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Abstract

A modular analog circuit design approach for hardware
implementations of neural networks is presented. This
approach is based on the use of small transconductance
multipliers as the main component, and is therefore called
the T-mode (Transconductance-mode) approach. This
circuit design technique will be used to design a set of
modular chips, which will be assembled to build either BAM
networks, Hopfield networks, Winner-Take-All networks,
or simplified ART1 networks. The approach will be
extended afterwards in order to include a hebbian learning
rule into each synapse. As an example, a learning BAM
network system will be shown. The experimental results
given were obtained from 2um CMOS double-metal double-
polysilicon (MOSIS) prototypes.

L Introduction

There are many neural network algorithms available in the
computer science related literature [1]-[14], most of which have
been studied and implemented in software environments.
However, for applications where real time processing is
necessary and/or the size of the complete computing system
needs to be reduced, some type of special purpose hardware
implementation technique needs to be devised. In particular,
analog circuits capability for intrinsic high-speed operation
with moderate area and power consumption [15] make these
techniques worth to be explored in connection to neural
networks.

One of the main drawbacks of analog IC design is its high
dependence on components and process parameters, and the
consequent need for calibration, on chip tuning and/or
temperature variations compensations circuitries. However, in
adaptive neural networks those imperfections can be largely
tolerated because as the system learns to perform a certain task
it implicitly compensates for nonidealities present in the
physical components the whole system is made of [16].

Several analog [17]-[18] or mixed analog-digital [19]
hardware techniques have already been proposed, some of them
including leamning capability [20]. In the approach we present
[21], [22] modularity is a property (which also happens in [20]),
as well as the possibility of reconfiguring the network to realize
different neural network systems.

In the next Section we will describe the principles of the
proposed T-mode circuit design technique. Then we will
describe how to extend this technique to include hebbian

leaming and analog storage capability. Finally we will give
experimental results of programmable and learning prototypes.
Using the programmable modular chips we have assembled a
BAM network, a Hopfield network, a Winner-Take-All
network, and a simplified ART1 network. Using the learning
modular chips we will give results of an adaptive BAM
network. All these prototypes were obtained from a standard
2um double-metal, double polysilicon CMOS process
(MOSIS).

II. The T-Mode Neural Circuit Design Technique

Most of the Neural Network algorithms available in the
literature have a short term memory (STM) whose continuous-
time version” operation can be described by the following set of
nonlinear first order differential equations,

N
Ci; = —ox;+ Y wif (x) +I;  i=1,..N (1)
ji=1

where x; is the activity of neuron i, wj is the weight of the
synaptic interconnection from neuron j to neuron i, f; is the
external input to neuron i, o and C are positive constants, and
f(*) is a nonlinear, monotonically increasing function with a
maximum and a minimum saturation values. Fig. 1 shows how
to implement the set of equations (1) using transconductance
amplifiers of transconductance gain wj; for the synaptic
interconnections, and using a nonlinear voltage amplifier to
provide the neuron output y;=fix;). In the steady state, the
association of resistor R and voltage amplifier f{*) acts as a
nonlinear resistor with driving point characteristics described
by

i=g( = ;') @

Extending this to the nonsteady state case, the circuit of Fig. 2
is obtained, which is described by the following set of first
order nonlinear differential equations

N
Cy; =-g)+ Y wy+l; i=1.N 3)
i=1

1. Grossberg provides a method [23] to map a discrete-time description of a
neural network into a continuous-time one, and vice versa. Therefore, the
neural network algorithms reported with discrete-time dynamics can also be
represented by equation (1).
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It can be shown [21] that, although the dynamics of descriptions
(1) and (3) are slightly different, given the same initial
conditions both descriptions will reach the same final steady
state.

Using the technique of Fig. 2 to build a BAM network [5]-
[7] results in the 2-layer circuit shown in Fig. 3, where a; are the
layer 1 neurons outputs, b; the layer 2 neurons outputs, I; the
layer 1 external inputs, J f tﬂe layer 2 external inputs, and wj; the
weight of the bidirectional synaptic connection between neuron
Jj in layer 2 and neuron i in layer 1. Note that this circuit is able
to be partitioned into several subcircuits, each of which inside a
different modular chip [21],[22].

For the synaptic interconnections the transconductance
amplifier shown in Fig. 4 was used, while for the nonlinear
resistor the circuit is given in Fig. 5. The integrating capacitors
were not physically implemented. Instead the parasitic
capacitance of the interchip connection was used.

II1. The Learning and Weight Storage Circuitry

An adaptive BAM [5] includes an additional first order
differential equation for each bidirectional synapse in order to
perform a hebbian leaming rule

w,.,. = —w]-,-+aibj )

Using the same transconductance amplifiers of the synaptic
interconnections and, since the voltages ; and b; are locally
available in each synapse, the circuit of Fig. 6 will add the
leamning capability to each synapse.

Fig. 7 shows a simplified diagram of the analog storage
circuitry. The A/D converter and D/A converter pair is shared
by all the synapses in the same chip. Once leaming is finished,
the integrating capacitor is disconnected from the leaming
circuit and used as a storage capacitor. The voltage drift due to
parasitic leakage currents is compensated through periodic
refreshing of its value by the A/D-D/A pair, so that the stored
voltage remains within a finite interval [24].

IV. Experimental Results

In this Section we will give experimental results obtained
from programmable and learning T-mode implementations. In
the programmable case, the synaptic array chips have the bias
input wj of the synaptic multipliers connected directly to an
external pin, so that the value wy can be externally
programmed. In the leaming case the synaptic array chips have
this bias intemally connected as shown in Fig. 6.

A. Programmable Synaptic Array Chips
a) 9x9 BAM Network

A modular BAM network was assembled. Three pair of
patterns were programmed into this two layer (9 neurons
per layer) network (see Fig. 8). All three patterns could be
successfully retrieved by giving partial images of the stored
patterns. Fig. 9 shows the convergence to pattern A in one of
the cases.

b) Hopfield Network

By connecting the modular chips in the way shown in Fig.
10, a S5-neuron Hopfield network is obtained. The pattern
‘10101” was programmed into the synaptic array chip. Fig.
11 shows the convergence to either the stored pattern
‘10101" or its complementary ‘01010 depending on the
hamming distance between the external input and the stored

pattern.
c) Winner-Take-All Network

A Winner-Take-All network is a particular case of Hopfield
network in which all self-connections are made excitatory
and the other connections are made inhibitory. Using the
previous Hopfield network and reprogramming all the
synapses a Winner-Take-All network was set up. Fig. 12
shows the transient of two neuron outputs with very similar
inputs.

d) Simplified ART1 Network

A simple way to visualize the STM of an ART1 network 8]
is as a BAM whose top layer is a Winner-Take-All network.

This is shown in Fig. 13 for a 5x5 simplified ART1 T-mode
network. Up to five pattems can be programmed into this

network (see Fig. 14). The output converges to the stored
pattern with the smallest hamming distance to the input
pattern. If there are more than one stored patterns with the
same minimum hamming distance, then all these patterns
become active.

B. Learning 5x5 BAM

In order to train the learning BAM all pattemns to be stored
have to be presented sequentially at the inputs. We have
fabricated a 5x5 learning synapses array chip which we used to
assemble an adaptive BAM network.

Fig. 15 shows three patterns to be used for the training
process. All three patterns could be successfully retrieved by
giving partial images of the stored patterns as inputs. Fig. 16,
for example, shows the convergence to pattern C.

V. Conclusions

We have developed a circuit design technique (called ‘T-
mode’) for analog, continuous-time VLSI neural network
circuit implementations. A great variety of neural systems can
be implemented in hardware using this technique. We have built
several of these systems and have tested them experimentally.
These systems were a Hopfield Network, a BAM Network, a
Winner-Take-All Network, and a simplified ART1 Network.
We have also added a Hebbian learning scheme to one them
(the BAM) as well as a dynamic analog memory to keep the
learned weights. All these systems have been implemented on
Silicon and successfully tested.
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Fig. 1. A T-Mode Implementation of Neural Network
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Fig.2. Modified T-Mode Neural Network
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Fig. 4. (a) Circuit Implementation of Transconductance Multiplier, (b) DC
Transfer Curves
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Fig. 3. T-Mode Circuit Implementation of BAM Algorithm
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Fig. 5. (a)Nonlinear Resistor Circuit Implementation, (b) Transfer Curve
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Fig. 7. Simplified Schematic of Weight Refreshing Circuit
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Fig. 12. T-Mode Winner-Take-All Circuit Transient

Fig. 9. Convergence to Pattern A in 9x9 BAM
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