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Abstract: This paper addresses the topic of formula simplifica-
tion for symbolic analyzers. Previously reported criteria for flat
analysis approaches are briefly reviewed and their limitations
illustrated via examples of practical circuits. An adaptive simpli-
fication method using pole/zero monitoring for error control is
given to alleviate some of these problems. Then a new simplifi-
cation strategy is presented which takes into account potential
ranges of variation of the different symbolic parameters and
which overcomes the drawbacks of previous criteria. An algo-
rithm for the approximation of symbolic formula obtained via
hierarchical symbolic analysis approaches is also outlined.

Introduction

During the last few years symbolic analyzers have
received considerable attention as very valuable tools for differ-
ent topics related to analogue integrated circuits, as for teaching
[1], design space exploration (2], optimum topology selection
[3], design automation [4), behavioral modeling [4], fault diag-
nosis [5], etc. Symbolic analyzers work on networks defined as
the interconnection of linear models and calculate related net-
work functions where all or part of the model circuit parameters
are kept as symbols. The efficient calculation of symbolic net-
work functions defines the elementary basic functionality of
symbolic analyzers. However this basic functionality is not
enough for most applications and large amount of formula post-
processing is needed in order the results to be appropriately
exploited.

Among the different types of formula postprocessing usu-
ally required, this paper focuses on that of formula approxima-
tion. By formula approximation (equivalently formula
simplification) we mean the reduction of the complexity (mea-
sured in number of terms) of symbolic expressions via the elim-
ination of insignificant terms according to the numerical
estimation on the symbolic terms using fypical values of the
parameters. Reducing the formula complexity is mandatory in
analog integrated circuits described at the device level due to the
huge amount of terms appearing in even elementary building
blocks. Consider to the purpose of illustration the calculation of
the output impedance of the cascode current mirror of Fig.1a,
using the MOS transistor model of Fig.1b. The formula deliv-
ered by the symbolic analyzer ASAP [2] contains 1384 different
terms. This number is not definitively astonishing by itself, but
assume we are trying to use this formula for educational pur-
poses, to gain insight into the operation of the circuit. It is clear
that a compact formula, containing just a few dominant terms, is
much more appropriate to this purpose. In fact the expressions
that can be found in advanced analog circuit textbooks for this
characteristics contain less than 10 terms [6,7,8]. Applications
involving repetitive formula evaluations also impose the need of
reducing formula complexity. Consider for instance the task of
model compilation for automated circuit dimensioning using
statistical optimization [9]. Assume a not very complex CMOS
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building block as it is the nine transistor folded cascode OTA
shown in Fig.1c. The formula for the voltage gain of this opamp
using the model of Fig.1b contains 97953!! different terms [2].
Similar number of terms will be obtained for other characteris-
tics which are worth considering for analog design like CMRR,
PSRR, noise, input capacitance, etc. Trying to create a model
including all the characteristics needed for the AC design of this
device and using exact symbolic expressions will be probably
beyond the capabilities of many compilers. Even if the compila-
tion were possible the required computation time for the iterative
design procedure would be extremely high. The necessity of
simplifications can be hence seen also from this application
point of view.

R,

M,
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Figure 1: Current mirror, AC MOS model and cascode OTA

Previous approaches to symbolic formula approximation
have focused only on flat symbolic analysis techniques
[2,4,10,11]. Besides, these approaches consider just a single
point of the complete parameter space to estimate relative sizes
of symbolic terms. In this paper we first briefly review previ-
ously reported simplification criteria, illustrating via examples
some of their drawbacks. An adaptive criterion is then intro-
duced which uses a variable error margin controlled via pole/
zero monitorization during the simplification process. Also a
completely different simplification approach is presented where
numerical estimation is not made at a single point of the param-
eter space but inside a region defined by taking into account typ-
ical variation ranges of the different symbolic parameters.
Finally, an algorithm is outlined for the simplification of formu-
las resulting from hierarchical symbolic analysis [12].

A Glimpse on Flat Simplification Techniques

Assume a generic symbolic network fqution H(s.x),
where s represents the complex frequency and x"={xj, x5, . . .
Xy} is the vector of circuit symbolic parameters. The process of
simplification consists in the pruning of insignificant terms in the
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numerator and the denominator of H(.) to yield a reduced func-
tion H,(s,x) which approximates the original one under a pre-
defined error and inside a given interval of both s and x.

In this paper no restriction will be assumed on the fre-
quency range for simplification. This is the case covered typi-
cally in literature [2,4,10,11]. Also, this assumption does not
mean any loss of generality since it includes as subcases those
situations where either a limited frequency range or a sin gle fre-
quency is specified.

Network functions resulting from a flat symbolic analysis
may either be presented in a nested format, like for instance,

[{ (a2+¢13)a4—a5 (ag+a;)} + (ag+ag)la
[{bybybs—b,} + bsbgby (bg +bg) |

where b; and a; represents subexpressions in the complex fre-
quency, or in an expanded format, like

o

4 3 2
stay+s ay+sa, +sa; +a

@
50, +5°by +5%by + sb, + b

where b; and g; do not contain the complex frequency. In what

follows previously reported simplification techniques for each
one of these formats are briefly reviewed.

Expanded Format

In an expanded format both the numerator and the denom-
inator of the symbolic network functions are given in the form
of ordered polynomial in s,

.;Nsif; (x
H(sx) = 2%
Z s’gj x)

i=0M
the coefficients of the different powers being in their turn poly-
nomials in the symbolic parameters,

hk(&') = 2 hkl(l)
I=1,L

3

@

where hy(x) represents either fi(x) or 8(x) in (3) and the terms
hy(x) are product of symbols.

Simplifications are performed by deleting the least signifi-
cant terms in each coefficient polynomial. To this purpose
numerical information concerning the relative size of the param-
eters must be provided. Four basic simplification criteria have
been reported [2,4,11]. For all of them a single typical numerical
value for each parameter is used (It is to say, for simplifications
the symbolic expressions are evaluated at a single point X, of the
parameter space).

The simplest criteria can be found in [11]. There the largest
magnitude term is identified and multiplied by an error figure
specified by the user. Then all the terms whose magnitude is
below the resulting value are eliminated. It is to say, a term hiy(x)
will be eliminated in case it fulfills the following,

e {max (|hy (x)))) } -
for,1=1,2,...L

Since no assessment is made on the relative value of the
maximum term as compared to the result of the summation of
deleted terms, large errors are to be expected as a consequence
of using this criteria. In order to increase the accuracy of the sim-
plification process the eliminated terms should be compared not
Just to the most significant term but to all the terms in h(x). It
can be made by using one of the three alternatives shown in
Table 1, where expressions are given for the deletion of the P
least significant terms of /;(x). Notice in all these cases it is
required that the numbers /;(x,) are ordered according to their

|hk1 (Z)l <
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magnitude. Hence these criteria are more demanding from the
computational point of view that the one in (5).

b (%) b (3,) b (x,
|I=21,P u <£’1=21,Pl ki ,<€,I=21,11| u )|<E
’ Y hulx,) [ Y hy(x,) PIULIIER]
=1L 1=1,L 1271

Table 1: Relative value simplification criteria

Consider first the so called signed object signed reference
technique given in the first column of Table 1.Notice signed
terms are added in both the numerator and the denominator.
Thus, contributions from opposite signed terms mutually cancel
themselves. As a consequence this criterion gives the most accu-
rate results at the nominal point x,. However the eventual can-
cellation of large magnitude opposite terms may result in
important errors when the simplified formula is evaluated at
points of the parameter space different from the nominal one.
Unfortunately, this is not an uncommon situation in analogue
integrated circuits, due to the mismatch among nominally
matched devices. Consider for the sake of illustration the calcu-
lation of the DC voltage gain of the circuit in Fig.2 where a pos-
itive feedback OTA for high-Q SC filters is shown [13]. This
spec will be given as a ratio of two symbolic coefficients a/b.
Application of the criterion in column 1 of Table 1 for a 25%
margin error (parameter €) yields an actual error at the nominal
point of 24.9% for both a and b. However when a mismatch of
1% is considered among the nominally matched transconduc-
tances of the amplifiers the error in b increases to 3,170%!! while
does not significantly change for a.

Figure 2: Positive feedback OTA [13]

The problems mentioned above can be overcome by the
use of the unsigned object signed reference criterion given in the
second column of Table 1. With this criterion opposite sign terms
are eliminated only in case they are really nonsignificant. Notice
however that, since terms in the reference used for simplification
(the denominator) remain signed, the actual error margin may be
much smaller for those coefficients containing opposite sign
terms than for those others containing just negative or positive
terms. As a consequence, large disparities will appear among the
coefficients of the different powers of s in the numerator andr the
denominator of the network functions, thereby yielding large
pole/zero displacements. To avoid this the unsigned object
unsigned reference criterion shown in third column of Table 1
can be used.

This criterion may also produce problematic situations in
case the value of the error margin is not chosen small enough. As
for the first criterion the cause for these problems will be again
the existence of coefficients containing terms with large magni-




tude value and opposite sign. Nevertheless the problems arising
in both criteria are not of the same type. In the first criterion
problems arise when the simplified formula is evaluated at
points different from the nominal one. However,in the latter cri-
terion large inaccuracies may be observed at the nominal point
while no important additional changes are to be expected when
a displacement around this nominal point is made.

To illustrate problems in the unsigned object unsigned ref-
erence criterion consider again the circuit of Fig.2 and an error
margin of 25%. Fig.3 gives the magnitude and phase plots for
both the exact and the simplified expression of the voltage gain
of that circuit. Large errors can be observed. They are due to the
fact that the independent coefficient as well as the coefficient for
the s power and the s° power of the transfer function denomina-
tor contain large terms of opposite sign. As a consequence the
reference used for simplification is large and many terms are
eliminated which are comparable in magnitude to the modulus
of the coefficient value

6
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Figure 3: Magnitude and phase plots for Fig.2

One solution to this problem is to monitor the magnitude
of each term in order to avoid the elimination of any terms whose
magnitude is greater than Sp [4]. Another approach providing
better control on the accuracy of the simplified expression con-
sists in the implementation of an adaptive € in such a way that
simplifications are stopped when pole/zero displacements are
beyond a predefined margin [2]. Performance of this approach is
illustrated for the current gain of the active current mirror of
Fig.4a [14]. Fig.4b shows the pole loci for this gain as functions
of € in case simplifications are made by using the unsigned
object unsigned reference criterion. As it can be seen there are a
pair of complex conjugate poles passing from the left to the right
of the complex frequency plane for €=0.17. This movement,
which induces qualitative errors in evaluation of the circuit oper-
ation, is neither observed using exact formula nor using the
adaptive error formula. However it is not corrected by using the
approach of avoiding the elimination of terms whose magnitude
is greater than Sp.

Nested Format

Few has been done concerning simplification for symbolic
expressions given in this format [10,15]. The technique in [10]
is based on pruning insignificant subexpressions at the nested
levels. This is made without assessing the sensitivities of the
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Figure 4:Active current mirror [14] and associated pole loci.

coefficients of the different powers of s in the symbolic network
function to changes in the deleted terms. Hence, large errors may
be expected as long as a pruned subexpression can only slightly
influence some coefficients but very strongly influence others.
To avoid these errors a partial fraction expansion is needed, at
least, to separate the different powers of the complex frequency.
Then, the advantages of the nested symbolic format disappear.
But, even taking this expansion, some problems may still
appear:

a) Pruning significant terms while keeping insignificant ones.

Consider for instance the nested expression
(A+B) (C+D) + (E+F) (G+H) )

If A»B, C=D, E=F, G=H, in the expression tree B will be
pruned although perhaps B(C+D)>E(G+H).

Uncontrolled large errors because of cancellations in the
expression tree. This problem has been partially solved
with the "lazy expansion technique” given in [15], but only
cancellations in consecutive levels of the expression tree
are detected.

b)

Simplifications with Ranges of Variation

Problems with previous simplification criteria can be over-
come if the numerical evaluations to estimate relative sizes of
the symbolic parameters are not made at a single point X, of the
parameter space, but inside a region of this space. It can be so
done by considering a typical range of variation for each param-
eter, instead of considering a typical value. This approach pro-
vides a natural simple mechanism to cope with mismatches.
Also, simplifications are more realistic since in symbolic analy-
sis the exact numerical value of the parameters is not known a
priori.

Concept and Basic Operators.

We assume for the simplification procedure to be carried
out that each symbol may take any value inside a given range of
variation,

xe {xj5x;y} 8)

In order simplifications to be made several operators among
ranges have to be defined [16]:

Product of Ranges: Since each term A (x) is made up of
a product of symbols, the product of ranges must be
defined, and the range extrema calculated. In case one of
the factors is a numerical coefficient the range of the other
is scaled according to the value of this coefficient. In other
case all the possible combinations among the limits of the
individual parameters have to be considered. The required
computations become largely simplified in case the sym-
bolic parameters do not change their sign inside the corre-
sponding definition intervals [16].

Addition of Ranges: The interval extrema of terms result-
ing as the sum of two can be obtained by adding the corre-
sponding extrema of the addends.



Range Comparison: A range is defined to be smaller than
other in case the following is fulfilled

(R, Ry} < {Ry5 Ry} iff
max []Ros|,|Ro”|] Smax[]Rls|, |R1H[]

®

Simplification Algorithm.
The simplification algorithm can be summarized in the fol-
lowing steps [16]:

1) Calculate the range for each term inside each coefficient

polynomial using the product of ranges operator.

For each coefficient polynomial, defined as a sum of terms,
calculate the range using the results of 1) and the addition
of ranges operator.

2)

3)  Look for pairs of terms with opposite sign and similar mag-
nitude. For each pair of this type, if the range of the corre-
sponding sum is smaller than any of the ranges of the single
terms, a grouping is made and the range of the sum is asso-

ciated to it.

Arrange the terms in an ordered array using the range com-
parison operator.

Beginning by the smallest term, the range of each new term
is added to an accumulated sum range. Then, the maximum
(in modulus) of the limits of this range is compared to the
minimum of the limits of the range of the sum of all terms
multiplied by a given threshold.

4

5)

Vi Y [T, (Ti)] = [(Agg), (Agp)]
Jj=1k

max{(As), (A}
min { (Ss): (SH) }

<Eg

(10)

Notice this is a very conservative criterion as there may be
terms summed with their maximum value in the accumulated
sum and with the minimum one in the total sum. For that reason,
a slightly modified criterion has been developed in which terms
that are summed with their maximum magnitude in the numera-
tor are also summed in this way in the denominator. This little
extra computation allows to eliminate negligible terms which
were kept with previous criterion.

The new criterion has been tested for a large number of
examples, in particular for the circuits discussed in previous Sec-
tion. Results are free of the inaccuracies observed with the other
criteria.

Simplifications in Hierarchical Analysis

One of the very points in symbolic analysis is the ability to
handle nested expressions in order to face more complex circuits
[12]. When dealing with this type of expressions some difficul-

ties arise due to potential cancellations at intermediate levels of
the hierarchy. In general a transfer function can be expressed as:

8182+ 88w 1ot s
gjgj+1--~+g1g1+1.-.+

F = 1n

where the g’s may in their turn be either nested expressions or
simple functions of the form

_ Gy (®)

& = Gpr (5 (12)
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A simple transformation allows to rewrite F as

_ GrniCuni (8) +Gpi (5) Cppy () + Ry ()

= 13
GrniCnpi (5) +Gpi () Cppy (s) +Rp (s) 13

where the polynomials Cypy, Cpyg Chpr» Cong €Xpress the
contribution factor of Gy and Gpy to the total transfer function.

The proposed algorithm computes the values for these fac-
tors prior to perform simplifications in g;.In this way we know
beforehand how much will those simplifications affect the total.

In the first phase the expression tree is traversed from the
leaves to the root computing the contribution to parent nodes.
During the second phase the tree is traversed from the root to the
leaves assigning to each node its contribution to the root. The
factors are computed numerically using ranges of values for the
low-end symbols. It is not safe to assign typical values as it is
possible for some expressions to be highly sensitive to variations
of values and that fact goes unnoticed until we reach higher lev-
els in the hierarchy.

Discussion of Results

Summarizing this paper on the one hand reviews previ-
ously reported simplification criteria and, on the other, outlines
new simplification criteria for both symbolic expressions calcu-
lated via flat analysis approaches and for those calculated via
hierarchical analysis. Information about the proposed new algo-
rithms and their performance will be reported in greater details
elsewhere.
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