and the levels, the following problems can be identified and noted

extending the notation by Graham et al. (1979) and Low et al. (2010):

• Operation level:

5

Figure 1: Permutation flowshop scheduling with periodic maintenance: Operation level

Figure 2: Permutation flowshop scheduling with periodic maintenance: Job level

– Resumable periodic maintenance (rs − pm): It is easy to see that the problem

Fm|prmu, rs − pm|Cmax is equivalent to the classical problem Fm|prmu|Cmax, which

has been widely studied in the literature.

– Non-resumable periodic maintenance (nr − pm): In this case, operations cannot be

preempted, and if an operation cannot be finished in a shift, then it is scheduled in

the following shift. This problem, denoted Fm|prmu, nr − pm|Cmax, is NP-hard in the

strong sense as explained previously since 1|nr−pm|Cmax is NP-hard in the strong sense

(Hsu et al., 2010; Low et al., 2010). To the best of our knowledge, this problem has not

been studied before, and it is the motivation of our research.

6

– Semi-resumable periodic maintenance (sr − pm): The operation may be preempted if

it cannot be finished in a shift, and the remaining processing time is modified when it

is processed in the following shift. The resulting Fm|prmu, sr − pm|Cmax problem has

not been considered previously in the literature either.

• Job level:

– Resumable periodic maintenance at job level (rs−pm(job)): The job can be preempted,

although the operations of the jobs cannot be interrupted. I.e. if one operation cannot

be finished in a shift, it is scheduled in the following shift, and the job has operations

within different working shifts. In this case the problem is denoted Fm|prmu, rs −

pm(job)|Cmax. Note that this problem is equivalent to the Fm|prmu, nr − pm|Cmax

problem, i.e it is equivalent to the non-resumable case in the operation level, so the

optimal solution is the same for both problems.

– Non-resumable periodic maintenance at job level (nr−pm(job)): All operations of a job

must be scheduled in the same shift, i.e if all operations cannot be finished in a shift, the

complete job must be scheduled in the next shift. In this case the problem is denoted

as Fm|prmu, nr − pm(job)|Cmax. This problem is different to the resumable case and

to the operation level problems defined previously and it has not been considered in the

literature.

– Semi-resumable periodic maintenance at job level (sr−pm(job)): When all operations of

a job cannot be scheduled in the same shift, those operations scheduled in the following

shift have a penalty in the processing times. Note that this problem is different to the

semi-resumable case in the operation level. This problem, denoted as Fm|prmu, sr −

pm(job)|Cmax, has not been studied before.

The problems identified are summarized in Table 1. It can be observed that, out of the six

possibilities, four new problems are identified: Fm|prmu, nr− pm|Cmax, Fm|prmu, sr− pm|Cmax,

Fm|prmu, nr − pm(job)|Cmax and Fm|prmu, sr − pm(job)|Cmax. Among these problems, in this

paper we address the problem Fm|prmu, nr−pm|Cmax, i.e. the problem with machine unavailability

non-resumable at the operation level, which is equivalent to resumable at the job level. As explained

7

Level Resumable Non-resumable Semi-resumable

Operation Fm|prmu|Cmax Fm|prmu, nr − pm|Cmax Fm|prmu, sr − pm|Cmax

Job Fm|prmu, nr − pm|Cmax Fm|prmu, nr − pm(job)|Cmax Fm|prmu, sr − pm(job)|Cmax

Table 1: Approaches for permutation flowshop scheduling problems with periodic maintenance constraints

in Section 1, in the manufacturing process inspiring this problem, unfinished operations are not

allowed since working teams change in each shift, and operations started by a working team should

be finished by the same working team. In the next section, we analyse this problem in detail.

3 Problem properties and Mathematical programming

model

The considered problem, Fm|prmu, nr − pm|Cmax, is denoted in this paper as PFSP-PM. As

explained previously, this problem consists on scheduling a set of n jobs within shifts of length T .

Between two shifts there is an unavailability period of length τ . Without loss of generality, we

consider τ = 0 since τ does not influence the scheduling decision, although naturally the value of

the makespan would be different.

The following observations can be done for the PFSP-PM:

Observ. 1. T ≥ max pij = max{1≤i≤m;1≤j≤n} pij , since each operation should fit in a shift, other-

wise, the problem is unfeasible.

Observ. 2. T < Cmax(S), ∀ S schedule. Otherwise, if T is too loose, the problem is tantamount

to the PFSP.

Observ. 3. The number of shifts used for each schedule is a priori unknown. However, the maximal

number of shifts is bounded by max{1, d
∑m

i=1

∑n
j=1 pij/T e}.

Observ. 4. The PFSP-PM is NP-hard even for m = 2 (see previous section).

Observ. 5. The concept of critical path of PFSP (see e.g. Pinedo, 2008) does not apply for PFSP-

PM.

8

Observ. 6. The reversibility property is not satisfied, even in the two machines problem for the

resumable case (see Lee, 1997).

Observ. 7. As a consequence of the previous observation, Taillard’s accelerations (Taillard, 1990)

cannot be implemented to compute the makespan more efficiently.

Taking into account observations 1 and 2, it is clear that the structure of PFSP-PM depends on

the parameter T . Hence, PFSP-PM can be unfeasible for small values of T (i.e. when T < max pij),

or the constraint may have no effect for big values of T , converting the PFSP-PM into its classical

counterpart PFSP. In order to determine the differences between these two problems, a Mixed

Integer Linear Programming (MILP) model can be developed to optimally solve this problem and

to compare it with the solutions of the PFSP. According to Stafford et al. (2005), the most efficient

MILP for the PFSP is the TS2 of the Wilson family models. The adaptation of this model to the

PFSP-PM is described below, using the same notation than in Stafford et al. (2005).

Parameters

n number of jobs

m number of machines

pij processing time of job j in machine i

T length of the shifts

M big number. It can be computed as M =
∑m

i=1

∑n
j=1 pij

S maximal number of shifts. According to the Observ. 3, it can be computed as max{1, dM/T e}

Indexes

i Machines 1 ≤ i ≤ m

j Jobs 1 ≤ j ≤ n

l Positions 1 ≤ l ≤ n

s Shifts 1 ≤ s ≤ S

9

Variables

Eij Completion time of job in position j in machine i

Zjl


1 job j is scheduled in positionl

0 in other case

γils


1 job in position l is scheduled in the shift s in machine i

0 in other case

Model:

minEmn (1)

s.t.

n∑
l=1

Zjl = 1 1 ≤ j ≤ n (2)

n∑
j=1

Zjl = 1 1 ≤ l ≤ n (3)

Eil +
n∑

j=1

pijZjl+1 ≤ Eil+1 1 ≤ i ≤ m, 1 ≤ l ≤ n− 1 (4)

Eil +

n∑
j=1

pi+1jZjl ≤ Ei+1l 1 ≤ i ≤ m− 1, 1 ≤ l ≤ n (5)

E11 ≥
n∑

j=1

p1jZj1 (6)

Eil − sT ≤M(1− γils) 1 ≤ i ≤ m, 1 ≤ l ≤ n, 1 ≤ s ≤ S (7)

Eil −
n∑

j=1

pijZjl +M(1− γils) ≥ T (s− 1) 1 ≤ i ≤ m, 1 ≤ l ≤ n, 1 ≤ s ≤ S (8)

S∑
s=1

γils = 1 1 ≤ i ≤ m, 1 ≤ l ≤ n (9)

Equation (1) states the objective to be minimized (makespan), defined as the completion time

in the last machine of the job in the last position. Equations (2) force that each job is assigned

10

to only one position in the sequence, while equations (3) ensure that each position is occupied by

only one job. Equations (4) force that, for each machine, two consecutive jobs do not overlap their

processing, while equations (5) impose that operations of a job in two consecutive machines do not

overlap. Equation (6) computes the completion time of the job scheduled in the first position in

the first machine. Sets of equations (7) and (8) control that each operation starting in a shift also

finishes within this shift. Finally, the set of equations (9) ensures that each operation is scheduled

in one shift.

The model will be used in Section 5 to analyse the problem and its similarities with the PFSP

by means of a computational evaluation of the optimal solutions. To do so, an extensive set of

instances to conduct the computational evaluation is first developed in Section 4.

4 Sets of instances

Several sets of instances are presented in this section. The first two sets, described in detail in

Section 4.1, are composed of small-size instances so the problem can be optimally solved in reason-

able computation times using the MILP model presented in the previous section, or by complete

enumeration of the solutions. The results of this analysis are presented in Section 5. On the other

hand, in subsection 4.2, the well-known Taillard’s testbed (Taillard, 1993) is adapted for the prob-

lem under consideration, so different methods to generate T are presented in order to develop a set

of instances for our problem. This set will be used in Section 6 to test the efficiency of the heuristic

methods proposed for the problem.

4.1 Small-size instances

The following two sets of small-size instances have been generated, in both cases with the processing

times pij ∼ U [1, 99] as usual in the related literature (see e.g. Taillard, 1993 and Vallada et al.,

2015):

• Testbed β1: This set is composed of small-size instances, so the can be optimally solved using

the MILP in reasonable computation time. More specifically, 30 instances per combination

of values of n ∈ {5, 10}, m ∈ {2, 5, 10} have been generated, being a total of 180 instances.

11

• Testbed β2: This set is composed of small-size instances, so the problem can be optimally

solved by complete enumeration (CE) in reasonable computation time. More specifically, 200

instances have been generated for each combination of n ×m ∈ {5 × 10, 10 × 10, 10 × 5}, to

provide three scenarios (n < m, n = m and n > m). Due to the high computational times

needed, 10 jobs is the biggest case that can be solved within reasonable computational effort.

This set contains 600 instances.

For each one of the instances in the testbeds, different values of T have been generated. The

objective is to generate a set of values of T ranging from tight to loose values with respect to an

upper bound of the worst makespan for the unconstrained instance (i.e. the PFSP), thus providing

cases where the problem is either more constrained (tight T values) or more similar to the PFSP

(loose T values). Therefore, T ∈ {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000,M} with M =∑m
i=1

∑n
j=1 pij . All instances in β1 and β2 are combined with each value of T . Note that, for

T = M , the PFSP-PM is equivalent to PFSP according to the Observ. 2 in Section 3.

4.2 Big-size instances

Taillard’s testbed (Taillard, 1993) has been widely used in the permutation flowshop scheduling

literature. It is formed by 10 instances per case of the following combinations of n ×m ∈ {20 ×

5, 20× 10, 20× 20, 50× 5, 50× 10, 50× 50, 100× 5, 100× 10, 100× 20, 200× 10, 200× 20, 500× 20}.

For each instance in this testbed, two methods to generate T have been employed:

• Constant T . T ∈ {100, 200, 300, 400}. This set of values has been adopted in view of the

results of the analysis carried out in Section 5.1.

• Variable T . In this case T is not the same value for all instances of the testbed. The value of T

is dependent on the size (being the same for all instances for a given size), in order to simulate

the scheduling process on a rolling horizon basis, in which jobs with different characteristics

arrive to a system where the value of the availability period is the same. In this case, inspired

by the due date generation by Potts and Van Wassenhove (1982) and Armentano and Ronconi

(1999), we generate T ∼ U [P (1 + t+ r
2), P (1 + t+ r)], where t and r are control parameters

described below, and P = max pij .

12

This method guarantees to obtain feasible values of T (see Section 3, Observ. 1). In this

approach, parameter t is seen as a tightness factor (since the smaller t, the tighter T) and r

is the dispersion range factor. Several scenarios with different values of tightness factor and

dispersion range are tested to provide cases where T is loose or tight (to study the effect of

the length of the availability period as compared to the processing times) as well as cases

where the values of T are very different or similar between the sizes of the instances (to study

the effect of the dispersion of the availability period around its average). More specifically,

the values used for each parameter are t ∈ {0.2, 0.4, 0.6}, representing low, medium and high

tightness, and r ∈ {0.6, 1.2, 1.8} representing low, medium and high dispersion range.

The values obtained for Taillard’s testbed with this method and the main statistics provided

for the combination of r ∈ {0.6, 1.2, 1.8} and t ∈ {0.2, 0.4, 0.6} are presented in Table 2.

t 0.2 0.4 0.6
r 0.6 1.2 1.8 0.6 1.2 1.8 0.6 1.2 1.8

Mean 164.14 199.62 255.56 184.20 232.62 262.76 200.69 228.50 281.20
Maximum 176 234 287 197 252 310 214 255 332
Minimum 149 180 206 166 201 233 189 217 248
St. Dev. 10.18 19.61 13.83 6.82 15.17 24.91 9.12 9.81 20.47

Table 2: Main statistics for the values of T , depending on r and t: Taillard Test bed

According to the values of T obtained, and taking into account Table 2, the following repre-

sentative scenarios have been selected:

Scenario 1. Homogeneously Tight (denoted HoT): Low tightness factor t = 0.2 and small dispersion

range r = 0.6. This scenario is the one providing the lowest mean value among the

values in Table 2.

Scenario 2. Homogeneously Loose (denoted HoL): High tightness factor t = 0.6 and small dispersion

range r = 0.6. This scenario is the one providing the combination of lowest standard

deviation with highest mean values in Table 2.

Scenario 3. Heterogeneously Tight (denoted HeT): Low tightness factor t = 0.2 and medium dis-

persion range r = 1.2. This scenario is the one providing the combination of highest

standard deviation with lowest mean values in Table 2.

13

Scenario 4. Heterogeneously Loose (denoted HeL): Medium tightness factor t = 0.4 and high dis-

persion range r = 1.8. This scenario is the one providing the highest standard deviation

among the values in Table 2.

5 Analysis of the problem

The objective of this analysis is to determine the values of the parameter T for which the differences

between the PFSP-PM and PFSP are not significant, i.e., a schedule given for the PFSP is a good

solution for the PFSP-PM. The problem is analysed on the one hand by exact solutions using the

MILP (Subsection 5.1) and, on the other hand, using complete enumeration (Subsection 5.2).

5.1 Analysis of the optimal solutions using MILP

In order to compare PFSP with PFSP-PM we have solved the instances of β1, presented in Sec-

tion 4, using the MILP model presented in Section 3. Each instance I ∈ β1 has been solved

using the solver Gurobi 7.0 (Gurobi Optimization, 2018) with a time limit of 900 seconds, for

T ∈ {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000,M}. More specifically, for each instance, the

following values are tallied:

• For each T 6= M , the makespan of the optimal/best schedule obtained is denoted as C∗max.

• For T = M , PFSP-PM is equivalent to the PFSP, and the makespan value obtained is denoted

as LB, since this value is a lower bound of the makespan for the PFSP-PM.

• Additionally, in order to know if the optimal schedule for the PFSP is a good solution for the

PFSP-PM, the optimal schedule obtained for T = M is evaluated for the rest of the values

of T . The so-obtained makespan value is denoted as UB, since, in general1, this value is an

upper bound for the PFSP-PM.

The comparison has been carried using the relative percentage deviation from LB measured as

1Note that this value can be lower than C∗max in the case that Gurobi does not reach the optimal for
PFSP-PM, but it is always greater than LB.

14

the following formula for each instance I ∈ β1 and objective value V AL ∈ {C∗max, UB}:

RPD =
V AL− LB

LB
· 100 (10)

Table 3 shows the Average RPD (ARPD) obtained for each combination of n and m, for C∗max

(in order to observe the performance of the optimal/best makespan value of PFSP-PM), and for

UB (in order to show the performance of the optimal solution provided for PFSP evaluated for

PFSP-PM). Note that the results for T = M (case PFSP) are not included, since its ARPD is

equal to zero. Gurobi has solved optimally almost all instances within the 900 seconds, except for

the case T = 100 with n ×m = 10 × 10, where only 5 out of 30 instances were optimally solved

(this fact is indicated by the symbol *). The average computational time, CPU, needed by Gurobi

to solve the instances of the PFSP-PM for each value of T is shown in the last row. On average,

Gurobi has needed 0.3118 seconds to solve an instance for PFSP.

From Table 3 in the case T ≥ 400 it can be seen that, for many instance sizes, C∗max as well as

UB coincide with LB, with ARPD values equal to zero, showing that PFSP and PFSP-PM have

the same optima.

Regarding C∗max, it can be seen that, as T increases, it gets closer to the optimal makespan

value of the PFSP as expected, being only 0.23 % for T = 1000. UB has the same behaviour, being

around 0.71, 0.65 and 0.52 % worse than C∗max for T = 800, 900 and 1000 respectively. For the

smallest values of T , 100 and 200, the solution of the PFSP-PM is far from the solution of PFSP for

all sizes, being the differences between C∗max and UB more than 11% for T = 100 and more than

10% for T = 200. For T = 300 and T = 400 these differences are more than 6% and more than 4%,

respectively. For T ≥ 500, the differences are below 3%.

Therefore, from these results we can conclude that:

• Small sizes instances of the problem PFSP-PM when T ∈ {800, 900, 1000} may be solved

approximately using the MILP of PFSP, as there are small differences between the so-obtained

solution and the optimal solution of the PSFP-PM.

• For the smallest values of T (100 and 200), using the solution of the PFSP to solve the PFSP-

PM does not seem a good option. Additionally, Gurobi needs higher computation times to

15

n m 100 200 300 400 500 600 700 800 900 1000

C∗max 5 2 16.978 5.148 3.467 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 25.470 13.713 5.101 4.566 2.266 0.000 0.000 0.000 0.000 0.000
10 29.731 16.058 8.389 5.534 3.518 3.748 2.589 0.706 0.168 0.000

10 2 16.231 1.891 0.648 0.708 1.076 0.322 0.000 0.000 0.000 0.000
5 20.183 9.368 4.373 2.686 2.635 1.978 1.816 0.215 0.000 0.000
10 29.466* 13.989 8.080 5.158 4.853 2.622 2.141 2.415 2.353 1.383
Total 23.010 10.028 5.010 3.109 2.391 1.445 1.091 0.556 0.420 0.230

CPU PFSP-PM 142.24 13.65 2.15 1.27 0.93 0.86 0.50 0.58 0.51 0.39

UB 5 2 26.551 14.433 5.711 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 35.805 19.255 8.673 8.255 3.523 0.000 0.000 0.000 0.000 0.000
10 35.159 23.337 12.243 8.518 5.595 6.290 4.232 1.443 0.379 0.000

10 2 33.123 18.792 11.665 6.763 4.409 1.370 0.000 0.000 0.000 0.000
5 38.560 21.261 12.782 9.381 6.534 5.401 3.136 0.286 0.000 0.000
10 39.839 24.653 16.196 12.165 10.798 7.160 6.425 5.890 6.058 4.522
Total 34.840 20.288 11.212 7.514 5.143 3.370 2.299 1.270 1.073 0.754

Table 3: ARPD and CPU time of the optimal solution for PFSP-PM, and ARPD for the evaluation of the
optimal solution for PFSP.
* Only five instances have been solved optimally

solve PFSP-PM for the biggest sizes (n×m = 10× 10).

• The similarity between both problems in specific cases (biggest sizes of T) seems to be clear.

However, the decision about to apply or not approximate methods developed for PFSP to

PFSP-PM cannot be verified only with the results obtained, since it depends on the distri-

bution of the solutions for both problems. This issue has to be analysed in the following

section.

5.2 Empirical distribution of the solutions

It is possible to determine the relative frequency (i.e. the estimated distribution) of the values of

the objective function for all solutions of the problem by using complete enumeration. By analysing

such estimated distribution, it is possible to infer the empirical hardness of the problem, i.e. the

likelihood that one solution is close to the optimal solution. This analysis helps to determine which

approximate methods should be appropriate to solve the PFSP-PM, since if there are many solutions

close to the optimum, then simple methods can be applied to find good solutions, However, if the

probability of finding a solution close to the optimum is very low, then sophisticated methods should

16

be developed to efficiently solve the problem. Similar approaches have been conducted by Taillard

(1990); Perez-Gonzalez and Framinan (2009); Fernandez-Viagas and Framinan (2015), or Dios et al.

(2018).

More specifically, we try to determine the values of T providing similar empirical distributions

for the PFSP and PFPS-PM problems. In this way, if such empirical distributions are similar,

we may think about using approximate methods from the extensive literature of PFPS for the

PFSP-PM. Otherwise, specific methods for the proposed problem should be developed.

To do so, the empirical distribution is plotted by evaluating the n! possible schedules for a

given set of instances. For each instance I, the worst makespan value Cw
max and the best makespan

value C∗max are computed, and the Relative Deviation Index for each makespan value obtained by

evaluating each schedule S is computed using the following formula:

RDI(S) =
Cmax(S)− C∗max

Cw
max − C∗max

· 100 (11)

Once the RDI is obtained for each schedule in an instance, the frequencies of the number of

solutions with RDI in each interval [k − 1, k) with k = 1, . . . , 100 are represented graphically,

providing the empirical probability density function (pdf). Additionally, the cumulative frequencies

are represented graphically as well, providing the empirical cumulative distribution function (cdf).

As the RDI is normalized by d = Cw
max − C∗max, a solution in the interval [k − 1, k) indicates that

its makespan is less than d · k% worse than the optimum. Therefore, the higher the frequencies in

the right hand of the empirical pdf, the harder the problem is (as more solutions are far from the

optimum).

The above procedure has been applied to all the instances of the set β2 described

in Section 4.1. Each instance has been solved using the different values of T ∈

{100, 200, 300, 400, 500, 600, 700, 800, 900, 1000,M}. The empirical pdfs are plotted in Figure 3, and

empirical cdfs in Figure 4, for all the instances in β2 with sizes 5×10, 10×5 and 10×10 respectively.

For clarity of presentation, only the results corresponding to T = {100, 200, 400, 600, 1000,M} are

plotted.

In Figure 3 and Figure 4, it can be seen that the empirical hardness for T = 100 (blue line)

17

Figure 3: Empirical Density Function

Figure 4: Empirical Cumulative Distribution Function

and 200 (orange line) are greater than for the PFSP (T = M , red line) for all sizes, presenting

a peak in the frequencies of the worst schedules. The behaviour is more clear when the problem

size increases. Therefore, T = 100 and T = 200 constitute the hardest cases. This hardness does

not seem the same for the three sizes for each value of T . For example, when n 6= m, the problem

with T = 1000 (brown line) is easier than PFSP, however, for the size 10× 10, both have a similar

pattern. Additionally, for 10× 10, it can be observed that problems T = 600 (green line) and 1000

(brown line) have the same empirical hardness than T = M (red line), being the case T = 400

(yellow line) empirically easier than T = M .

Taking into account the results in Subsection 5.1, and in this section, we can conclude that:

• From the empirical distribution, we see that the empirical hardness for T = 100 and T = 200

is greater than for the PFSP. In addition to the difficulty to find good solutions, the previous

results show that the evaluation of the optimal solution for PFSP does not provide good

18

solutions for the PFSP-PM in the same cases. Therefore, approximate algorithms developed

for PSFP are not expected to provide good makespan values for PFSP-PM.

• For T = 300 and T = 400, the empirical distribution for PFSP-PM shows that the problem

is easier than PFSP. However, the analysis carried out in Section 5.1 shows that the optimal

solutions for PFSP are not good solutions for PFSP-PM.

• For T > 400, the empirical distribution for PSFP and PFSP-PM are very similar, and in some

cases empirically easier. The evaluation of the optimal solutions provided for PSFP are less

than 3% worse than the optimal makespan for PSFP-PM, so in these cases we expect that

approximate solutions for PSFP should be good solutions for the PSFP-PM, and therefore,

we can expect a good performance of the approximate methods developed for PSFP to be

applied to PFSP-PM.

As a summary, according to the scope of our analysis, for bigger sizes instances, it is neces-

sary to develop approximate methods for the problem PFSP-PM when T is tight as compared

to the processing times (in the range from one to four times the maximum value of pij , i.e.

T ∈ {100, 200, 300, 400}). Some efficient heuristics for these cases are presented in the next section.

6 Approximate procedures

In line with the conclusions presented in the previous section, it could be interesting to test the per-

formance of approximate methods from the PFSP literature to PFSP-PM. In general, two different

approaches can be followed:

1. Adapting the most efficient methods for PFSP to the PFSP-PM.

2. Developing specific methods for the PFSP-PM.

Regarding the adaptation of the most efficient methods for the PFSP, different constructive

heuristics have been employed, being the NEH by Nawaz et al. (1982) the most used (Framinan

et al., 2003; Kalczynski and Kamburowski, 2007, 2008; Fernandez-Viagas and Framinan, 2014).

The NEH heuristic, starting from an initial sequence Sini, constructs the best partial sequence S

19

formed by the two first jobs of Sini according to the objective function, and iteratively insert the

remaining jobs of Sini in the best position in S. Depending on the procedure to construct Sini and

the tie-breaking mechanism (Tie method) in the selection of the best position during the insertion

process, different versions of the NEH can be developed. Therefore, in order to adapt this heuristic

to the PFSP-PM, we test different initial sequences based on different indicators and criteria as

in Framinan et al. (2003). More specifically, 16 indicators have been combined with 8 criteria,

providing 54 initial sequences. The best results are obtained by three of them without statistical

differences among them. Since one of them is the one used in the original NEH (i.e jobs are arranged

in non-ascending order of pj =
∑m

i=1 pij ∀j = 1, . . . , n), this criterion –denoted as Sini = Sumdecr–

has been selected for the subsequent experiments. With respect to the tie-breaking methods, the

three most efficient are the original method used by the NEH (i.e. in case of ties, it selects the last

evaluated position), the tie breaking method by Dong et al. (2008), and the tie breaking method

proposed by Fernandez-Viagas and Framinan (2014). Note that the details of these tie breaking

methods are omitted due to the lack of space. Combining these three tie-breaking methods with

the best criterion for the initial solution, the following three algorithms are selected as adaptations:

• NEH tie0: Sini = Sumdecr and selecting the last evaluated position in case of ties.

• NEH tie1: Sini = Sumdecr and the tie breaking method by Dong et al. (2008).

• NEH tie2: Sini = Sumdecr and the tie breaking method by Fernandez-Viagas and Framinan

(2014).

Regarding the development of specific methods for the PFSP-PM, it seems sensible to retain a

mechanism similar to that employed by the NEH to construct the solutions, giving its applicability

to a wide range of scheduling problems and in order to maintain a similar complexity. However,

differences far beyond a mere adaptation are required to incorporate specific knowledge form the

PFSP-PM. More specifically, the following heuristics are proposed:

• Heuristic H1. This heuristic applies the NEH tie2 starting from an initial solution specifically

designed for the problem under consideration. More specifically, this initial solution is con-

structed as follows: The initial sequence is generated by sorting the jobs in non-descending

order of the indicator χj :

20

χj =
m∑
i=1

pij +
M∑
i=2

M ·
∑i−1

l=1 CTlj
i− 1

The indicator considers the features of job j in the system in the following way: The first

term is the sum of the processing times of this job, giving priority to jobs with shorter sum

of processing times. The second term is an estimation of the weighted idle times generated

by job j. The weight (M
i−1) provides homogeneity to the values, since the estimation of the

idle times are bigger when the index of the machine increases. The terms CTlj are computed

for each job j iteratively starting from CT0j = 0 and s0j = 1 as follows:

CTlj =


CTl−1,j + plj if CTl−1,j + plj ≤ sl−1,j · T

sl,j · T + plj otherwise

l = 1, . . . ,M (12)

and

sl,j =


sl−1,j if CTl−1,j + plj ≤ sl−1,j · T

sl−1,j + 1 otherwise

l = 1, . . . ,M (13)

sl,j gives an approximation of the shift where job j would be processed on machine l, and

CTlj approximates the completion times of job j on machine l. In this manner,
∑i−1

l=1 Clj is

an estimation of the idle time generated by job j in machine i if placed in the first position

of the sequence.

• Heuristic H2. In the same way than H1, this heuristic applies the NEH tie2 starting from an

initial solution, in this case trying to schedule first the jobs with a higher number of operations

fitting in a given shift. In this case, the initial solution is constructed as follows: the algorithm

starts with all jobs unscheduled in the set U and an empty sequence Sini. Iteratively, the

job σ in U with more operations fitting into the last current shift (with respect to the first

machine) of the partial schedule Sini ∪ {σ} is removed from U and appended to Sini (ties are

broken according to the non ascending order of pj =
∑m

i=1 pij). The pseudo-code is provided

in Algorithm 1.

21

• Algorithm IT. This algorithm is based on the idea that, if a given number of jobs fits in a

given shift (i.e. the sum of the processing times of all these jobs is lower than T), then the

heuristic NEH can be applied to these jobs as in PFSP (i.e. T does not have influence on the

partial sequence formed by these jobs). Therefore, a given initial sequence Sini is divided in

partial sequences, each one verifying that the sum of the processing times of all these jobs is

lower than T . These partial sequences are merged one by one, and used as initial sequences of

increasing sizes for the NEH, in order to fit the jobs in the best possible way (i.e. avoiding idle

times). More specifically, the algorithm starts with all jobs unscheduled in the set U , given in

the order of a initial sequence, Sini, and an empty sequence S. Iteratively, each job σ in U is

removed from U and appended to S while the sum of the processing times (sum) is lower than

T . Then, NEH tie2 is applied using S as initial sequence, and the resulting sequence replaces

S (it contains the same jobs in different order). sum is initialized to zero, and the process

is repeated, appending to S the next jobs from U that verify the condition that the sum of

their processing times is smaller than T , applying again the NEH tie2 to S. The pseudo-code

is provided in Algorithm 2. Three versions of the IT algorithm are tested with the following

initial sequences: Sini given by the original NEH (Sumdec), denoted IT NEH; the sequence

provided by H1, denoted IT H1; and finally, the sequence provided by H2, denoted IT H2.

All methods have the same complexity than the original NEH, O(n3m) (taking into account

that Taillard’s accelerations cannot be implemented as explained in Observ. 7 in Section 3) except

IT. This method executes iteratively the NEH procedure, a total of K = d
∑m

i=1

∑n
j=1 pij/T e times,

so its complexity is O(Kn3m).

7 Computational experience

In order to assess the performance of the heuristics presented in Section 6, they are compared using

the testbed for big-size instances developed in Section 4.2. More specifically, the following heuristics

have been compared:

• Heuristics adapted from the PFSP, i.e. NEH tie0, NEH tie1 and NEH tie2.

22

Algorithm 1 Heuristic H2

1: procedure H2(n, m, T , pij)
2: Sumdecr = Initial sequence by original NEH (non-increasing order of pj =

∑m
i=1 pij);

3: U = {Sumdecr[1], . . . , Sumdecr[n]} set of unscheduled jobs in the sequence order.
4: k = 1; (Initialization of the position being occupied of Sini)
5: Sini[1] = U [1];
6: Remove U [1] from U and dimU = n− 1;
7: while k < n do
8: for i = 1, . . . ,m do
9: CTi completion time of machine i by the subsequence Sini

10: end for
11: k + +; (new position of Sini to be occupied)
12: s = CT1/T + 1; (number of occupied shifts in the first machine by the actual Sini)
13: bestindexU = −1; (Initialization of the best job from U to be inserted in Sini)
14: numbmach = −1; (Initialization of the count of number of machines occupied by

a job within the shift s)
15: for j = 1, . . . , dimU do
16: if s · T − CT1 > p1U [j] then
17: i = 1; (the first operation fits in the shift s in the first machine)
18: while piU [j] < s · T −max{CTi−1 + pi−1U [j], CTi} and i < M + 1 do
19: i++; (the operation fits in the shift in the next machine)
20: end while
21: if i > numbmach then
22: numbmach = i and bestindexU = j;
23: end if
24: end if
25: if bestindexU == −1 then
26: Sini[k] = U [1];
27: Remove U [1] from U ;
28: else
29: Sini[k] = U [bestindexU];
30: Remove U [bestindexU] from U ;
31: end if
32: end for
33: end while
34: S= NEH tie2(Sini,n); (NEH with tie breaking using Sini with dimension n)

return Cmax(S)
35: end procedure

23

Algorithm 2 Algorithm IT

1: procedure IT(n, m, T , pij, Sini)
2: S = ∅, sum = 0 and j = 1;
3: while j < n + 1 do
4: while sum < T and j < n + 1 do
5: for i = 1, . . . ,m do
6: sum = +piSini[j];
7: end for
8: j++;
9: Insert Sini[j] in the last position of S

10: end while
11: S= NEH tie2(S, j); (NEH with tie breaking using S with dimension j as initial

sequence)
12: sum = 0; (Initialization of sum)
13: end while

return Cmax(S)
14: end procedure

• New heuristics developed for the PFSP-PM, i.e. H1, H2 and IT in its three versions: IT NEH,

IT H1 and IT H2.

In addition to compare their relative performance, the contribution of each heuristic can be also

assessed by comparing these results with the results obtained by its application to the PFSP and

the evaluation of the so-obtained schedule for the PFSP-PM. By doing so, it is possible to discern

whether the results obtained by each method are due to its suitability for the general PFSP, or not.

Therefore, in addition to provide the results for the heuristics, we also provide the results obtained

by their application to the PFSP and the subsequent evaluation of the schedule for the PFSP-PM.

These results are denoted by the corresponding heuristic with an asterisk, only for the heuristics

adapted from the PFSP (note that this is not possible for H1, H2 and IT, as they explicitly require

an availability period). As a consequence, the results of the heuristics NEH tie0*, NEH tie1* and

NEH tie2* are also presented.

We apply each heuristic H ∈ {NEH tie0, NEH tie1, NEH tie2, NEH tie0*, NEH tie1*,

NEH tie2*, H1, H2, IT NEH, IT H1, IT H2} to an instance I and compute its RPDH as follows:

RPDH =
Cmax − CMIN

max

CMIN
max

(14)

24

where Cmax is the makespan value of the schedule provided by heuristic H applied to instance I,

and CMIN
max the minimum value obtained for instance I among all heuristics. All Taillard instances

have been solved using different values of T as previously explained in Section 4. On the one hand,

and due to the results obtained in Subsections 5.1 and 5.2, values T ∈ {100, 200, 300, 400} have

been used in the case with constant T . On the other hand, instances have been solved with variable

values of T , depending on parameters r and t. The results are discussed in the next subsections.

7.1 Results with constant T

Table 4 shows the Average RPD values for each problem size, and the total in the last row, labelled

as Total. The best values obtained are marked in bold. It can be seen that, as expected, the methods

applied to the PFSP-PM usually provide better makespan values than the sequence provided for

the classical problem evaluated for the PFSP-PM (cases with *) when T is 100 and 200. In general,

NEH tie0*, NEH tie1* and NEH tie2* provide better ARPD values when T is 300 and 400. These

results may be explained by the fact that, in these cases, this problem is more similar to (and easier

than) the PFSP than for T = 100 or T = 200 (see Subsections 5.1 and Subsection 5.2). Additionally,

it can be seen that the three heuristics developed specifically for the problem provide better results

than the adaptations of heuristics from the PFSP, particularly those provided by the algorithm IT

(note that the computational cost of this method is higher), being IT H2 the best method with

total ARDP of 2.01.

Figure 5 shows the 95% confidence intervals, on the left for all methods aggregated for all values

of T , and on the right for each value of T . On the left of the figure, it can be seen that IT H2 is

the best method, with statistically significant differences with the rest of the methods, except with

IT NEH. Among the adapted heuristics, the performance of the NEH tie2 does not have statistical

differences with H1 and IT H1, but H2, IT NEH and IT H2 are better with statistical differences.

Additionally, on the right, this method has a good performance for all values of T . Similar to

the results in Table 4, it can be observed that the methods NEH tie0*, NEH tie1* and NEH tie2*

improve as T increases, without statistical differences for T = 300 (red) with respect to NEH tie0,

NEH tie1 and NEH tie2 respectively, and even better for T = 400 (yellow). NEH tie2 has a good

performance for T = 100 (blue), but the differences are not statistically significant with the results

25

Figure 5: 95% Confidence intervals for constant T (Left: Total ARPD, Right: ARPD for each value of T)

obtained by H2, IT NEH or IT H2.

7.2 Results for variable T

Table 5 shows the results in the same format as in Table 4. The results for the different scenarios

defined in Section 4.2 are presented. Therefore, for scenario HoT, the values of T are generated

using t = 0.2 and r = 0.6, for scenario HoL using t = 0.6 and r = 0.6, for scenario HeT using t = 0.2

and r = 1.2, and for scenario HeL with t = 0.4 r = 1.8. In bold we indicate the best value obtained

for each problem size and scenario. Table 5 shows that, IT H2 is the best method according to the

Total ARPD, with 1.689.

Figure 6 shows similar results than Figure 5. In the left, it can be observed that IT H2 is the best

method. In the right side it can be seen that the scenario homogeneously tight (blue) presents a bad

performance for the methods NEH tie0*, NEH tie1* and NEH tie2*, and the opposite happens for

NEH tie0, NEH tie1 and NEH tie2, with all methods providing more similar results in the scenario

heterogeneously loose (orange). It can be observed that the scenario heterogeneously tight (red)

and homogeneously loose (green) do not present statistical differences for all methods. Finally, the

good performance of IT H2 for all scenarios can be seen.

26

n
m

T
N

E
H

t
ie

0
*

N
E

H
t
ie

0
N

E
H

t
ie

1
*

N
E

H
t
ie

1
N

E
H

t
ie

2
*

N
E

H
t
ie

2
H

1
H

2
IT

N
E

H
IT

H
1

IT
H

2

2
0

5
1
0
0

1
3
.7

0
2

9
.5

7
7

1
2
.8

9
4

3
.9

5
0

1
3
.5

6
4

5
.2

0
0

4
.6

8
1

4
.7

3
9

4
.2

5
9

4
.5

4
1

3
.1

6
1

2
0
0

1
3
.2

1
5

8
.4

7
5

1
2
.2

3
6

4
.4

7
8

9
.0

1
1

6
.9

8
1

5
.0

9
5

4
.3

6
3

4
.2

0
1

7
.4

4
5

2
.6

2
0

3
0
0

7
.3

9
1

8
.6

5
5

8
.8

2
0

6
.3

6
7

4
.7

3
7

8
.0

8
1

4
.0

5
0

4
.6

6
4

2
.4

1
6

5
.1

0
2

4
.6

9
7

4
0
0

7
.6

0
1

8
.9

7
2

6
.0

4
6

8
.0

0
5

4
.9

1
0

8
.5

8
7

2
.6

3
8

5
.3

6
4

5
.7

5
6

2
.6

1
3

3
.4

4
3

1
0

1
0
0

9
.6

9
8

6
.0

7
4

1
1
.1

9
4

6
.2

9
5

1
0
.8

6
0

5
.0

4
1

3
.7

4
1

5
.2

1
3

3
.1

6
0

4
.3

0
6

4
.1

4
4

2
0
0

8
.7

0
0

6
.9

0
3

1
0
.7

5
3

6
.7

6
0

7
.5

9
0

5
.2

2
0

6
.3

4
9

3
.6

1
9

4
.4

2
7

5
.8

2
7

5
.2

1
0

3
0
0

7
.0

1
6

7
.8

0
6

9
.2

2
9

5
.7

4
9

7
.1

1
7

5
.6

7
2

5
.0

1
1

5
.8

4
2

4
.8

0
9

6
.1

9
4

4
.2

6
6

4
0
0

5
.6

0
7

7
.8

6
7

5
.3

8
8

8
.4

8
3

5
.1

0
5

6
.0

4
0

3
.0

7
1

4
.9

1
9

4
.6

7
8

3
.1

3
7

4
.4

0
9

2
0

1
0
0

7
.7

7
1

5
.0

5
3

8
.1

9
3

5
.3

6
8

7
.6

4
3

2
.1

3
4

4
.0

9
5

3
.8

0
3

2
.8

3
8

3
.8

9
6

1
.2

4
7

2
0
0

6
.8

3
5

5
.0

9
7

7
.0

3
8

5
.6

3
3

6
.2

2
1

2
.2

8
2

6
.0

0
0

2
.5

0
6

3
.1

1
4

6
.1

2
8

3
.4

8
0

3
0
0

4
.7

2
8

4
.9

1
0

4
.4

8
7

5
.0

8
9

4
.3

1
1

3
.8

2
5

3
.2

7
4

2
.9

0
5

3
.3

4
3

5
.1

3
1

2
.7

3
2

4
0
0

4
.3

9
5

4
.1

3
4

3
.8

8
5

5
.9

7
2

2
.9

8
4

2
.8

7
4

2
.8

1
1

4
.1

2
3

2
.6

5
8

3
.7

7
3

1
.3

2
6

5
0

5
1
0
0

1
4
.2

1
7

2
.8

6
5

1
4
.7

5
0

2
.1

4
2

1
2
.2

5
3

2
.4

7
0

5
.4

1
6

2
.3

3
9

1
.1

2
7

3
.4

6
7

2
.5

1
4

2
0
0

1
1
.1

3
8

3
.7

2
0

1
2
.1

4
9

4
.5

8
7

9
.0

3
7

2
.3

0
3

5
.0

7
1

1
.5

0
8

2
.4

6
5

2
.0

7
3

2
.5

8
0

3
0
0

7
.5

9
0

3
.8

5
6

6
.6

4
2

3
.7

4
7

5
.9

2
4

2
.1

9
0

3
.8

6
0

1
.9

1
3

0
.9

7
0

2
.5

2
3

1
.7

8
6

4
0
0

5
.3

7
2

3
.9

6
2

4
.4

0
3

2
.5

9
0

5
.4

3
9

2
.8

2
8

2
.7

5
2

2
.9

8
0

1
.9

7
1

2
.7

1
2

2
.1

4
5

1
0

1
0
0

9
.7

6
1

5
.2

6
8

1
0
.1

5
3

3
.5

0
8

9
.3

0
7

2
.0

6
8

3
.9

2
4

2
.5

9
9

1
.5

6
3

2
.5

7
0

2
.1

5
4

2
0
0

8
.4

0
8

6
.4

0
1

9
.4

9
1

4
.7

1
7

6
.9

0
4

4
.2

7
9

3
.9

4
3

3
.1

5
4

2
.9

5
5

3
.8

3
4

2
.4

7
9

3
0
0

5
.2

9
6

5
.5

4
0

5
.1

2
1

5
.5

8
4

4
.1

0
8

5
.4

9
0

3
.1

8
8

3
.4

6
6

2
.0

9
5

2
.7

2
3

2
.1

1
7

4
0
0

3
.0

4
6

6
.1

8
3

2
.3

9
7

5
.1

9
0

2
.2

4
1

4
.0

6
8

2
.0

4
5

3
.6

6
2

1
.7

2
3

3
.8

1
7

2
.2

0
5

2
0

1
0
0

8
.1

4
9

4
.6

8
0

8
.6

7
0

3
.6

6
6

8
.3

9
2

2
.5

4
7

2
.8

7
3

1
.8

7
9

3
.3

9
8

2
.8

7
4

2
.2

4
9

2
0
0

5
.6

0
0

5
.2

1
3

5
.1

3
2

5
.5

3
5

4
.2

8
5

3
.2

4
0

3
.2

4
7

3
.4

6
9

1
.2

6
2

1
.6

8
0

1
.4

2
8

3
0
0

3
.7

3
3

5
.4

5
2

4
.7

8
2

6
.9

0
7

3
.4

7
5

4
.5

4
5

2
.7

9
7

3
.4

1
1

2
.5

7
0

3
.4

5
7

2
.3

1
4

4
0
0

2
.7

3
1

7
.1

2
6

3
.9

7
4

7
.1

7
8

2
.7

5
9

4
.6

7
5

2
.5

1
3

3
.4

4
2

1
.8

1
1

3
.0

2
0

1
.7

4
3

1
0
0

5
1
0
0

1
5
.7

7
4

3
.9

5
9

1
4
.9

6
0

2
.8

6
5

1
4
.6

3
2

0
.6

0
0

4
.5

9
1

1
.5

5
6

2
.9

0
6

2
.4

9
8

1
.7

9
8

2
0
0

1
1
.2

0
4

1
.5

9
0

1
0
.5

2
0

1
.8

0
1

1
0
.6

7
4

1
.8

9
2

5
.1

0
2

0
.8

1
5

2
.2

1
8

2
.3

2
9

0
.9

8
6

3
0
0

7
.7

2
3

3
.0

4
2

8
.2

5
7

1
.8

5
1

7
.4

6
2

1
.8

7
0

3
.9

7
2

1
.1

6
3

1
.1

5
0

1
.9

9
1

0
.7

5
6

4
0
0

7
.3

9
1

2
.7

0
3

5
.7

5
6

1
.8

6
7

6
.7

5
0

2
.8

3
7

3
.3

5
8

1
.3

3
6

1
.5

9
4

1
.7

9
4

1
.3

9
6

1
0

1
0
0

1
0
.7

9
3

5
.9

4
1

1
0
.2

4
4

3
.9

4
6

1
0
.7

1
5

1
.2

7
5

2
.3

3
4

1
.8

6
3

1
.6

2
9

2
.4

3
1

1
.8

3
3

2
0
0

7
.0

8
8

4
.3

0
1

6
.0

4
7

3
.2

3
3

6
.7

6
2

3
.0

6
8

2
.8

1
2

1
.4

3
0

1
.5

4
0

2
.2

0
7

2
.2

0
7

3
0
0

4
.2

5
1

5
.0

7
7

5
.0

0
0

3
.7

8
7

3
.6

1
6

3
.8

9
4

1
.9

3
1

2
.1

2
5

1
.5

8
8

2
.6

8
2

1
.1

2
6

4
0
0

4
.4

1
6

4
.6

7
4

4
.3

5
2

5
.3

5
9

3
.5

7
6

3
.5

1
5

2
.1

0
4

2
.1

6
1

2
.3

7
7

2
.8

7
9

1
.3

6
7

2
0

1
0
0

7
.2

0
3

4
.0

3
0

7
.9

2
5

3
.9

6
0

6
.8

1
5

1
.3

5
4

2
.0

9
9

1
.7

5
2

1
.7

1
9

2
.1

5
6

1
.5

8
0

2
0
0

4
.5

7
5

4
.0

6
5

4
.8

9
9

4
.1

8
7

3
.8

1
8

3
.0

1
0

2
.4

9
0

1
.4

3
5

1
.1

2
1

1
.8

6
2

1
.2

2
5

3
0
0

2
.5

9
9

5
.4

9
7

3
.2

9
9

3
.6

8
3

1
.7

6
7

2
.8

9
7

1
.8

1
2

2
.5

1
3

1
.9

7
9

2
.9

0
0

1
.2

0
8

4
0
0

1
.8

1
1

5
.0

6
4

1
.6

9
2

4
.2

8
9

0
.6

9
5

3
.6

2
3

1
.6

6
9

3
.0

2
6

2
.1

5
9

1
.8

0
0

1
.4

8
0

2
0
0

1
0

1
0
0

1
1
.3

8
1

4
.8

6
6

1
1
.5

6
7

2
.9

1
6

1
1
.1

9
8

0
.5

1
2

1
.3

5
2

0
.5

9
4

1
.6

2
4

1
.1

7
6

1
.2

4
1

2
0
0

6
.5

3
1

2
.3

4
8

7
.0

4
5

1
.6

5
8

5
.4

1
0

1
.4

1
9

1
.5

9
4

0
.6

2
2

1
.5

9
5

1
.1

3
7

1
.1

6
2

3
0
0

4
.5

6
4

2
.8

2
1

4
.3

5
2

2
.7

0
2

3
.7

5
8

2
.5

6
1

1
.2

4
1

1
.3

6
2

1
.1

7
4

1
.8

5
6

0
.7

0
9

4
0
0

3
.4

2
0

3
.7

3
6

2
.8

0
0

3
.9

7
1

3
.4

9
0

3
.1

2
8

1
.3

4
2

1
.6

1
1

0
.8

3
7

1
.9

6
4

0
.8

7
8

2
0

1
0
0

7
.5

4
7

5
.8

0
5

7
.9

9
5

3
.9

6
8

7
.2

5
2

0
.7

7
8

1
.5

8
9

1
.7

0
2

1
.3

5
6

1
.6

0
6

1
.0

1
7

2
0
0

3
.4

9
4

3
.7

1
5

3
.0

7
6

2
.5

1
6

2
.6

8
7

2
.4

2
9

1
.0

0
4

1
.5

2
5

1
.0

0
2

0
.7

8
1

1
.1

9
5

3
0
0

1
.3

2
5

3
.9

8
4

1
.2

4
6

4
.2

4
5

1
.0

2
9

3
.0

5
2

1
.3

2
7

2
.2

3
8

1
.4

4
7

1
.4

6
4

1
.3

4
7

4
0
0

0
.9

0
1

4
.8

1
2

1
.4

5
3

4
.7

2
0

0
.4

1
8

4
.5

1
4

1
.9

5
2

2
.9

1
9

1
.8

6
9

2
.9

3
7

1
.8

1
6

5
0
0

2
0

1
0
0

7
.8

1
6

5
.9

7
1

7
.9

5
1

3
.5

3
2

7
.9

7
6

0
.1

8
0

0
.9

4
1

1
.1

5
1

0
.9

9
3

0
.8

6
2

0
.6

9
2

2
0
0

3
.4

6
2

3
.3

0
9

3
.3

2
6

2
.1

5
5

3
.0

3
7

2
.0

2
4

0
.8

7
1

1
.3

1
6

0
.4

8
6

0
.8

4
8

0
.5

7
7

3
0
0

1
.1

0
0

3
.2

6
7

1
.2

5
4

3
.0

2
3

0
.8

0
3

2
.5

5
5

0
.4

3
3

1
.9

0
2

1
.1

1
1

0
.9

9
8

1
.0

4
5

4
0
0

0
.6

2
5

3
.9

5
9

0
.5

9
0

3
.9

4
6

0
.3

2
9

3
.5

5
9

0
.8

6
7

2
.8

4
9

1
.3

2
9

1
.5

5
5

1
.4

1
1

T
o
t
a
l

6
.6

3
9

5
.0

4
8

6
.7

3
8

4
.3

2
7

5
.8

9
3

3
.3

1
6

2
.9

4
2

2
.6

4
3

2
.2

1
6

2
.8

6
6

2
.0

1
0

T
a
b

le
4
:

A
R

P
D

fo
r

co
n

st
a
n
t
T

27

n
m

S
c
e
n
a
r
io

N
E

H
t
ie

0
*

N
E

H
t
ie

0
N

E
H

t
ie

1
*

N
E

H
t
ie

1
N

E
H

t
ie

2
*

N
E

H
t
ie

2
H

1
H

2
IT

N
E

H
IT

H
1

IT
H

2

2
0

5
H

o
T

1
4
.8

5
8

6
.4

1
2

1
4
.1

6
2

6
.5

2
3

1
6
.7

5
8

4
.7

1
2

5
.6

1
9

4
.6

9
3

2
.5

6
9

4
.6

5
7

2
.1

9
8

H
e
T

9
.2

5
6

8
.5

9
4

1
2
.1

9
9

5
.8

2
0

9
.7

7
6

7
.2

2
2

5
.2

4
6

6
.5

3
2

5
.1

8
4

5
.8

8
1

3
.0

1
5

H
o
L

1
1
.4

6
9

1
0
.2

5
5

1
3
.8

0
7

9
.0

0
6

8
.2

2
2

7
.4

4
0

5
.3

7
5

4
.6

2
8

4
.9

1
1

5
.2

9
7

2
.1

1
2

H
e
L

8
.2

8
4

8
.4

4
3

9
.5

5
2

6
.5

7
9

8
.8

2
1

5
.5

1
5

3
.2

9
8

3
.5

9
5

6
.0

7
0

6
.2

4
1

3
.5

4
0

1
0

H
o
T

1
4
.3

1
9

5
.1

2
7

1
3
.1

4
0

5
.1

8
3

1
1
.8

2
0

3
.7

2
5

6
.3

3
1

2
.1

7
4

1
.7

7
3

4
.6

1
2

2
.5

3
3

H
e
T

1
0
.3

9
4

6
.4

2
4

7
.5

1
5

7
.1

7
6

9
.6

6
4

5
.7

6
1

6
.1

7
8

5
.7

1
3

3
.2

3
3

3
.0

1
9

3
.7

1
9

H
o
L

1
0
.0

4
3

7
.3

2
0

1
0
.5

3
5

5
.8

3
2

8
.4

1
7

5
.4

0
8

5
.0

9
7

3
.8

4
8

4
.0

0
8

5
.3

0
4

2
.9

9
4

H
e
L

6
.5

8
6

8
.7

5
2

7
.4

6
2

7
.1

8
4

5
.8

1
9

7
.2

8
1

4
.1

1
4

3
.9

7
8

6
.3

1
1

3
.0

9
4

2
.3

8
5

2
0

H
o
T

9
.9

5
2

3
.9

8
3

1
1
.5

3
3

5
.0

5
7

9
.4

2
8

4
.7

2
6

6
.0

3
3

3
.5

6
6

3
.5

9
5

4
.2

7
0

1
.0

9
6

H
e
T

6
.0

7
1

2
.3

7
4

7
.5

7
4

3
.2

4
1

6
.0

9
7

2
.9

8
4

4
.4

5
3

2
.0

2
0

3
.0

2
0

4
.3

1
6

2
.9

1
9

H
o
L

8
.0

1
3

4
.7

3
5

8
.5

2
0

4
.8

3
3

6
.4

2
8

3
.8

4
2

4
.1

2
5

2
.3

7
3

2
.2

4
0

4
.3

8
8

3
.0

4
0

H
e
L

5
.8

9
4

6
.2

2
7

6
.3

7
7

6
.2

6
5

5
.2

1
0

5
.2

9
1

2
.7

4
7

4
.7

1
3

2
.1

6
2

4
.5

2
9

3
.0

9
3

5
0

5
H

o
T

1
7
.2

3
5

4
.4

7
6

1
9
.1

9
4

4
.0

7
6

1
5
.6

3
7

3
.5

1
4

7
.6

5
3

4
.1

4
0

2
.0

0
6

4
.0

5
2

1
.5

8
6

H
e
T

1
3
.9

2
8

4
.8

7
3

1
4
.1

7
8

3
.9

2
0

1
3
.3

1
4

3
.0

8
2

5
.1

4
4

2
.5

4
4

1
.5

2
7

3
.9

8
6

1
.5

5
9

H
o
L

1
2
.3

7
1

3
.7

2
5

1
1
.2

9
4

4
.1

4
7

1
0
.9

7
2

3
.2

6
0

6
.4

3
5

1
.9

8
3

1
.6

5
5

3
.5

5
2

1
.6

6
9

H
e
L

8
.9

5
4

3
.8

8
6

9
.5

7
1

4
.1

8
4

8
.6

7
6

2
.7

0
5

4
.3

8
6

2
.8

9
4

2
.0

7
8

3
.8

5
5

1
.5

6
3

1
0

H
o
T

1
1
.7

9
0

4
.9

5
5

1
0
.7

2
5

4
.4

4
4

9
.2

3
0

5
.1

1
7

3
.8

6
8

3
.3

7
1

1
.5

2
0

3
.3

1
9

1
.6

7
0

H
e
T

9
.6

8
5

4
.6

1
6

9
.7

6
2

3
.2

7
6

8
.5

0
2

4
.3

0
4

4
.1

0
3

3
.4

5
1

2
.1

8
0

3
.3

0
6

2
.9

6
2

H
o
L

7
.4

0
3

4
.5

4
6

7
.8

4
4

5
.5

1
6

7
.5

6
9

3
.3

7
7

2
.9

1
1

2
.2

1
1

2
.6

8
2

3
.2

2
3

1
.9

3
6

H
e
L

5
.2

0
7

5
.3

8
8

4
.9

9
0

4
.7

0
3

6
.2

8
9

4
.2

0
4

2
.7

4
3

3
.2

4
0

2
.7

9
0

2
.7

4
4

1
.3

1
1

2
0

H
o
T

7
.7

7
8

4
.1

7
8

1
0
.7

8
9

2
.1

6
7

8
.4

7
8

1
.2

1
6

3
.6

9
6

2
.2

3
1

1
.8

1
1

3
.8

5
9

2
.1

9
2

H
e
T

7
.4

3
4

5
.4

4
2

9
.5

6
4

5
.0

6
5

8
.3

0
2

2
.2

3
3

2
.8

1
0

3
.1

2
9

1
.7

2
3

3
.2

0
6

0
.4

1
9

H
o
L

6
.1

7
1

5
.7

5
7

7
.2

0
2

4
.6

2
7

5
.1

3
0

4
.4

7
9

2
.6

0
0

3
.8

5
4

1
.9

5
0

2
.5

4
4

1
.9

7
1

H
e
L

2
.9

4
6

6
.3

3
6

3
.6

9
6

5
.1

3
1

3
.2

6
3

3
.3

0
4

2
.6

1
1

3
.2

7
8

2
.0

2
4

2
.5

7
0

1
.7

5
8

1
0
0

5
H

o
T

1
5
.4

0
9

2
.1

7
6

1
5
.6

1
7

2
.3

1
5

1
3
.4

9
9

1
.8

8
6

5
.8

2
4

0
.8

5
4

1
.2

4
9

1
.6

5
4

1
.0

5
1

H
e
T

1
3
.9

1
6

2
.6

5
6

1
4
.1

9
8

2
.1

3
9

1
2
.4

6
4

1
.6

4
9

5
.2

5
9

0
.8

5
6

2
.4

1
5

2
.3

1
4

1
.9

3
9

H
o
L

1
1
.2

1
1

2
.3

0
4

1
0
.4

0
4

1
.0

4
7

1
1
.0

0
9

1
.0

0
5

4
.8

1
7

0
.5

8
4

1
.9

1
1

3
.3

2
8

2
.0

4
6

H
e
L

1
2
.3

2
9

2
.2

2
5

1
0
.7

1
3

1
.7

8
2

9
.6

4
3

1
.6

1
5

4
.2

4
8

1
.5

3
9

1
.7

3
7

1
.4

0
5

0
.9

4
6

1
0

H
o
T

1
3
.6

9
3

3
.2

8
0

1
2
.2

9
3

2
.0

5
0

1
0
.2

7
6

1
.5

3
6

3
.5

6
5

0
.7

9
1

1
.7

2
7

2
.0

5
7

2
.2

1
4

H
e
T

8
.4

9
5

3
.6

0
0

8
.5

1
1

2
.3

6
0

9
.4

4
1

2
.1

4
5

1
.8

2
7

1
.1

3
5

0
.6

9
2

2
.0

5
1

0
.7

9
6

H
o
L

7
.0

4
2

4
.2

8
2

6
.8

8
0

3
.5

5
0

6
.6

4
7

2
.1

3
3

2
.1

8
5

1
.8

1
7

1
.2

9
5

2
.0

0
6

1
.0

0
0

H
e
L

5
.0

3
6

4
.3

4
5

4
.7

9
4

4
.3

1
0

4
.3

4
8

3
.5

7
6

2
.6

7
2

1
.8

7
8

1
.4

8
9

2
.9

6
8

0
.8

6
6

2
0

H
o
T

6
.1

6
8

4
.1

3
4

8
.1

0
2

2
.8

9
5

6
.9

6
1

1
.9

9
0

2
.1

7
5

1
.4

2
1

0
.8

7
8

1
.5

2
7

1
.0

6
3

H
e
T

4
.2

0
0

3
.6

1
4

4
.6

8
3

3
.6

1
7

4
.0

7
5

2
.5

8
8

2
.4

6
5

1
.7

1
9

0
.4

8
6

2
.4

6
0

0
.9

3
7

H
o
L

4
.6

3
6

3
.9

6
2

6
.1

5
1

3
.1

1
9

4
.9

3
1

2
.8

9
4

2
.7

3
8

2
.3

1
4

0
.6

8
6

2
.3

9
9

1
.5

3
1

H
e
L

3
.2

1
3

4
.0

0
6

3
.2

7
0

3
.5

5
1

3
.1

4
0

2
.9

8
5

1
.9

4
7

1
.0

9
9

1
.0

1
8

1
.2

2
4

0
.8

4
3

2
0
0

1
0

H
o
T

1
0
.0

2
8

2
.9

8
8

9
.9

5
6

0
.8

3
6

9
.1

1
2

1
.0

6
4

2
.5

8
8

0
.7

2
1

0
.9

3
0

1
.1

1
1

0
.8

4
8

H
e
T

6
.4

6
7

2
.1

9
1

6
.6

7
8

1
.4

8
1

5
.8

8
0

1
.3

9
9

1
.6

6
1

0
.5

8
0

1
.3

2
0

1
.4

2
9

0
.9

3
9

H
o
L

7
.0

8
8

2
.2

4
7

7
.4

0
4

1
.9

2
2

6
.6

4
4

1
.3

5
6

0
.9

9
0

0
.7

3
0

0
.9

7
2

1
.8

4
5

0
.7

5
0

H
e
L

5
.3

5
6

2
.1

9
4

4
.7

2
2

1
.9

6
6

4
.6

5
2

1
.8

3
2

1
.4

2
3

0
.8

4
8

0
.9

9
7

1
.1

9
7

0
.2

3
4

2
0

H
o
T

7
.7

3
3

4
.0

6
7

8
.9

5
1

2
.2

1
1

7
.0

5
1

1
.1

0
0

2
.0

4
3

1
.1

1
8

1
.4

4
0

1
.3

3
1

0
.9

4
6

H
e
T

2
.8

7
5

3
.3

8
1

3
.2

0
5

3
.0

4
2

2
.3

8
3

2
.4

1
1

1
.4

0
8

1
.8

4
1

0
.3

7
7

1
.8

4
3

0
.6

4
5

H
o
L

2
.9

7
1

3
.1

7
7

3
.9

0
2

2
.4

7
8

2
.8

6
5

2
.8

1
3

0
.7

6
0

2
.1

6
3

0
.9

9
2

1
.1

4
8

0
.7

0
9

H
e
L

1
.9

7
1

3
.6

2
6

2
.4

7
4

3
.1

0
2

2
.2

4
1

2
.3

9
2

0
.9

6
0

1
.7

2
9

0
.8

8
3

1
.4

0
9

0
.8

9
2

5
0
0

2
0

H
o
T

5
.7

7
6

3
.4

3
2

5
.9

7
1

1
.7

2
4

5
.5

7
0

1
.1

6
4

0
.9

0
3

1
.1

4
6

0
.7

4
4

0
.5

8
6

0
.3

9
1

H
e
T

3
.1

1
1

2
.9

0
4

2
.9

4
0

1
.9

5
7

3
.0

5
5

1
.5

9
6

0
.5

2
7

1
.0

8
0

0
.5

1
9

0
.5

0
2

0
.3

6
1

H
o
L

4
.1

9
2

3
.3

8
4

4
.1

2
4

2
.0

8
0

4
.1

7
4

1
.7

3
6

0
.5

8
1

1
.4

7
0

0
.5

1
3

0
.4

1
5

0
.3

0
6

H
e
L

1
.6

7
8

3
.4

2
3

1
.6

7
1

2
.9

2
2

1
.2

1
8

2
.6

7
7

0
.2

7
0

2
.0

5
6

0
.7

7
7

1
.0

5
2

1
.0

6
3

T
o
t
a
l

7
.2

6
3

4
.4

0
7

7
.5

1
6

4
.0

1
9

6
.6

7
8

3
.2

6
9

3
.1

7
2

2
.4

6
3

1
.9

3
6

2
.7

9
4

1
.6

8
9

T
a
b

le
5
:

A
R

P
D

fo
r

va
ri

a
b

le
T

28

Figure 6: 95% Confidence intervals for variable T (Left: Total ARPD, Right: ARPD for each scenario)

8 Conclusions

This paper considers a permutation flowshop scheduling problem inspired in the scenario of a

manufacturing company that stops all the machines during the changes of shifts, implying that

machines are not available periodically, and the operations cannot be preempted. In the literature,

this machine availability constraint has been denoted as periodic maintenance for other scheduling

layouts, such as the single machine or parallel machines. To the best of our knowledge, this case has

not been previously considered for the permutation flowshop layout. Depending on the hypotheses

regarding the preemption of operations/jobs, different scheduling problems can be defined. In this

paper, the problem studied considers the non-resumable preemption of operations, which is denoted

as Fm|prmu, nr − pm|Cmax.

For this problem, an in-depth analysis has been carried out to characterise the space of solutions

and the differences with the classical PFSP, for different values of the availability period, T , in

different small-size sets of instances. The results show that, on the one hand, for bigger values of

T (T > 400), the optimal solutions for the PFSP and the PFSP-PM are very similar, as expected,

as well as their empirical hardness, so for these values, approximate methods from the literature

of the classical problem may provide good solutions for the problem under consideration. On the

other hand, for smaller values of T (T ≤ 400), the optimal solutions for both problems are very

different, and also their empirical hardness (PFSP-PM is easier for T = 300 or 400 and harder for

T = 100 and 200). Therefore, good solutions for the classical problem are not necessarily good for

29

the proposed problem. For these cases, we propose some constructive heuristics, both by adapting

existing heuristics from the PFSP, and also by developing new specific heuristics for the problem.

The computational results using the Taillard testbed show that, for all the tested values of T , the

specific heuristics provide good results with lower variability than the adapted heuristics.

As future research lines, new objective functions could be analysed for this constraint in the

permutation flowshop, such as the total completion time and the total tardiness, in order to deter-

mine if, for these objectives, a pattern similar to the one observed for the makespan is detected. If

this is the case, it would be interesting to develop approximate methods for these problems.

References

Allaoui, H., Artiba, A., Elmaghraby, S., and Riane, F. (2006). Scheduling of a two-machine flowshop

with availability constraints on the first machine. International Journal of Production Economics,

99(1-2):16–27.

Angel-Bello, F., Alvarez, A., Pacheco, J., and Mart́ınez, I. (2011). A heuristic approach for a

scheduling problem with periodic maintenance and sequence-dependent setup times. Computers

& Mathematics with Applications, 61(4):797–808.

Armentano, V. A. and Ronconi, D. P. (1999). Tabu search for total tardiness minimization in

flowshop scheduling problems. Computers & Operations Research, 26(3):219–235.

Dios, M., Fernandez-Viagas, V., and Framinan, J. M. (2018). Efficient heuristics for the hybrid flow

shop scheduling problem with missing operations. Computers and Industrial Engineering, 115.

Dong, X., Huang, H., and Chen, P. (2008). An improved NEH-based heuristic for the permutation

flowshop problem. Computers & Operations Research, 35(12):3962–3968.

Fernandez-Viagas, V. and Framinan, J. M. (2014). On insertion tie-breaking rules in heuristics for

the permutation flowshop scheduling problem. Computers and Operations Research, 45:60–67.

Fernandez-Viagas, V. and Framinan, J. M. (2015). NEH-based heuristics for the permutation

30

flowshop scheduling problem to minimise total tardiness. Computers & Operations Research,

60:27–36.

Fernandez-Viagas, V. and Framinan, J. M. (2017). Reduction of permutation flowshop problems to

single machine problems using machine dominance relations. Computers & Operations Research,

77:96–110.

Fernandez-Viagas, V., Ruiz, R., and Framinan, J. M. (2017). A new vision of approximate meth-

ods for the permutation flowshop to minimise makespan: State-of-the-art and computational

evaluation. European Journal of Operational Research, 257(3):707–721.

Framinan, J. M., Leisten, R., and Rajendran, C. (2003). Different initial sequences for the heuristic

of Nawaz, Enscore and Ham to minimize makespan, idletime or flowtime in the static permutation

flowshop sequencing problem. International Journal of Production Research, 41(1):121–148.

Framinan, J. M., Leisten, R., and Ruiz, R. (2014). Manufacturing scheduling systems: An integrated

view on models, methods and tools, volume 9781447162. Springer-Verlag London Ltd.

Graham, R., Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A. (1979). Optimization and heuristic

in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics, 5:287–326.

Gurobi Optimization, L. (2018). Gurobi optimizer reference manual.

Hsu, C.-J., Low, C., and Su, C.-T. (2010). A single-machine scheduling problem with maintenance

activities to minimize makespan. Applied Mathematics and Computation, 215(11):3929–3935.

Kaabi, J. and Harrath, Y. (2019). Scheduling on uniform parallel machines with periodic unavail-

ability constraints. International Journal of Production Research, 57(1):216–227.

Kalczynski, P. J. and Kamburowski, J. (2007). On the NEH heuristic for minimizing the makespan

in permutation flow shops. Omega, 35(1):53–60.

Kalczynski, P. J. and Kamburowski, J. (2008). An improved NEH heuristic to minimize makespan

in permutation flow shops. Computers & Operations Research, 35(9):3001–3008.

31

Labidi, M., Kooli, A., Ladhari, T., Gharbi, A., and Suryahatmaja, U. S. (2018). A Computational

Study of the Two-Machine No-Wait Flow Shop Scheduling Problem Subject to Unequal Release

Dates and Non-Availability Constraints. IEEE Access, 6:16294–16304.

Lee, C.-Y. (1997). Current trends in deterministic scheduling. Annals of Operations Research,

70:1–41.

Low, C., Hsu, C.-J., and Su, C.-T. (2010). A modified particle swarm optimization algorithm for a

single-machine scheduling problem with periodic maintenance. Expert Systems with Applications,

37(9):6429–6434.

Ma, Y., Chu, C., and Zuo, C. (2009). A survey of scheduling with deterministic machine availability

constraints. Computers & Industrial Engineering, 58(2):199–211.

Nawaz, M., Enscore, E., and Ham, I. (1982). A Heuristic Algorithm for the m-Machine , n-Job

Flow-shop Sequencing Problem. Omega, 11(1):91–95.

Perez-Gonzalez, P. and Framinan, J. M. (2009). Scheduling permutation flowshops with initial

availability constraint: Analysis of solutions and constructive heuristics. Computers & Operations

Research, 36(10):2866–2876.

Perez-Gonzalez, P. and Framinan, J. M. (2018). Single machine scheduling with periodic machine

availability. Computers & Industrial Engineering, 123:180–188.

Pinedo, M. L. (2008). Scheduling: Theory, Algorithms and Systems. Springer Berlin / Heidelberg,

third edition.

Potts, C. N. and Van Wassenhove, L. N. (1982). A decomposition algorithm for the single machine

total tardiness problem. Operations Research Letters, 1(5):177–181.

Stafford, E. F. J., Tseng, F. T., and Gupta, J. N. (2005). Comparative evaluation of MILP flowshop

models. Journal of the Operational Research Society, 56(1):88–101.

Taillard, E. D. (1990). Some efficient heuristic methods for the flow shop sequencing problem.

European Journal of Operational Research, 47:65–74.

32

Taillard, E. D. (1993). Benchmarks for basic scheduling problems. European Journal of Operational

Research, 64:278–285.

Vallada, E., Ruiz, R., and Framinan, J. M. (2015). New hard benchmark for flowshop scheduling

problems minimising makespan. European Journal of Operational Research, 240(3):666–677.

Xu, Z., Xu, D., He, J., Wang, Q., Liu, A., and Xiao, J. (2018). Mixed Integer Programming

Formulations for Two-Machine Flow Shop Scheduling with an Availability Constraint. Arabian

Journal for Science and Engineering, 43(2):777–788.

Yazdani, M., Jolai, F., Taleghani, M., and Yazdani, R. (2018). A modified imperialist competitive

algorithm for a two-agent single-machine scheduling under periodic maintenance consideration.

International Journal of Operational Research, 32(2):127.

Yu, X., Zhang, Y., and Steiner, G. (2014). Single-machine scheduling with periodic maintenance to

minimize makespan revisited. Journal of Scheduling, 17(3):263–270.

33

