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SUMMARY

Replication of a damagedDNA template can threaten
the integrity of the genome, requiring the use of
various mechanisms to tolerate DNA lesions. The
Smc5/6 complex, together with the Nse2/Mms21
SUMO ligase, plays essential roles in genome stabil-
ity through undefined tasks at damaged replication
forks. Various subunits within the Smc5/6 complex
are substrates of Nse2, but we currently do not
know the role of these modifications. Here we show
that sumoylation of Smc5 is targeted to its coiled-
coil domain, is upregulated by replication fork dam-
age, and participates in bypass of DNA lesions.
smc5-KR mutant cells display defects in formation
of sister chromatid junctions and higher translesion
synthesis. Also, we provide evidence indicating that
Smc5 sumoylation modulates Mph1-dependent
fork regression, acting synergistically with other
pathways to promote chromosome disjunction. We
propose that sumoylation of Smc5 enhances phys-
ical remodeling of damaged forks, avoiding the use
of a more mutagenic tolerance pathway.

INTRODUCTION

Accurate and complete DNA replication is a fundamental part of

cell division. DNA replication forks are intrinsically fragile, and

their stability can be further endangered by the presence of le-

sions in the template. DNA lesions can block or even collapse

replication forks, leading to genomic instability and chromo-

somal rearrangements (Mizuno et al., 2013). Forks arrested

by DNA damage accumulate single-stranded DNA (ssDNA)

opposite the lesion, a signal that activates the DNA replication

checkpoint (Zou and Elledge, 2003). The checkpoint then pre-

vents cells to enter into mitosis and stabilizes replication forks

until they are ready to restart, avoiding their collapse (Tercero

and Diffley, 2001; Sogo et al., 2002). In parallel, activation of

DNA damage tolerance (DDT) mechanisms allows cells to

bypass the lesion, without the need to repair and incur into
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deleterious breaks, thereby enabling completion of DNA replica-

tion (Branzei and Psakhye, 2016; Garcı́a-Rodrı́guez et al., 2016).

DDT thus postpones DNA repair until the replication fork has

moved away.

Most DDT mechanisms depend on modification of PCNA

with ubiquitin and SUMO (Hoege et al., 2002). First, mono-

ubiquitylation of PCNA at K164 leads to a switch from a high-

fidelity replicative to a low-fidelity translesion synthesis (TLS)

DNA polymerase (Lehmann et al., 2007). Although TLS poly-

merases are error prone, they can polymerase through lesions

on the template. Second, K63-linked poly-ubiquitylation of

PCNA at K164, leads to error-free recombination-based swap-

ping of strands with the sister chromatid, a mechanism known

as template switch (Branzei et al., 2008; Zhang and Lawrence,

2005). Swapping strands with the sister allows pairing the end

blocked by a lesion with an undamaged template, facilitating

resumption of replication. Third, homologous recombination

can also be used independently from the template switch

pathway at damaged replication forks (Papouli et al., 2005;

Pfander et al., 2005). To prevent unscheduled recombination

during S phase, which can promote genome rearrangements

(Lambert and Carr, 2013), sumoylation of PCNA at either

K164 or K127 normally recruits the anti-recombinase Srs2 heli-

case in budding yeast (Hoege et al., 2002; Papouli et al., 2005;

Pfander et al., 2005). However, homologous recombination

can still be invoked through Srs2 degradation as a salvage

pathway to locally rescue stalled replication forks (Urulangodi

et al., 2015). Both template switch and the salvage pathway

ultimately generate sister chromatid junctions (SCJs), recombi-

nation structures that display exchange of strands between

sister chromatids. Several DNA cleavage enzymes, including

the Sgs1-Top3-Rmi1 (STR) complex, the Mms4-Mus81 com-

plex, and the Slx4 and Yen1 nucleases, subsequently remove

recombination intermediates. The STR complex is the major

pathway for elimination of SCJs during S phase, while Mms4-

Mus81 cleaves these structures in mitosis (Matos and West,

2014).

Whereas template switch can be spatially and temporally

uncoupled from the replication fork (Daigaku et al., 2010; Karras

and Jentsch, 2010), there is another DDT mechanism, able

to anneal newly replicated strands specifically at the replica-

tion fork, in a process known as fork regression (Meng and
thor(s).
commons.org/licenses/by/4.0/).
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Zhao, 2017). This converts Y-shaped three-way junctions into

four-way DNA structures. Replication fork regression protects

damaged forks by preventing extensive ssDNA generation

and by providing access of repair systems to the damaged

template. Additionally, nucleolytic processing of regressed forks

could potentially trigger invasion of parental strands ahead of the

fork, generating SCJs (Meng and Zhao, 2017). There are several

enzymes known to promote fork regression (Branzei and Szakal,

2017). Mph1 and its orthologs in human and fission yeast,

FANCM and Fml1, are motor proteins able to catalyze remodel-

ing of replication fork into regressed structures in vitro (Whitby,

2010). This activity allows Mph1 to function in template switch-

independent error-free DNA damage bypass (Sch€urer et al.,

2004). In accordance, Mph1-dependent recombination struc-

tures have been detected using two-dimensional (2D) gel

electrophoresis in budding yeast (Chen et al., 2009; Choi et al.,

2010; Chavez et al., 2011). In vitro, Mph1 function in fork regres-

sion, but not its D-loop disruptive activity, is counteracted

by direct binding to the coiled-coil domain of the Smc5

protein (Xue et al., 2014). This function is assisted by the MHF

complex, which helps overcome the inhibitory function of

Smc5 on Mph1 (Xue et al., 2015).

Smc5 is one of the core subunits of the Smc5/6 complex, a

member of the SMC family of protein complexes, with roles in

chromosome segregation and DNA repair. SMC proteins are

elongated molecules with one ATPase head at one end,

separated by a long coiled coil from an heterodimerization or

hinge domain at the other end. The Smc5/6 complex is

composed of two SMC subunits (Smc5 and Smc6) and six

non-SMC elements (Nse1–Nse6). Nse2 has an essential N-ter-

minal domain that binds to the coiled-coil domain of Smc5 and

a C-terminal domain coding for an SP-RING SUMO E3 ligase

(Zhao and Blobel, 2005; Potts and Yu, 2005; Andrews et al.,

2005). The activity of the Nse2 ligase is enhanced by ATPase-

dependent loading of the complex onto chromatin and direct

binding of DNA to the Smc5 molecule (Varej~ao et al., 2018; Ber-

múdez-López et al., 2015). Although the SP-RING domain is

not essential for viability, its mutation reduces sumoylation of

several chromosome associated proteins (Albuquerque et al.,

2013) and results in DNA damage sensitivity. In accordance,

two complexes directly involved in DNA repair, cohesin and

STR, have been characterized as targets of Nse2 (Almedawar

et al., 2012; Bermúdez-López et al., 2016; Bonner et al., 2016;

McAleenan et al., 2012). In addition, the SP-RING domain

promotes completion of DNA replication and chromosome

segregation (Bermúdez-López et al., 2010, 2015), most prob-

ably by facilitating replication fork progression. This function

is particularly critical in the rDNA array (Menolfi et al., 2015;

Torres-Rosell et al., 2007). A recent study indicated that the

Smc5/6-dependent inhibition of Mph1 fork regression activities

in the rDNA array plays a prominent role in replication of this lo-

cus (Peng et al., 2018).

One of the most noticeable targets of the Nse2 SUMO ligase

is its own docking site in the Smc5/6 complex, the Smc5

subunit (Bermúdez-López et al., 2016, 2015; Chen et al.,

2009; Duan et al., 2009). However, we do not know the sites

targeted by SUMO in the Smc5 protein, nor how it affects

the function of the Smc5/6 complex in genome integrity.
Here we map SUMO-targeted lysines to the coiled-coil

domain of Smc5 and show that Smc5 is mainly sumoylated

in response to replication fork damage. Furthermore, using

SUMO-impaired smc5-KR mutants, we reveal that this modifi-

cation promotes DDT though Mph1. In the absence of Smc5

sumoylation, cells upregulate mutagenic TLS and reduce the

formation of SCJs. Finally, our results indicate that this lesion

bypass mechanism is normally backed up by Mms4-Mus81,

which allows the completion of chromosome replication and

disjunction in the absence of Smc5 sumoylation.

RESULTS

Smc5 Is Specifically Sumoylated in Response to
Replication Fork Damage in S. cerevisiae

Smc5 is the most highly sumoylated subunit of the Smc5/6

complex in S. cerevisiae (Bermúdez-López et al., 2016). Be-

sides, sumoylation of Smc5 increases after exposure of cells

to the alkylating agent methyl methanesulfonate (MMS), sug-

gesting that this modification participates in repair of damaged

replication forks. The Smc5/6 complex contributes to the

repair not only of alkylation damage but also of a broad spec-

trum of genotoxic agents, including camptothecin (CPT),

phleomycin, and hydroxyurea (HU) (Kegel and Sjögren,

2010). To better understand what induces Smc5 sumoylation,

we treated yeast cells expressing Smc5-9xmyc and 6xhis-

FLAG-Smt3 with various genotoxic agents. Protein extracts

were prepared under strong denaturing conditions, and su-

moylated proteins were purified using NiNTA affinity pull-

downs. As shown in Figure 1A, Smc5 sumoylation is strongly

induced by treatment with MMS. In contrast, it only shows re-

sidual activation by treatment with a lethal dose of phleomy-

cin, and we did not detect any induction with HU or CPT. To

ascertain the levels of DNA damage induced by each treat-

ment, we analyzed phosphorylation of the Rad53 checkpoint

kinase. MMS and phleomycin induced similar strong phos-

phorylation of Rad53, while HU and CPT induced a more

modest response (Figure 1A). Therefore, although MMS in-

duces a stronger sumoylation of Smc5 than phleomycin, the

levels of checkpoint activity induced by both treatments are

similar.

Next, we analyzed whether the specificity for MMS-induced

damage is typical of all targets of the Nse2 SUMO ligase. To

this end, we tested sumoylation of three additional Nse2 tar-

gets, Sgs1, Smc1, and Fob1. Sgs1 is the budding yeast homo-

log of the Bloom helicase, and its sumoylation is known to

depend on Nse2 in yeast and human cells (Bermúdez-López

et al., 2016; Bonner et al., 2016; Pond et al., 2019). Sgs1 su-

moylation was almost undetectable in untreated cells and

showed the highest induction in sumoylation after treatment

with phleomycin, followed by MMS and CPT (Figure 1A).

Smc1 is a subunit of the cohesin complex and its sumoylation

also partly depends on Nse2 (McAleenan et al., 2012). Differ-

ently to Smc5 and Sgs1, Smc1 sumoylation was induced not

only by MMS and phleomycin but also by HU and CPT (Fig-

ure 1A). The Fob1 protein binds to the repetitive rDNA locus

throughout the cell cycle. Interestingly, Fob1 sumoylation is

predominantly Nse2 dependent (Figure S1). Fob1 showed
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Figure 1. Sumoylation of Smc5 Is Specifically

Induced in Response to Replication Fork

Damage

(A) Pull-down analysis of Nse2 targets in response

to genotoxic stress. Exponentially cells expressing

6xHis-FLAG (HF)-tagged SUMO and the indicated

6xHA-tagged Nse2 targets (Smc5, Sgs1, Smc1,

and Fob1) were treated for 90min with the indicated

genotoxic agents. HF-SUMO was pulled down

(P.D.) under denaturing conditions from yeast

protein extracts (P.E.s) to purify sumoylated spe-

cies. P.E. and P.D. samples were analyzed using

western blot with the indicated antibodies. See also

Figure S1.

(B) Wild-type (WT) and rad53D slm1D (53D) cells

expressing HF-SUMO were treated with 0.02%

MMS or 0.2 M HU. Samples were processed as in

(A) to analyze sumoylation of Smc5.

(C) Cells expressing Smc5-9xmyc were arrested in

G1 with alpha factor and were subsequently

released into a synchronous cell cycle. Alpha factor

was added again 45 min after release to prevent re-

entry into a new cell cycle. Samples were taken for

fluorescence-activated cell sorting (FACS) analysis

(top panel) and anti-myc western blot (bottom

panel). Smc5-SUMO species are detected as a

band with lower electrophoretic mobility, and are

shifted upward when SUMO carries the HF tag (last

lane).
the least variation among the four tested Nse2 targets, with no

particular induction by any of the DNA damaging agents

tested (Figure 1A). Therefore, we conclude that not all Nse2

targets are sumoylated to the same extent by different types

of DNA damage. In addition, our analysis reveals that Smc5

is specifically sumoylated in response to MMS.

Although both 0.033% MMS and 0.2 M HU severely affect

replication fork progression and activate checkpoint responses

in S phase, such as Rad53 phosphorylation, we noticed that

treatment with HU actually reduced Smc5 sumoylation levels.

This suggests that Smc5 is sumoylated in response not to

replication fork arrest but to damaged replication forks. Replica-

tion forks arrested by dNTP depletion are stabilized by the

DNA damage checkpoint, and inactivation of the Rad53 check-

point kinase leads to replication fork collapse in response to

HU-induced replicative stress (Lopes et al., 2001). As shown in

Figure 1B, and differently from wild-type cells, rad53D mutant

cells displayed a robust induction of Smc5 sumoylation in

response to HU, suggesting that collapsed forks strongly pro-

mote Smc5 sumoylation. In addition, these results indicate that

the DNA damage checkpoint does not participate in Smc5

sumoylation, as occurs with most other DNA damage-depen-

dent SUMO targets (Cremona et al., 2012). Overall, we conclude

that Smc5 sumoylation is upregulated in response to replication

fork damage. In agreement, sumoylation of Smc5, detectable in

total protein extracts as a band with lower electrophoretic

mobility, peaks in middle-late S phase in cultures progressing

synchronously from a G1 release (Figure 1C).
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Identification of SUMO Acceptor Sites in Smc5 and
Generation of a Non-sumoylatable Allele
We next set out to identify the sumoylated lysines in Smc5, using

amutational approach, with the aim to generate a non-sumoylat-

able smc5 mutant. We started by changing all the lysines in the

Smc5 protein (except K75 in the catalytic site) to arginines,

thus generating an smc5-KallR allele. The mutant protein was

expressed at similar levels to its wild-type counterpart but, as

expected, was not sumoylated (Figure S2A). To identify regions

in the Smc5 protein targeted by SUMO, we restrained KR

mutations to specific domains in the Smc5 protein. We thus

generated a set of five smc5-KR alleles, affected in each of these

domains: smc5-KR1 to smc5-KR5 (Figure 2A). SUMO pull-down

analysis showed that the sumoylation was slightly reduced in

smc5-KR3 cells, although the difference was not statistically

significant (Holm-Bonferroni post hoc test), suggesting that

sumoylation does not occur in the hinge domain (Figure 2B). In

contrast, mutation of lysines in the head domains (smc5-KR1

and smc5-KR5) diminished Smc5 sumoylation (Figure 2B).

To test if the KR mutations affect SUMO ligase activity, we

monitored sumoylation of the Smc6 subunit, which also depends

on Nse2. As shown in Figure 2C, sumoylation of Smc6 was fully

rescued by expression of SMC5 in auxin-sensitive smc5-aid

cells, but not by the KallR allele, and only partially by the KR1

or KR5 mutants. Therefore, the smc5-KR1 and smc5-KR5

sumoylation defects are most probably due not to mutation of

SUMO acceptor sites but to lower Nse2 activity. As shown in

Figure 2D, all smc5-KR alleles were viable, except smc5-KallR.
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Figure 2. Identification of SUMO Acceptor Sites in Smc5

(A) Summary of the KR alleles generated, including affected domain/subdomain (in dark gray) and position of mutated residues. Yellow boxes indicate the Nse2-

binding region in Smc5.

(B) Exponentially growing cultures of cells expressing HF-SMT3 and the indicated smc5-KR-9xmyc mutants from centromeric vectors were collected and

analyzed using pull-down of SUMO conjugates. Bottom panel: quantification of sumoylated Smc5 species from three independent pull-down experiments.

(legend continued on next page)
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However, cells expressing the smc5-KR1 and smc5-KR5 mu-

tants displayed sensitivity to MMS. Because most Smc5/6

mutants have reduced activity of the Nse2 ligase (Bermúdez-Ló-

pez et al., 2015), the most plausible explanation for the MMS

sensitivity and lower Smc5 and Smc6 sumoylation is that

smc5-KR1 and smc5-KR5 are hypomorphic for Smc5/6 and

SUMO ligase function.

Interestingly, we observed that there were two main bands

of Smc5 sumoylation in western blots, likely reflecting two

different Smc5-SUMO species (S1 and S2; Figure 2E). The

slowest migrating band (S1) most probably corresponds to

modification of the first coiled-coil domain, as it was absent

in a mutant smc5-KR2 protein (Figure 2E). In contrast, the

lower band (S2) was specifically downregulated when lysine

residues in coiled coil 2 were mutated (smc5-KR4), suggesting

that this band mainly reports sumoylation of lysines in the

second coiled coil (Figure 2E). The smc5-KR2 and smc5-

KR4 mutants were able to complement the lack of expression

of endogenous SMC5 and displayed no growth defects in the

presence of MMS (Figure 2D). Therefore, we reasoned that

the altered sumoylation pattern of the KR2 and KR4 alleles

is due to loss of acceptor SUMO sites. We conclude from

these observations that lysines targeted by SUMO in the

Smc5 protein are located in its coiled-coil domain. In accor-

dance, SUMO pull-down experiments showed that an smc5-

KR6 allele, carrying mutations in all the lysines of the coiled

coils, severely reduced Smc5 sumoylation (Figure 2E). How-

ever, the smc5-KR6 allele also lowered Smc6-SUMO species

(see below) and sensitized cells to MMS (Figure 2D). This

could be due to a specific function of Smc5 sumoylation in

response to MMS damage or, as observed in smc5-KR1 or

smc5-KR5 mutants, to an hypomorphic phenotype in smc5-

KR6 cells.

Next, the coiled-coil domain of Smc5 was divided into three

sub-sections, the hinge-proximal region, the Nse2 binding

site, and the ATPase head-proximal region, to generate three

new KR mutant alleles (Figure 3A). As shown in Figure 3B, su-

moylation of Smc5 was not affected by mutation of lysines

proximal to the ATPase head (smc5-KR9). In contrast, muta-

tion of lysines proximal to the hinge domain (smc5-KR7)

reduced S2 species, whereas mutation of lysines in the

Nse2 binding site (smc5-KR8) diminished the intensity of the

S1 band. These observations suggest that sumoylation occurs

in the Nse2-binding region of the first coiled coil (between

K310 and K356) and in the hinge-proximal region of the sec-

ond coiled coil (between K656 and K745). To corroborate

this prediction, we created a new allele that combined these

two sets of KR mutations, smc5-KR10, which was severely

impaired in sumoylation (Figure 3B). In response to 0.02%
(C) Exponentially growing cultures of smc5-aid SMC6-6HA HF-SMT3 cells expr

1 mM IAA for 1 h, and samples were collected for SUMO pull-down analysis. Bott

pull-down experiments.

(D) Growth test analysis of GAL1p-SMC5 cells transformed with the indicated ce

(E) Pull-down analysis of Smc5 sumoylation in KRmutants of the coiled-coil doma

species with higher electrophoretic mobility. Bottom panel: quantification of S1 a

In (B), (C), and (E), circles indicate individual measurements, and red lines indicate

significant p values are shown. See also Figure S2A.
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MMS treatment, smc5-KR10 cells showed a specific reduction

in the S1 band, indicating that K310 to K356 are also the main

SUMO targets after replication fork damage (Figure S3). The

presence of other sumoylated forms in smc5-KR10 cells sug-

gests that SUMO acceptor sites in Smc5 present some levels

of redundancy, especially under conditions of extensive repli-

cation fork damage.

In an effort to further pinpoint the targeted lysines in Smc5,

we generated a new allele, smc5-KR11, comprising the KR

mutations closer to the boundary between the Nse2-binding

site on coiled coil 1 and the hinge-proximal subdomain in

coiled coil 2. However, these mutations did not alter the S1 su-

moylation band (Figure 3B). This band seemed to depend on a

group of lysines in the N-terminal side of the Nse2 binding site

(K310–K337), as evidenced by the lack of the S1 band in the

smc5-KR12 allele (Figure 3B). To further identify the main sites

of sumoylation in S1, we constructed a new allele, smc5-

KR13, carrying mutations spanning K310–K327, which sub-

stantially reduced S1 sumoylation (Figure 3B). On the other

hand, because both smc5-KR11 and smc5-KR12 showed

somewhat reduced levels of the S2 band, but not as low as

in the smc5-KR10 allele (Figure 3B), we conclude that sumoy-

lation in coiled coil 2 is quite dispersed. Overall, we propose

that Smc5 has one major sumoylation hotspot, located be-

tween K310 and K327 in coiled coil 1; additionally, there is a

second more diffuse sumoylation region in coiled coil 2, be-

tween K656 and K745. A summary of all the mutant alleles

and their sumoylation levels is shown in Figure 3C. To verify

that Smc5 can accept SUMO at these two locations, we

sumoylated Smc5 in bacteria and analyzed the modified pro-

tein by mass spectrometry (Figures S3A–S3C). K311 and

K667, which are located in the two regions mapped as

SUMO acceptor sites in smc5-KR10 cells, were identified as

high-confidence sumoylated residues (Figures S3C and

S3D). However, neither single nor double K311R and K667R

mutants affected sumoylation of Smc5 in vivo, suggesting

that Smc5 sumoylation sites are redundant (Figure S3E). The

modification of other lysines in vitro, which were not identified

using a KR mutagenesis strategy in vivo, may be due to the

use of a human sumoylation machinery, in a bacterial environ-

ment, and in the absence of the rest of the Smc5/6 subunits.

The Nse2 SUMO Ligase Is Functional in an smc5-KR10
Mutant
Surprisingly, none of the KR mutants affected in the coiled-coil

domain of Smc5 (except smc5-KR6) were sensitive to MMS

(Figure 4A). Of note, the smc5-KR10 allele, which shows

very low levels of sumoylation, was wild-type for MMS sensi-

tivity (Figures 3B and 4A). These results suggest that Smc5
essing the indicated KR alleles from a centromeric plasmid were treated with

om panel: quantification of sumoylated Smc6 species from three independent

ntromeric plasmids. Glucose, GAL promoter off; galactose, GAL promoter on.

in. S1, sumoylated species with lower electrophoretic mobility; S2, sumoylated

nd S2 Smc5-SUMO species from five independent pull-down experiments.

mean values. p values were calculated using one-way ANOVA; only statistically
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Figure 3. Identification of SUMO Acceptor

Sites in the Coiled-Coil Domain of Smc5

(A) Summary of the KR alleles generated in this study,

including affected domain/subdomain (in dark gray)

and position of mutated lysines. Yellow boxes indi-

cate the Nse2-binding region in Smc5.

(B) Exponentially growing cultures of the indicated

strains were collected and analyzed using pull-down

of HF-SUMO. Western blots in the left and middle

panels are from cells expressing SMC5 alleles from

centromeric plasmids; western blot shown in the right

panel is from cells expressing SMC5 alleles from the

endogenous SMC5 locus. S1, sumoylated species

with lower electrophoretic mobility; S2, sumoylated

species with higher electrophoretic mobility. See also

Figures S2B S3.

(C) Graphical depiction of the Smc5 mutant proteins

generated in this study, indicating the position of the

mutated lysine residues (in black) in the folded coiled

coil structure of Smc5. The sumoylation state in

Smc5 (Smc5-SUMO) is indicated as + (WT sumoy-

lation), +/� or �/+ (partial sumoylation), and �
(severely affected sumoylation).

See also Figure S3.
sumoylation may not have a net impact on DNA repair. To test

if the KR mutations in the coiled coil affect the SUMO ligase in

Nse2, we monitored sumoylation of Smc6 after Smc5 deple-

tion in smc5-aid cells. Pull-down analysis indicated that

Smc6 sumoylation levels were similar in cells ectopically ex-

pressing wild-type SMC5 or the smc5-KR10 mutant allele (Fig-

ure 4B). However, and in accordance with MMS sensitivity,

we detected reduced levels of Smc6 sumoylation in smc5-

KR6 cells. This observation indicates that the Nse2 SUMO

ligase is not fully functional in smc5-KR6 cells. We speculate

that the MMS sensitivity of smc5-KR6 mutants is due to a

structural alteration in the coiled-coil domain and the concom-

itant acquisition of a hypomorphic phenotype.

Mutations that prevent Smc5 sumoylation lie close to the Nse2

binding site. Therefore, the smc5-KR10 allele could indirectly

affect Smc5 sumoylation by altering the integrity of the Smc5/6

complex. We thus tested the Nse2-Smc5 interaction using co-

immunoprecipitation analysis. As shown in Figure 4C, similar

levels of the Nse2 subunit interacted with either wild-type or

mutant proteins. The smc5-KR10 mutation also did not seem

to reduce the binding to the Nse4 kleisin subunit (Figure 4C).

We have recently shown that the activity of the Nse2 SUMO

ligase is modulated by binding of Smc5 to DNA. Decreased

Smc5 sumoylation could therefore be due to defective loading

of the Smc5/6 complex onto DNA. Chromosome spreads can
Cell Rep
be used to estimate changes in binding of

Smc5/6 complexes to chromatin (Jeppsson

et al., 2014; Varej~ao et al., 2018). As shown

in Figure 4D, the smc5-KR10 and smc5-

KR13 alleles did not significantly alter the

association of Smc5 with chromatin. These

results indicate that smc5-KR10 prevents

sumoylation of Smc5 without affecting the

binding of the SUMO ligase to its docking
site, its E3 activity, the integrity of the Smc5/6 complex, or bind-

ing of Smc5 to chromatin.

Smc5 Sumoylation Promotes SCJs in the rDNA Locus
Because Smc5 sumoylation is enhanced by replication fork

damage, we reasoned that smc5-KR10 mutant cells could

display impairments in fork progression upon encounter with

DNA lesions. Forks stalled at DNA lesions are frequently chan-

neled into tolerance pathways to enable DNA synthesis and

prevent fork collapse. The error-free branch of the DNA damage

tolerance pathway promotes template switch behind the fork,

leading to the formation of X-shaped sister chromatid junctions

(SCJs). These structures can be detected using 2D gel electro-

phoresis in cells replicating in the presence of DNA damage.

Under these conditions, mutations in the STR complex accumu-

late SCJs (Branzei et al., 2008; Fumasoni et al., 2015). SCJs in

the rDNA locus were observed by 2D gel in single sgs1Dmutant

cells after release from a G1 cell-cycle arrest into 0.03% MMS,

but not under unchallenged condition (Figures 5A and 5B). To

our surprise, the smc5-KR10 allele substantially reduced the

amount of SCJs in sgs1D mutant cells. These results suggest

that sumoylation of Smc5 promotes strand exchange during

replication of a damaged DNA template.

Rad5-Mms2/Ubc13 triggers template switch through poly-

ubiquitination of PCNA (Pol30 in budding yeast) (Branzei
orts 29, 3160–3172, December 3, 2019 3165
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Figure 4. The Nse2 SUMO Ligase Is Func-

tional in an smc5-KR10 Mutant

(A) Growth test analysis of GAL1p-SMC5 cells

transformed with the indicated centromeric plas-

mids.

(B) Exponentially growing cultures of smc5-aid

SMC6-6HA HF-SMT3 cells expressing the indicated

KR alleles from a centromeric plasmid were treated

as in Figure 2C. Bottom panel: quantification of su-

moylated Smc6 species from three independent

pull-down experiments. Circles indicate individual

measurements, and red lines indicatemean values. p

values were calculated using one-way ANOVA.

(C) Analysis of the Smc5-Nse4 and Smc5-Nse2

interaction in smc5-KR10 mutants. Exponentially

growing Nse4-6xHA or Nse2-6xHA cells, expressing

9xmyc-tagged versions of either WT SMC5 or smc5-

10KR allele (KR), were collected for anti-HA immu-

noprecipitation. IP, immunoprecipitation; P.E., pro-

tein extract.

(D) Quantification of endogenous Smc5-6HA signal

from immunofluorescence on chromosome spreads

in exponentially growing cells. Themean value onWT

spreads was arbitrarily set to 1. Red lines show

medians, box limits indicate the 25th and 75th per-

centiles as determined using R software, whiskers

extend 1.5 times the interquartile range from the 25th

and 75th percentiles, and outliers are represented by

circles. n, number of nuclei analyzed. p values were

calculated using ANOVA.
et al., 2008). To analyze a possible role for Smc5 sumoylation

in template switch, we analyzed the modification status of

PCNA by western blot. Pol30 ubiquitylation (mono- and poly-

ubiquitylation) was triggered in response to MMS-induced

damage, and this effect was suppressed in mms2D and

pol30-K164R mutants (Figure 5C). As sumoylated Pol30

(SIZ1-dependent) and di-ubiquitylated Pol30 (MMS2-depen-

dent) forms ran very close to each other in western blots

(Papouli et al., 2005; Hoege et al., 2002; Pfander et al.,

2005), we used strains that carry a 6his-FLAG (HF) tag on

SUMO to increase the molecular weight of the sumoylated

Pol30 species. As shown in Figure 5C, Pol30 modifications

were not substantially different in wild-type and smc5-KR10

cells, suggesting that Smc5 sumoylation acts in a different

pathway from, or downstream of, PCNA poly-ubiquitination.

Smc5 Sumoylation Is Functionally Linked to Mph1
DNA lesions that are not bypassed by strand exchange are

frequently channeled into the error-prone translesion synthesis

(TLS) pathway (Branzei and Psakhye, 2016; Sch€urer et al.,

2004). TLS involves replication of the damaged template

by the mutagenic Rev3 DNA polymerase, increasing the

mutagenesis rate. smc5-KR10 cells showed a 2.6-fold in-

crease in the spontaneous mutagenesis rate (Figure 6A).

This increase was dependent on REV3, which accounts for

most mutagenic events in yeast (Figure 6A). These results indi-

cate that defects in strand exchange at the fork are compen-

sated by higher use of the Rev3 TLS polymerase in smc5-

KR10 cells.
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Apart from PCNA-based DNA damage tolerance mecha-

nisms, there are other means to bypass DNA lesions. Members

of the FANCM family of motor proteins, including the budding

yeast Mph1 ortholog, have fork regression activities capable

of promoting template switch at the fork (Sun et al., 2008;

Chen et al., 2009; Choi et al., 2010; Blackford et al., 2012). In

addition, the lack of fork regression in mph1D cells leads to

higher usage of Rev3-dependent translesion synthesis (Fig-

ure 6A) (Scheller et al., 2000). Interestingly, the smc5-KR10 mu-

tation did not increase mutagenesis levels in mph1D cells (Fig-

ure 6A). In accordance, smc5-KR10 did not increase the MMS

sensitivity of mph1D cells (Figure S4A). Moreover, mph1D and

smc5-KR10 were epistatic for MMS sensitivity in mms4D or

sgs1D backgrounds (Figure 6B), mutations that sensitize

smc5-KR10 cells to MMS (see below). These observations

indicate that Smc5 sumoylation and MPH1 are epistatic for

spontaneous mutagenesis and DNA damage sensitivity, sug-

gesting that sumoylation of Smc5 is functionally connected to

Mph1 at the molecular level.

Smc5 interacts with the Mph1 protein through the coiled-coil

domain, and this interaction directly inhibits the fork regression

activity of Mph1 (Xue et al., 2014). As the coiled-coil domain in

Smc5 is also targeted by SUMO, we considered the possibility

that Smc5 sumoylation could affect the interaction with Mph1.

As shown in Figure 6C, Mph1 was able to co-immunoprecipitate

equal amounts of either wild-type Smc5 or KR10 mutant

proteins, indicating that Smc5 sumoylation does not affect its

binding to Mph1. The histone fold MHF complex modulates

Mph1 functions by relieving Smc5-dependent inhibition of
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Figure 5. Accumulation of SCJs in smc5-

KR10 Unsumoylatable Mutant Cells

(A) Two-dimensional gel analysis of WT, smc5-

KR10, sgs1D, and double smc5-KR10 sgs1D

mutant cells. Cultures were released from a syn-

chronous arrest in G1 into 0.03%MMS and samples

taken at the indicated time after G1. Red arrows

indicate joint molecules accumulating in MMS-

treated sgs1D cells.

(B) Quantification of the joint molecules shown in (A).

Bars indicate mean value and SEM of three inde-

pendent experiments. Plotted values are normalized

to the WT strain at each time point. Comparing

sgs1D and smc5-KR10 sgs1D mutants, the p value

calculated using the Wilcoxon signed-rank test for

the MMS treated samples was <0.05.

(C) Western blot analysis with anti-PCNA (anti-

Pol30) antibodies of TCA-protein extracts from

the indicated strains. Samples were treated with

0.02% MMS for 1 h as indicated. S, SUMO-K164;

HF-S, 6his-FLAG-SUMO-K164; U1, PCNA mono-

ubiquitylated at K164; U2, PCNA di-ubiquitylated at

K164; U3, PCNA triubiquitylated at K164; WT, wild-

type; KR10, smc5-KR10; mms2D (unable to poly-

ubiquitylate PCNA, lacking U2 and U3 species);

siz1D (unable to sumoylate PCNA, lacking main

sumoylation band); K164R, Pol30-K164R (unable to

sumoylate or ubiquitylate PCNA at K164). Asterisks

mark bands recognized by the anti-PCNA antibody

but not related to modifications on K164.
Mph1 (Xue et al., 2015). Interestingly, we observed that Mhf1-

TAP immunoprecipitated lower amounts of the Smc5-KR10 pro-

tein, suggesting that sumoylation of Smc5may actually stimulate

the Mhf1-Smc5 interaction (Figure 6D).

Mph1 can also disrupt D-loops during repair of double-

stranded breaks [DSBs], thereby inhibiting break-induced repli-

cation (BIR) (Prakash et al., 2009; Luke-Glaser and Luke,

2012). Notably, this function is not regulated by Smc5 or the

MHF complex (Xue et al., 2014, 2015). To measure if Smc5 su-

moylation affects DSB repair, we tested BIR in a yeast strain

that carries a truncated ura3 allele next to an HO endonuclease

site. Upon HO induction, the break is repaired using an homolo-

gous sequence on the other arm of the chromosome, restoring a

functional URA3 gene (Anand et al., 2014) (Figure S4B). Impor-

tantly, mph1D cells show a higher frequency of URA3 cells after

HO expression (Yimit et al., 2016). In contrast, the smc5-KR10

mutation did not significantly alter the level of BIR (Figure S4C).

Overall, our observations are in agreement with Smc5 sumoyla-

tion regulating only replication-associated repair (and not DSB

repair) Mph1 roles, by helping relieve the negative regulation

on Mph1 at damaged forks. This in turn would endorse fork

regression and lower usage of translesion synthesis (Figure 6E).
Cell Repo
A Deficiency in Smc5 Sumoylation Is
Compensated by Structure-Specific
Nucleases and Helicases
The lack of DNA-damage sensitivity of

smc5-KR10 is at odds with the observation

that MMS induces Smc5 sumoylation

(Figure 1). Consequently, we reasoned
that Smc5 sumoylation might be normally redundant with path-

ways required to maintain the integrity of the genome. To study

this possibility, we crossed smc5-KR cells with genes previously

related to Smc5/6 function.

smc5-KR10 mutant cells showed a strong synthetic fitness

defect in combination with mms4 and esc2 in the presence of

MMS (Figure 7A; Figure S5A). Esc2 has been recently shown to

directly stimulate the endonuclease activity of the Mms4-

Mus81 complex (Sebesta et al., 2017). These interactions are

also exhibited by the smc5-KR13 allele, indicating that the

synthetic sick defect is due mostly to reduced sumoylation in

coiled coil 1 (Figure S5B). Additionally, we detected a mild

synthetic sick phenotype of smc5-KR10 in combination with

mutations in the SLX4 nuclease and the RRM3 helicase (Fig-

ure S5C). Therefore, the deficiency in Smc5 sumoylation is

normally compensated by the activity of structure selective nu-

cleases and helicases. Even though Mus81-Mms4 and Slx4 are

functionally connected through Cdk-dependent phosphorylation

(Gritenaite et al., 2014), disruption of this interaction in slx4-

S486A cells was not synthetic sickwith smc5-KR10 (Figure S5D).

Mms4-Mus81 operates late in the cell cycle to cleave sister

chromatid junctions that prevent chromosome disjunction
rts 29, 3160–3172, December 3, 2019 3167
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Figure 6. Smc5 Sumoylation Negatively

Regulates Mph1-Dependent Translesion

Synthesis

(A) Spontaneous mutation rate analysis at the CAN1

locus. Blue dots indicate mutation rate per cell

per division; black bars show upper and lower

95% confidence limits. n, number of independent

cultures.

(B) Growth test analysis of the indicated strains

on YPD medium containing or not the indicated

MMS concentrations. KR10, smc5-KR10. See also

Figure S4A.

(C) TAP co-immunoprecipitation analysis of the

Smc5-Mph1 interaction. Mph1 was tagged with the

TAPepitopeandWTandKR10mutantSmc5with the

9xmyc epitope. IP, immunoprecipitation; P.E., pro-

tein extract.

(D) TAP co-immunoprecipitation analysis of the

Smc5-Mhf1 interaction in smc5-KR10mutants.Mhf1

was taggedwith TAP and Smc5with 9xmyc. Bottom

panel: Quantification of Smc5-Mhf1 co-immunopre-

cipitation levels. Circles indicate individual mea-

surements, red line indicates median value. p value

was calculated using one-way ANOVA.

(E) Model of Smc5 sumoylation-dependent lesion

bypass at damaged forks. Smc5 sumoylation re-

lieves the negative regulation on Mph1. This helps

locally promote fork regression, thereby bypassing

lesionsandpreventing theuseof themoremutagenic

TLS pathway.

See also Figure S4B.
(Matos et al., 2011; Szakal and Branzei, 2013; Gallo-Fernán-

dez et al., 2012). The synthetic sickness of smc5-KR10 mms4D

double mutants suggests that some replication forks not prop-

erly processed in smc5-KR10 cells may later require cleavage

by the nuclease. Inactivation of both mechanisms should

therefore lead to accumulation of unprocessed forks at the

time of chromosome segregation, potentially affecting chro-

mosome disjunction. To test this possibility, we synchronized

wild-type, smc5-KR10, mms4D, and double smc5-

KR10 mms4D cells in G1. Cells were then treated with

0.01% MMS for 30 min to induce alkylation damage and

were subsequently released into a synchronous cell cycle in

the absence of MMS. Importantly, these conditions do not

trigger a checkpoint response (Bermúdez-López et al.,

2010). As shown in Figure 7B, all cells entered anaphase

60–75 min after release from G1. However, we noticed that

double smc5-KR10 mms4D cells displayed larger numbers

of anaphase figures, particularly at later time points (90 min

onward); this phenotype was accompanied by lower number

of cells with two segregated nuclei and higher levels of cells

with unequal segregation of nuclear masses (nuclear misse-

gregation; Figures 7B–7D). Therefore, we conclude that

Mms4 and Smc5 sumoylation act in parallel pathways in

response to alkylation damage to ensure chromosome

segregation.
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DISCUSSION

Here we have shown that Smc5 is preferentially sumoylated un-

der conditions of replication fork damage, in a pattern that is

remarkably different from other Nse2-dependent substrates.

Our analysis indicates that Smc5 sumoylation is a specific

read-out for replication fork damage, responding differently to

paused or damaged replication forks and to replication-depen-

dent or replication-independent double-stranded breaks. From

a more mechanistic point of view, our findings are consistent

with lower activity of the Mph1 motor protein, a fork regression

enzyme that normally contributes to lesion bypass at the fork

(Xue et al., 2014, 2015), in smc5-KR mutant cells (Figure 6E). In

accordance, deficient sumoylation of Smc5 leads to reduced

formation of sister chromatid junctions in the rDNA and favors

the use of the more mutagenic translesion synthesis pathway.

Altogether, our results point toward the participation of Smc5 su-

moylated species in DDT.

A Potential Mechanism for Smc5 Sumoylation in Lesion
Bypass
Smc5 is part of the Smc5/6 complex, and several of its subunits

are also targeted by SUMO (Bermúdez-López et al., 2016).

SUMO often targets protein complexes or groups of physically

connected proteins, what has been referred to as protein
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Figure 7. The smc5-KR10 Mutant Is Compen-

sated by Structure-Specific Nucleases and

Helicases

(A) Growth test analysis of WT, smc5-KR10 (KR10),

mms4D, and double mms4D smc5-KR10 cells; 10-

fold serial dilutions of the liquid cultures were spotted

in YPD in the presence of the indicated MMS con-

centrations and pictures taken after 48 h. See also

Figures S5 and S6.

(B) Cells of the indicated genotype were synchro-

nized in G1 with alpha factor, treated with MMS

0.01% for 30 min, and released into a synchronous

cell cycle in the absence of MMS. Samples were

taken at the indicated time points for microscopic

analysis and scored for budding (first S phase), re-

budding (second S phase), elongated nucleus be-

tween mother and daughter cell (anaphase), two

nuclei (two nuclear masses between mother cell and

bud), and nuclear missegregation (unequal segre-

gation of nuclear masses).

(C) Quantification of nuclear missegregation from

three independent experiments. Bars indicate

means, error bars are SEM.

(D) Exampleof double-mutant cells at a late timepoint.

Arrowpoints toa cellwithnuclear segregationdefects.
group sumoylation (Psakhye and Jentsch, 2012). Protein group

sumoylation functions as a molecular glue. Importantly, our re-

sults demonstrate that sumoylation of an individual component

in a protein complex can have its own role, beyond its putative

synergistic effect with other sumoylated subunits. Although we

have not examined the role of sumoylation in other Smc5/6 sub-

units, we cannot exclude that they also participate in, or even rein-

force, bypass of fork damage. Our results suggest that sumoyla-

tion of Smc5 might create a molecular environment that relieves

the negative regulation on Mph1-dependent fork regression,

maybe by increasing the frequency of Smc5-Mhf1 interactions.

The epistatic effect of smc5-KR10mutants on theMMSsensitivity

and mutation rate of mph1D cells also supports this model. It is

worth noting that spontaneous mutagenesis in mph1D mutant

cells is higher than in smc5-KR10 cells. This observation reflects

a firmer role forMph1 thanSmc5 sumoylation in suppressing TLS,

suggesting that sumoylation of Smc5 only contributes to a subset

of all Mph1-dependent fork bypass events.

It is currently unclear howMHF relieves Mph1 from Smc5 inhi-

bition. Mph1 directly interacts with Smc5 and Mhf1, probably

bridging an Smc5-Mph1-MHF trimeric interaction (Xue et al.,

2016). It is therefore probable that MHF reactivates the fork
Cell Rep
regression activity of Mph1 without neces-

sarily disengaging Smc5 fromMph1. There-

fore, we envisage that Smc5 may be su-

moylated in a small subset of damaged

forks, enhancing Mph1-dependent fork

regression. Mph1 would remain inhibited

by Smc5 at most other damaged sites,

requiring other means of DDT for lesion

bypass. Previous works have shown that

Mph1-dependent fork regression only jus-

tifies around one third of the SCJs accumu-
lating in a specific region of chromosome 3 of sgs1D mutants

(Mankouri et al., 2009; Chen et al., 2009). In contrast, our data

suggest that Smc5 sumoylation could account for a larger frac-

tion of the X-shaped molecules accumulating in the rDNA array

(Figure 5). It is possible that Smc5 sumoylation and Mph1 play

a more active role in regulating fork stability in the rDNA than in

the rest of the genome. In accordance, the Smc5/6 complex is

enriched in this locus, where it plays various roles to maintain

its integrity (De Piccoli et al., 2009; Torres-Rosell et al., 2005).

In addition, forks arrested by Fob1 at the replication fork barrier

present in each repeat may promote replication fork regression

(Peng et al., 2018). This could make this repetitive locus particu-

larly susceptible to regulation by Smc5/6 and Mph1.

Smc5 Sumoylation Is Redundant with Other Pathways
Operating at Damaged Replication Forks
Our genetic analysis indicates that the Mms4/Mus81 complex, as

well as other nucleases/helicases, normally compensate defects

in Smc5 sumoylation. Mms4/Mus81 has also been proposed to

back up the STR complex in removal of template switch struc-

tures that persist in G2/M (Matos et al., 2011; Gallo-Fernández

et al., 2012). However, Mms4/Mus81 plays a limited role in
orts 29, 3160–3172, December 3, 2019 3169



resolution of template switch structures, and differently from

sgs1D cells,mms4D mutant cells do not accumulate SCJs (Ash-

ton et al., 2011). In contrast, activation ofMms4/Mus81 in G2/M is

essential for completion of genome replication in the presence of

DNA damage (Saugar et al., 2013), which suggests that Mms4/

Mus81 may cleave replication forks blocked by DNA lesions in

G2/M. In mammals, entry into mitosis also triggers recruitment

of Eme1/Mus81 to forks stalled at chromosome fragile sites. Its

nuclease activity then allows resumption of DNA synthesis, pro-

moting chromosome disjunction (Minocherhomji et al., 2015).

Therefore, Mms4/Mus81 helps complete genome replication by

means different from resolution of template switch structures. In

accordance, whereas sgs1D and mms2D are epistatic, mms4D

andmms2D are additive for MMS sensitivity (Figure S6). We pro-

pose that forks that are left unprocessed in smc5-KR cells may

require the action of different helicases/nucleases, including the

Mms4/Mus81 complex, to reactivate them.

Although fork regression is generally accepted to occur in

fission yeast and mammalian cells, these structures have not

been detected using electron microscopy in wild-type budding

yeast cells (Giannattasio et al., 2014). This suggests that they

never form or are too short lived. It is also possible that regressed

replication fork structures rapidly promote recombination by

invading unreplicated parental strands ahead of the fork, creating

SCJs. Several enzymatic activities, including helicases and nucle-

ases, control themetabolism of regressed forks. Rad5 andMph1,

two helicases participating in lesion bypass, have been shown to

mediate fork regression in vitro (Meng and Zhao, 2017). In addi-

tion, the Rrm3 and Pif1 helicases can alsomediate fork regression

in vivo, although this activity is normally restrained by the DNA

damage checkpoint (Rossi et al., 2015). Therefore, the increased

MMS sensitivity of double rrm3D smc5-KR mutant cells, relative

to singlemutants,might stem froma synergistic defect in promot-

ing regression at damaged forks.

Smc5 Sumoylation Modulates an Early Recombinational
Function of the Smc5/6 Complex
Smc5/6 plays an active role in removal of recombination-depen-

dent junctions (Bermúdez-López et al., 2010; Chavez et al.,

2010). Surprisingly, whereas SUMO ligase nse2-CH or nse2DC

mutants lead to the accumulation of sister chromatid junctions

(Branzei et al., 2006), smc5-KR unsumoylatable mutants actually

reduced X-shaped intermediates. This difference may be due to

the concurrent reduction in sumoylation of multiple SUMO tar-

gets in nse2 mutants, including deficient activation of the STR

complex (Bermúdez-López et al., 2016; Bonner et al., 2016).

Our findings also suggest that sumoylation of Smc5 has roles

distinct from resolution/dissolution of recombination intermedi-

ates, most probably at an early step during generation of joint

molecules. Fission yeast and human cells may also trigger fork

regression to protect replication forks. In fact, a similar ‘‘early

role’’ has already been proposed in S. pombe, where Smc5/6

would promote RPA and Rad52 loading to stalled replication

forks to keep them primed for restart (Irmisch et al., 2009). As

Smc5/6 seems to have an early function in both yeasts, it will

be interesting to test if the Smc5/SUMO-dependent mechanism

described here is conserved in evolution, and participates as a

safeguard fork protection mechanism in human cells.
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anti-Rad53 abcam Cat# ab104232; RRID:AB_2687603

Anti-HA 3F10 SIGMA-Aldrich Cat# 11867423001; RRID:AB_390918

anti-myc 9E10 SIGMA-Aldrich Cat# 11667149001; RRID:AB_390912

anti-Flag M2 SIGMA-Aldrich Cat# F3165; RRID:AB_259529

PAP antibody (peroxidase anti-peroxidase) SIGMA-Aldrich Cat# P1291; RRID:AB_1079562

anti-mouse IgG HRP sheep GE Healthcare Lifescience Cat# 10094724; RRID:AB_772209

Goat anti-rat IgG HRP Millipore Cat# AP202P; RRID:AB_805331

Bacterial and Virus Strains

DH5a Thermo-Fisher Cat# 18265017

MC1061 Own lab N/A

Chemicals, Peptides, and Recombinant Proteins

Hydroxyurea SIGMA-Aldrich Cat# H8627

Methyl methanesulfonate SIGMA-Aldrich Cat# 129925

(S)-(+)-Camptothecin TCI (Tokyo Kasei) Cat# C1495

alpha factor GENSCRIPT Cat# RP01002

l-canavanine SIGMA-Aldrich Cat# C9758-250

Acid-washed glass beads SIGMA-Aldrich Cat# G8722

Complete EDTA free protease inhibitor cocktail SIGMA-Aldrich Cat# 5056489001

Dithiothreitol SIGMA-Aldrich Cat# D9163

Blotting paper GE Healthcare Cat# 80621129

PVDF Membranes GE Healthcare Cat# 10600021

Immobilon Western ECL Millipore Cat# WBLKS0500

Agarose low EEO Condalab Cat# 8010

b-Mercaptoethanol BIO-RAD Cat# 161-0710

Phleomycin APOLLO Cat# BI3852

Critical Commercial Assays

Dynabeads Protein G Fisher Cat# 10446293

Experimental Models: Organisms/Strains

Yeast strains used in this study (W303 and BY4741) Table S1 N/A

Recombinant DNA

Plasmids used in this study Table S1 N/A

Software and Algorithms

ImageJ National Institutes of Health, Bethesda,

Maryland, USA.

https://imagej.nih.gov/ij/,

1997-2018.

Image Lab Bio-Rad https://www.bio-rad.com

bz-rate Laboratory of Computational and Quantitative

Biology, Sorbonne Université

http://www.lcqb.upmc.fr/bzrates

Daniel’s XL Toolbox Daniel Kraus, W€urzburg, Germany https://www.xltoolbox.net

ImageGauge Fuji https://www.fujifilm.com
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Jordi

Torres-Rosell (jordi.torres@cmb.udl.cat). Plasmids and yeast strains generated in this study are available upon request without

restrictions.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All strains used in this study are derivatives of W303 (MATa ade2-1 can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1 RAD5+) or BY4741

(MATa his3D1 leu2D0 met15D0 ura3D0). A list of yeast strains used in this study, together with their relevant genotype, is provided in

Table S1. Additionally, a list of yeast strains used in each figure is provided in Table S2. Yeast cells were grown in YP (Yeast extract

and Peptone) or synthetic complete (SC) drop-out medium (yeast nitrogen base with all amino acids), plus the indicated carbon

source at 2% final concentration. For auxin-induced degrons, IAA (SIGMA) was added to 1 mM from a 0,5 M stock in water.

METHOD DETAILS

Construction of mutants strains and plasmids
Epitope tagging of genes and deletions were performed as described (Janke et al., 2004; Goldstein and McCusker, 1999). Fusion of

genes to an auxin-induced degron was done as described (Nishimura et al., 2009).

A list of plasmids used in this study is provided in Table S1. Additionally, plasmids used in each figure is provided in Table S2.

The smc5-KallR sequence was obtained by gene synthesis (Genscript) and cloned into a yeast expression vector to generate

pMB1132. To construct a collection of smc5-KR mutants affected in each of the five domains in the protein, we first generated

a gap by PCRon the pTR927 plasmid, expressing thewild-typeSMC5 allele. Then, we amplified by PCR theSMC5 sequence omitted

in the gap, plus 40 nucleotide tails, from pMB1132 (containing the smc5-KallR mutant allele) to create a donor sequence for subse-

quent homologous recombinational repair. Both PCR products were treated with DpnI to degrade templates and were co-trans-

formed into E.coli MC1061 (recA+) cells. For smc5-KR mutants affected in the coiled coil domain (Figure 3), we repeated

the same strategy, but selectively amplifying wild-type SMC5 and mutant smc5-KR sequences to create the adequate combination

of gapped plasmids and donor sequences with homologous flanking regions. In all cases, recombinant products were sequenced

to verify mutations. The smc5-KR13 allele was generated through two rounds of mutagenesis to first target K310 and K311, and

then K323 and K327. For integration of smc5-KR10 and smc5-KR13 alleles, the full SMC5 sequence was amplified by PCR and

fused to an epitope tag (9xmyc or 6xHA) and a selection marker. Clones were screened by western blot and the presence of the

KR mutations were confirmed by sequencing.

MMS sensitivity assays
10-fold dilution series of yeast cultures were spotted on solid YPD (Yeast extract, Peptone, 2% Glucose) medium containing the

indicated concentrations ofmethyl methanesulfonate (MMS; SIGMA). Plates were incubated at 30�Cuntil individual colonies became

visible in the control without MMS.

Cell cycle experiments
Exponentially growing cells were arrested in G1 by addition of 10�8 M alpha factor (Genscript) for bar1D cells and 10�6 M for BAR1

cells at 30�C for 2 hours or until > 95% of cells were arrested in G1. In Figure 7, G1-arrested cells were treated with 0,01% MMS

(SIGMA) for 30min to induce a pulse of alkylation damage. Cultures were released bywashing cells 3 timeswith pre-warmedmedium

and re-suspended in media containing 0,1 mg/ml pronase E (SIGMA). DNA was stained using Hoechst at 0,5 mg/ml final concentra-

tion in the presence of mounting solution and 0,4% Triton X-100 to permeabilize cells. For fluorescence microscopy, series of z-focal

plane images were collected with a DP30 monochrome camera mounted on an upright BX51 Olympus fluorescence microscope.

Pull down analysis of sumoylated proteins
Pull down analysis of sumoylated proteins was performed as previously described (de Bettignies and Johnston, 2003). To purify

sumoylated proteins, the budding yeast SUMO gene (SMT3) was tagged N-terminally with a 6xHis-Flag epitope. 100 ODs cultures

were collected and cells were mechanically broken in 6M guanidine chloride. Protein extracts were incubated with Ni-NTA beads in

the presence of 15 mM imidazole overnight at room temperature. Beads were extensively washed with 8 M urea and bound proteins

were eluted with SDS-PAGE loading buffer. In all cases, SUMO pull downs were loaded in SDS-PAGE gels next to protein extracts to

confirm the slower mobility of SUMO conjugates with respect to the unmodified protein.

Co-immunoprecipitation analysis
For co-immunoprecipitation analysis shown in Figure 4, protein extracts were prepared in EBX as previously described (Almedawar

et al., 2012), and incubated with anti-HA beads (Pierce). Beads were then washed 6 times with EBX buffer before elution in loading

buffer. Protein extracts for Mph1-TAP andMhf1-TAP immunoprecipitations shown in Figure 6 were prepared in extract buffer (50mM
e2 Cell Reports 29, 3160–3172.e1–e4, December 3, 2019

mailto:jordi.torres@cmb.udl.cat


TrisHCl pH 7, 5% glycerol, 150 mM NaCl, 0,1% Triton X-100, 0,1 mM DTT, 10 mM NEM) containing protease inhibitors (Roche). 60

ODs of cells were mechanically broken in 250 mL of extract buffer using a bead beater. Protein extracts were incubated with IgG

agarose beads (SIGMA). Beads were washed 3 times for 8 minutes in extract buffer, and proteins finally eluted by incubation in

2% SDS for 10 minutes at 37�C. Antibodies used for western blot analysis were anti-HA (3F10, Invitrogen), anti-myc (9E10, Roche)

and peroxidase anti-peroxidase for TAP (Sigma). Anti-PCNA (anti-Pol30) was a kind gift from Gemma Bellı́.

Western blot analysis of PCNA modification
For PCNA western blot, protein extracts were prepared from 12 ODs of cells collected from exponentially growing cultures. Cells

were washed with 20% TCA, resuspended in 200 mL of TCA 20%, and mechanically disrupted with an equal volume of glass beads

at room temperature. Extract and cell debris were recovered in a new tube, while beads were washed 2 times with 200 mL of 5%TCA.

The first extract plus the two sequential washes were combined into a new tube to make 600 mL of total cell extract in 10% TCA.

Extracts were spun 10 minutes at maximum speed, the supernatants were discarded and the pellet resuspended in 200 mL 1xSR

(2% SDS in 0,125 M Tris-HCl pH 6,8) plus 100 mL of 1M Tris base, boiled for 3 min and clarified by centrifugation 10 min at maximum

speed. 25 mg of protein extracts, quantified by BioRad protein assay, were combined with Laemmli buffer and loaded in each lane.

Membranes were probed with polyclonal rabbit anti-Pol30 antibody.

Mass spectrometry for identification of Smc5 sumoylation sites
For co-expression of yeast Smc5, yeast Nse2, and the human SUMO2, E1 and E2 enzymes, BL21 cells were co-transformed with 3

plasmids (Figure S3A), grown at 37�C to A600 = 0,6, and then induced to express heterologous proteins by IPTG addition. Cultures

were then incubated for 3-4 h at 30�C and harvested by centrifugation. Cell pellets were equilibrated in Lysis Buffer (20% sucrose,

20 mM Tris pH 8, 1 mM b-mercaptoethanol, 350 mM NaCl, 1 mM PMSF, 0,1% IGEPAL), and cells were disrupted by sonication.

Cell debris was removed by centrifugation (40,000 3 g). GST-Smc5 was purified with glutathione beads, eluted with GST and sam-

ples separated on a 7,5%SDS-PAGE. After Coomassie staining, two slices running immediately above GST-Smc5were cut from the

gel. The gel bands were washed with ammonium bicarbonate and acetonitrile (ACN), reduced with DTT and alkylated with chloroa-

cetamide. Afterward, the samples were digested overnight at 35�C with trypsin (sequence grade, Promega). The resulting peptide

mixtures were extracted from the gel matrix with 60% ACN and 5% formic acid (FA), dried-down in a SpeedVac system, and stored

at �20�C until the subsequent nanoUPLC-mass spectrometry analysis. The dried-down peptide mixtures were analyzed in a

nanoAcquity liquid chromatographer (Waters) coupled to a LTQ-Orbitrap Velos (Thermo Scientific) mass spectrometer. The tryptic

digests were resuspended in 1% FA solution and injected for chromatographic separation. Peptides were trapped on a Symmetry

C18TM trap column, and were separated using a C18 reverse phase capillary column. Eluted peptides were subjected to electro-

spray ionization. Both a target and a decoy database were searched to obtain a false discovery rate (FDR), and thus estimate the

number of incorrect peptide-spectrum matches that exceed a given threshold. To improve the sensitivity of the database search,

Percolator (semi-supervised learning machine) was used to discriminate correct from incorrect peptide spectrum matches.

2D gel analysis of replication intermediates
For G1 synchronization,MATa cells were grown to anOD600 of 0,35 in YPADmedium before a-factor (10 mg/mL; Biomedal) synchro-

nization for 180 min. Cells were released from a-factor treatment by washing three times in prewarmed, fresh YPAD medium con-

taining 0,1 mg/mL Pronase E (Sigma) prior to addition of 0,03% MMS. DNA isolation and two dimensional (2D) agarose gel electro-

phoresis was carried out as described in Wellinger et al. (2003). Replication intermediates were detected by Southern blot analysis

and hybridization with specific 32P-labeled DNA probes, matching to nucleotides 452691–453344 on chromosome XII. Signals were

quantified using a PhosphorImager (FLA 5100) with ImageGauge software (Fuji). The relative intensity of replication intermediates

was normalized to the signal intensity obtained in the 1N-spot (non saturating exposure).

Determination of spontaneous mutation rate and BIR assay
Spontaneous mutation rates were determined from at least 7 independent cultures grown to saturation and properly diluted to obtain

around 200 colonies in YPD. A lower dilution was plated on canavanine plates to estimate number of canavanine resistant mutants.

The bz-rate web tool was used to calculate mutation rate per cell per division (Gillet-Markowska et al., 2015). The BIR assay was

performed essentially as described (Anand et al., 2014).

Chromosome spreads
Exponentially growing cultures (5 ODs) were spheroplasted as previously described (Grubb et al., 2015). After spheroplasting, 5 ml of

gently resuspended spheroplasts were pipetted onto a glass slide before sequential addition of 10 ml fixative (3,4% sucrose, 4%

paraformaldehyde) and 20 ml of 2% lipsol as detergent. One minute later, 20 ml of fixative was added again in a swirling motion. A

pipette tip on its side was used to gently spread the nuclei and slides were air-dried overnight. For immunostaining, spreads were

washed with PBS for 10 min in coplin jars and incubated with blocking solution (PBS, 2%milk, 5% BSA). Antibodies were incubated

in blocking solution for 1 hour in a humidity chamber; monoclonal rat anti-HA (3F10, Roche) was used at 1:500 dilution to detect

Smc5-6HA, followed by a 1:1000 dilution of Alexa488 labeled anti-rat antibody. After air-drying, DAPI was added in mounting media.
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For fluorescence microscopy, series of z-focal plane images were collected with a DP30 monochrome camera mounted on an

upright BX51 Olympus fluorescence microscope. Images were quantified with ImageJ.

QUANTIFICATION AND STATISTICAL ANALYSIS

Specific information about the statistical tests used, number of replicates (N), and p values (p) are described in Figure legends.

p values less than 0,05 were considered significant. One-way ANOVA was used in Figures 2, 4, and 6; statistical significance was

determined using a Holm-Bonferroni post hoc test. In Figure 5B, the p value was calculated by the Wilcoxon signed-rank test. Sta-

tistical analysis was aided by Daniel’s XL Toolbox add-in for Excel, version 7.2.13, by Daniel Kraus, W€urzburg, Germany (https://

www.xltoolbox.net). Bands in western blots were quantified using Image Lab (BioRad). X-shaped structures were quantified using

ImageGauge software (Fuji). Mutation rates per cell division and 95% confidence limits were calculated using the bz-rates web

tool (http://www.lcqb.upmc.fr/bzrates). Microscopic images were analyzed and quantified manually using ImageJ.

DATA CODE AND AVAILABILITY

This study did not generate nor analyze datasets or new code.
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