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Circuit reduction is a fundamental first step in addressing the 
symbolic analysis of large analogue circuits. A new algorithm for 
simplification before generation is presented which is very efficient 
in terms of speed and the amount of circuit reduction, and solves 
the accuracy problems of previously reported approaches. 

Introduction: One of the main drawbacks to symbolic analysers 
concerns the exponential increase in expression complexity with 
circuit size. On the one hand, this makes the symbolic results very 
difficult to use. On the other hand, it imposes a drastic limitation 
on the maximum size of circuit that can be analysed. In recent 
years, this drawback has been partially overcome through the use 
of techniques for simplification before (SBG) and during (SDG) 
generation [ 1, 21. SBG techniques simplify the system of equations 
(either in matrix or graph form) before solving it [3 - 51. Although 
the reported SBG approaches exhibit significant differences, they 
share the feature that the error induced by the elimination of an 
entry in a matrix, or by the removal of a branch or the contrac- 
tion of a node in a graph, is evaluated at either one single fre- 
quency or a finite number of frequencies. Therefore, accuracy is 
not guaranteed at frequencies other than the sampling frequencies, 
as Fig. 1 illustrates. This Figure displays the magnitude and phase 
errors induced by the application of SBG to the integrator of Fig. 
2a. The magnitude and phase error specifications were A l q  5 
+5dB and A$H 5 k 5 O  in the frequency range 1Hz 5 f 5 100MHz. 
As Fig. 1 shows, the error specifications are met at the sampling 
frequencies, but exceeded at intermediate frequencies. The meth- 
odology in this Letter solves this problem by introducing error 
evaluation mechanisms which guarantee the required accuracy at 
any frequency within a given range. 

6, 

_ _ _ _ _ _ _ _ _ - - - -  -4 
-6 

7 
10 10 10 

frequency,Hz 

1621111 
Fig. 1 Magnitude and phase errors of Fig. 2a at I MHz If I lOOMHz 
due to application of SBG algorithm 

A sampling frequencies 

New SBG methodology: Our approach involves replacing those ele- 
ments whose contribution to the network function is small by 
either an open circuit (device removal) or a short circuit (node 
contraction). The objective is to find the sequence of node con- 
tractions and device removals yielding the simplest circuit in which 
errors are kept below some threshold. 

In our methodology, node contractions are given priority over 
device removals as the computational complexity of the posterior 
(SDG-based) solution algorithms increases much more quickly 
with the number of circuit nodes than with the number of devices. 
First of all, the algorithm calculates the contribution to the trans- 
fer function of the contraction of the terminal nodes of each indi- 
vidual device. The least significant contraction is chosen and the 
induced magnitude and phase errors are evaluated. If the allowed 
error is not exceeded, node contraction is carried out and all 

devices connected in parallel are removed. The contraction process 
continues iteratively with the next least-significant one while the 
accumulated magnitude and phase error does not exceed the spec- 
ified maximum error. When the contraction process is finished a 
similar operation for device removal is perfornied. 

As explained above, both the node contraction and device 
removal processes start with an evaluation of the contribution of 
each possible contraction or removal. This means that the maxi- 
mum difference in magnitude and phase between the original cir- 
cuit and a modified circuit in which a pair of nodes have been 
contracted or a device has been removed must be evaluated. Also, 
after each node contraction is performed, a check must be made 
to determine if the maximum difference in magnitude and phase 
between the original circuit and the reduced circuit, in which the 
contraction at hand, together with all previously accepted contrac- 
tions, has been performed, exceeds the error specifications. A sim- 
ilar test must be performed when each device removal is 
attempted. 

HJs) denotes the network function of the complete circuit with 
only the complex frequency s as symbolic parameter, and Hap($ 
the corresponding network function of a simplified circuit in 
which the appropriate node contraction(s) and/or device remov- 
al(s) have been performed. The magnitude and phase errors are 
given by 

Therefore, evaluation of the maximum magnitude and phase 
errors requires the calculation of: (a) the network functions H,(s) 
and H&) of (usually large) analogue circuits; and (b) the maxima 
of eqn. 1 when o varies within a given interval. The frst problem 
can be solved by means of numerical interpolation techniques. An 
efficient interpolation technique able to handle large analogue cir- 
cuits can be found in [6]. 

Our solution for the second problem is based on the use of 
interval analysis techniques [7]. AlH and A&, in eqn. 1 are func- 
tions in o, which can take any value within the frequency interval 
[oL, mu]. The problem is solved if accurate estimates of the interval 
bounds of A I 4  and AQH, when o E [o,, o,] can be calculated. 
This computation, commonly known as the interval extension of 
Alff and A$H, can make use of interval arithmetic operators. Sub- 
stitution of the real variable o in eqn. 1 and real operators (addi- 
tion, product, quotient, etc.) by the corresponding interval 
variables and operators yields the so-called natural interval exten- 
sion [I. Unfortunately, this computation usually overestimates 
maximum errors [8]. 

a '  ' b  

Fig. 2 Integrator, transistor model and CMOS opamp 
a Integrator 
b Transistor model 
c CMOS opamp 

To solve this problem, the natural interval extension is applied 
to the derivatives of eqn. 1. Although the interval widths of the 
derivatives are also overestimated, the zero inclusion in the result- 
ing interval extension is sufficient for delimiting the frequency sub- 
ranges in which the maximum magnitude and phase errors occur. 
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Then, the exact frequency points for which the maximum magni- 
tude or phase errors occur in those frequency subranges are easily 
calculated using the Newton-Raphson method. 
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Fig. 3 Magnitude and phase diagrams of Fig. 2c before and after 
application of SBG algorithm 

Experimental results: The accuracy and complexity reduction 
capabilities of the proposed methodology are illustrated through 
the circuit of Fig. 2c with the transistor model of Fig. 2b. By 
applying our SBG technique, the number of nodes in the small- 
signal model was reduced from 26 to 8 and the number of devices 
from 253 to 26 in only 11s of CPU time. Magnitude and phase 
deviations were also kept within the prescribed margjns: Alff < 
k3dB and A$,, 5 ?So, as Fig. 3 shows. Because of the significant 
complexity reduction achieved, the circuit was manageable using 
our SDG algorithm, which provided the following approximated 
expressions for the transfer function: 

VOUT A,  = - 
U- 

= [ - Gm14GmgGm13(Gm6 + GmlZ)(GmAl + GmAZ) 

- G ~ I ~ G ~ ~ G ~ G G ~ A ~ G ~ I I ]  / [Gds12Gds14Gm8(Gm5 

+ Gmll)(GdsAl + GdsA2) + Gm14Gds~Gds~(Gm5 

+ Gmll )GdsA2 + Gml4Gm~Gds8Gdsl4Gds~2 

+s(C,~+C,Z)G,~~G,S(G,~+G~~~)(G~A~ + G ~ A z ) ]  

Conclusions: In this Letter we have has demonstrated the possibil- 
ity of generating very compact, interpretable expressions for the 
main behaviour characteristics of even large building blocks, while 
maintaining accuracy. 
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Improvements in hierarchical symbolic 
tolerance and sensitivity analysis 

F. Eberhardt, W. Tenten and  P.R. Shepherd 

Sensitivity and tolerance analyses are important for circuit 
optimisation, but unfortunately very time consuming. In recent 
years new hierarchical symbolic methods have been developed for 
large linear circuits. These approaches make symbolic techniques 
a worthwhile altemative to classical numerical methods. Using the 
hierarchical symbolic approach, a new strategy is introduced 
which si&icantly reduces the computational expense of 
sensitivity and tolerance analyses compared to previous 
procedures. 

Introduction; Let H(s, 3 denote the transfer function of the circuit 
where s is the Laplace variable and X is the set of circuit parame- 
ters. The tolerances of H caused by variations of the parameters 
can be measured by determining the small change sensitivity (gra- 
dient) and large change sensitivity (step changes). Classical numer- 
ical methods for determining the sensitivities [l, 21 are only valid 
for small change sensitivity and require a complete new solution of 
the system matrix at each frequency point. 

Symbolic analysis provides a good altemative for tolerance 
investigations, especially when the number of fiequency points is 
large [3]. In recent years hierarchical symbolic analysis methods 
[4, 51 have been developed. The benefit of the hierarchical 
approach is that the computational expense has a linear up to 
quadratic dependence on the circuit complexity as opposed to the 
exponential nature of classical symbolic analysis. Consequently, 
much larger circuits can be described. 

The purpose of this Letter is to introduce a hierarchical sym- 
bolic sensitivity analysis method which significantly minimises the 
computation time compared to previous procedures, especially 
when the influence of many or all parameters is investigated. 

, 
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Fig. 1 Hierarchical network partitioning and binary partition tree 
a Hierarchical network partitioning 
b Binary partition tree 

Hierarchical symbolic analysis: The symbolic analysis in [SI is 
based on a hierarchical partitioning of the circuit. This partition- 
ing process is modelled by a binary partition tree (Fig. 1). The sys- 
tem matrices of the circuit blocks are calculated starting with the 
leaves of the tree and proceeding from the bottom up. The result 
is a sequence of expressions (SOE) for the network function H: 

H1 = f ( s , X ) ,  H2 = f(s,X,H1),..., 
H = H k  = f ( s , X ,  Hi, ..., Hk-1) (1) 
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