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ABSTRACT

SILVA, A. P. Resolubility of linear Cauchy problems on Fréchet spaces and a
delayed Kaldor’s model. 2019. 116 p. Tese (Doutorado em Ciências – Matemática)
– Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São
Carlos – SP, 2019.

The long-run aim of this thesis is to solve delay differential equations with infinite delay
of the type

d
dt

u(t) = Au(t)+
∫ t

−∞
u(s)k(t − s)ds+ f

(
t,u(t)

)
,

on Fréchet spaces under an extended theory of groups of linear operators; where A is
a linear operator, k(s) ⩾ 0 satisfies

∫ ∞
0 k(s)ds = 1 and f is a nonlinear map. In order

to pursue such a goal we study a discrete delay model which explains the natural eco-
nomic fluctuations considering how economic stability is affected by the role of the fiscal
and monetary policies and a possible government inefficiency concerning its fiscal policy
decision-making. On the other hand, we start to develop such an extended theory by
considering linear Cauchy problems associated to a continuous linear operator on Fréchet
spaces, for which we establish necessary and sufficient conditions for generation of a uni-
formly continuous group which provides the unique solution. Further consequences arises
by considering pseudodifferential operators with constant coefficients defined on a par-
ticular Fréchet space of distributions, namely FL2

loc, and special attention is given to
the distributional solution of the heat equation on FL2

loc for all time, which extends the
standard solution on Hilbert spaces for positive time.

Keywords: Pseudodifferential operators, Fréchet spaces, Linear Cauchy problems, Delay
differential equations, Kaldor’s model.





RESUMO

SILVA, A. P. Resolubilidade de problemas lineares de Cauchy em espaços de
Fréchet e um modelo de Kaldor com retardo. 2019. 116 p. Tese (Doutorado em
Ciências – Matemática) – Instituto de Ciências Matemáticas e de Computação, Universi-
dade de São Paulo, São Carlos – SP, 2019.

O objetivo a longo prazo desta tese é resolver equações diferenciais da forma

d
dt

u(t) = Au(t)+
∫ t

−∞
u(s)k(t − s)ds+ f

(
t,u(t)

)
,

em espaços de Fréchet estendendo a teoria de grupos de operadores lineares; sendo A um
operador linear, k(s) ⩾ 0 tal que

∫ ∞
0 k(s)ds = 1 e f uma função não linear. Perseguindo

tal fim, estudamos um modelo com retardo que explica as flutuações naturais da econo-
mia considerando como a estabilidade econômica é afetada pela atuação do governo, suas
políticas fiscal e monetária e uma possível ineficiência do governo no que diz respeito à
sua tomada de decisão na política fiscal. Por outro lado, damos início a referida extensão
da teoria de grupos ao considerar problemas de Cauchy lineares associados a operadores
lineares contínuos em espaços de Fréchet, para os quais estabelecemos condições neces-
sárias e suficientes para a geração de um grupo uniformemente contínuo em tal espaço
que fornece a única solução do problema. Consequências adicionais surgem quando se
considera operadores pseudodiferenciais com coeficientes constantes definidos em um par-
ticular espaço de Fréchet de distribuições, a saber FL2

loc, e uma atenção especial é dada
à solução distribucional da equação do calor em FL2

loc para todo tempo, a qual estende
a solução usual em espaços de Hilbert para tempo positivo.

Palavras-chave: Operadores pseudodiferenciais, Espaços de Fréchet, Problemas de Cau-
chy lineares, Equações diferenciais com retardo, Modelo de Kaldor.





RESUMEN

SILVA, A. P. Resolubilidade de problemas lineares de Cauchy em espaços de
Fréchet e um modelo de Kaldor com retardo. 2019. 116 p. Tese (Doutorado em
Ciências – Matemática) – Instituto de Ciências Matemáticas e de Computação, Universi-
dade de São Paulo, São Carlos – SP, 2019.

El objetivo a largo plazo de esta tesis doctoral es resolver ecuaciones diferenciales de la
forma

d
dt

u(t) = Au(t)+
∫ t

−∞
u(s)k(t − s)ds+ f

(
t,u(t)

)
,

en espacios de Fréchet extendiendo la teoria de grupos de operadores lineales; siendo A un
operador linear, k(s) ⩾ 0 satisface

∫ ∞
0 k(s)ds = 1 y f una función no linear. Persiguiendo

tal fin, estudiamos un modelo con retraso que enseña las fluctuaciones de la economía
considerando como la estabilidad económica es afectada por la actuación del gobierno, sus
políticas fiscal y monetaria y una posible ineficiencia del gobierno en lo que se refiere a la su
toma de decisión. Por otro lado, damos inicio a la referida extensión de la teoría de grupos
puesto que consideramos problemas de Cauchy lineales asociados a operadores lineales
contínuos en espacios de Fréchet, para los cuales establecimos condiciones necessarias
y suficientes para la generación de un grupo uniformemente contínuo en tal espacio y
que proporcione la única solución del problema. Consequencias adicionales surgen cuando
se considera operadores pseudodiferenciales con coeficientes constantes definidos en un
particular espacio de Fréchet de distribuciones, a saber FL2

loc, y una atención especial es
dada a la solución distribucional de la ecuación del calor en FL2

loc para todo el tiempo,
la cual extiende la solución usual en espacios de Hilbert para tiempo positivo.

Palabras clave: Operadores pseudodiferenciales, Espacios de Fréchet, Problemas de
Cauchy lineales, Ecuaciones diferenciales con retraso, Modelo de Kaldor.





LIST OF SYMBOLS

N — the set of all natural numbers, that is, {1,2,3, . . .}.

Q — the set of all rational numbers.

Z+ — the set of all nonnegative integer numbers, that is, {0,1,2,3, . . .}.

ZN
+ — Z+×·· ·×Z+ (with N factors).

R — the set of all real numbers.

R+ — the set of all nonnegative real numbers.

RN — R×·· ·×R (with N factors).

ξ · x or 〈ξ ,x〉 — the inner product of vectors x and y in RN.

RN
+ — R+×·· ·×R+ (with N factors).

C — the set of all complex numbers.

ℜλ — the real part of a complex number λ .

ℑλ — the imaginary part of a complex number λ .

CN — C×·· ·×C (with N factors), which can and will be identified with RN + iRN.

K — denotes either R or C.

(X,τ) — a space X equipped with the topology τ.

A — the closure of a subset A of a given topological space (X,τ).

(X,ρ) — a space X equipped with the metric ρ.

BX(x0, r) — the set of all points x of a given metric space (X,ρ) such that ρ(x,x0)< r.

BX[x0, r] — the closure of BX(x0, r).

B(x0, r) — denotes BX(x0, r) whenever X = RN is clear.

B[x0, r] — denotes BX[x0, r] whenever X = RN is clear.

Bn — denotes BX(0,n) whenever X = RN is clear, with n ∈ N.

X′ or X∗ — the space of all continuous linear functionals ϕ : X →K, given a TVS X.(
X,(pα)α∈A

)
— a vector space (X,+, ·) equipped with the seminorms pα ,α ∈ A.(

X,(pn)n∈N
)

— a Fréchet space equipped with the seminorms pn,n ∈ N.



(
X,‖ · ‖X

)
— a Banach space equipped with the norm ‖ · ‖X.

L (X,Y) — the space of all bounded linear maps from X to Y.

L (X) — the space of all bounded linear maps from X to itself.

Lsc(X) — the space of all strongly compatible linear maps from
(
X,(pn)n

)
to itself; see page 71.

IdX or 1 — the identity (linear) operator on X.

R(n;A) — the resolvent operator (nIdX −A)−1 ∈ L (X), with n ∈ N; see Section 2.3 .

T(·) — a group or semigroup of linear bounded operators T(t) : X → X, with t ∈ R or t ⩾ 0.

Lp(RN) — the space of all Lebesgue measurable functions such that
∫
RN

|f|p is finite.

Lp
loc
(
RN) — the space of all functions f such that

∫
Bn

|f|p is finite, for every n ∈ N.

C0
(
RN) — the space of all continuous functions on RN such that f(x)→ 0 as |x| → ∞.

C
(
[0,1],RN) — the space of all continuous functions mapping [0,1] into RN.

BC
(
RN) — the space of all uniformly bounded continuous functions defined on RN.

Ck(RN)— the space of all functions on RN with continuous deriva tives up to order k on RN.

C∞(RN) — the space of all infinitely differentiable functions on RN.

C∞
c
(
RN)— the space of all infinitely differentiable functions which has compact support.

S
(
RN) — denotes the Schwartz space onRN.

F f or f̂ — the Fourier transform of a function f.

F−1f or qf — the inverse Fourier transform of a function f.

D′(RN) or simply D′ — the space of all distributions on RN.

S′
(
RN) or simply S′ — the space of all tempered distributions on RN.

E′(RN) or simply E′ — the space of all compactly supported distributions on RN.

FL2
loc
(
RN) or simply FL2

loc — a Fréchet space of distributions; see page 78.

Hs(RN) or simply Hs — the Hilbert Sobolev space of order s on RN, with s ⩾ 0.
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CHAPTER

1
INTRODUCTION

“La mathematica è l’alfabeto in cui Dio è scritto l’Universo”
Galileo Galilei (GALILEI; SOSIO, 1992)

When it comes to motivate nonmathematicians to study mathematics, one of the
greatest difficulties concerns the fact that the main argument, namely modeling, requires
a lot of mathematical tools in order to turn a model into something really useful. This hap-
pens because reality is not simple. From phenomena observation, one interprets variations
and reactions and measures quantities, which unavoidably carries errors of measure (and
sometimes even small errors cause great divergent results); and every model deliberately
dismisses some aspects of the phenomenon so it can be treated. Besides it is important
to become aware that everything is finite and nothing is continuous even though our per-
ception of time, quantities and variations leads us to believe otherwise. And yet to model
phenomena by assuming they are equipped with continuity, for instance, is the best we
can do and fortunately it fits pretty well the real situation.

Invariably, description and prediction are fundamental concerns for science. Aware
of the limitations listed above, assuming that finitely many quantities (which can be
denoted by u = (u1, . . . ,uN)) provide, at an instant of time t, a reliable representation of
the state of a given system, if one wants to determine the subsequent behavior, one may
also assume that the rate of change of such a vector u(t) depends only on t, u(t) itself
and interactions with some external forces. This is the so called principle of causality and
is the core of a modeling by ordinary differential equations. However, wondering a little
further, one sees that it is a first approximation of the real world: the present state is
expected to be a consequence of past states as well.

There are several ways under which the history of a phenomenon can be added
to the modeling. In order to become familiar with some of them, let us examine different
versions of a very famous model in biology - namely the Lotka-Volterra model - which
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describes the interaction between two species in a closed environment: one species (the
predator) preys on the other species (the prey), while the prey lives on a different source
of food. If u1 and u2 denote the prey and predator populations respectively, then the
prey-predator equations read as follows:

du1

dt
(t) = u1

(
a1 −α1u2

)
du2

dt
(t) = u2

(
−a2 +α2u1

), (1.1)

which are explained by the reasonings below:

i. the prey population is the total food supply for the predators;

ii. in the absence of predators, the prey population grows at a rate a1 > 0 which is
proportional to the current population;

iii. in the absence of prey, the predator population declines at a rate a2 > 0 which is
proportional to the current population;

iv. proportionally to the number of predator/prey encounters, prey population de-
creases at a rate α1 > 0 whereas predator population increases at a rate α2 > 0.

Under equations (1.1), periodic fluctuations arise naturally as a consequence of the
species interaction itself instead of being a result of external circumstances, as seasons
or human interference; which was validated under controlled experimental conditions. By
assumption i., in the absence of the predator the prey population grows indefinitely. Since
this does not fit reality, we could consider the carrying capacity of prey population by
imposing for instance a logistic growth to it. And thus the first equation is replaced by
u′1(t) = u1(t)

(
a1 −bu1(t)−α1u2(t)

)
, for some positive constant b. Besides, as pointed out

by Hutchinson (HUTCHINSON, 1948), the predator population varies today based on
how many preys were consumed a certain time before, that is, we should consider a delay
in assimilation of consumed prey; which leads to the following discrete delay predator-prey
model:

du1

dt
(t) = u1(t)

(
a1 −bu1(t)−α1u2(t)

)
du2

dt
(t) = u2(t)

(
−a2 +α2u1(t − τ)

) . (1.2)

A model such as (1.2) does incorporate a dependence on its past history: its second
equation states that the density of the prey population at time t −τ affects the growth of
the predator population at time t. However it would be more realistic to assume that the
density dependence is distributed over an interval in the past rather than concentrated at



21

a single time instant. Hence a delayed distributed differential Lotka-Volterra model arises:

du1

dt
(t) = u1(t)

(
a1 −bu1(t)−α1u2(t)

)
du2

dt
(t) = u2(t)

(
−a2 +α2u1(t)+

∫ t

−∞
u1(s)k(t − s)ds

). (1.3)

where [0,∞) 3 s 37→ k(s) ∈ [0,∞) is assumed to satisfy
∫ ∞

0 k(s)ds = 1. The fraction k(t − s)

of prey eaten at time t − s is assumed to be translated into predator biomass at time t.
Naturally, the solution of (1.3) is expected to lie in space C

(
R,R2) at least, which is not

normable. This means that its topology is not equivalent to no topology which comes
from a norm on C

(
R,R2). Actually it is a Fréchet space, as we shall study in Chapter 2.

Concerning these differential equations, improvements were gradually obtained as
we considered the following scenarios: no delay; fixed delay; and distributed delay, which
can be an infinite one depending on the support of the kernel s 7→ k(s). The text we are
about to read in the form of chapters consists of two quite different approaches linked by
a common aim: to better understand how the world around us behaves by writing it down
under mathematical language, as Galileo suggested five centuries ago. Ideally we want to
solve delay differential equations with infinite delay of the type, such as

du
dt

(t) = Au(t)+
∫ t

−∞
u(s)k(t − s)ds+ f

(
t,u(t)

)
, (1.4)

under an extended theory of (semi)groups on Fréchet spaces, where A is a linear operator
and f is a map which represents the nonlinear perturbations of the phenomenon. By doing
so, we free the solution of evolution problems from the geometry usually implicitly imposed
by its formulation on Banach spaces. More precisely, it is well known that every Hilbert
space is isometrically isomorphic to some `2 space1, from which one sees that there is only
one geometry for infinite dimensional Hilbert spaces. As for separable Banach spaces, we
know that they always can be embedded in some (separable) Hilbert space.

On the one hand, Chapter 3 introduces the theory of groups of bounded operators
on Fréchet spaces which is needed in order to solve the linear Cauchy problem{

u′(t) = a(D)u, t ∈ R
u(0) = u0

on a Fréchet space X , provided that a(D) : X → X is a bounded linear operator. Such an
approach extend the usual one on Banach spaces, where the unique solution is provided
by the map et a(D). It is the first step towards a general theory to solve semilinear Cauchy
problems on Fréchet spaces and a fortiori (1.4). To do so, we establish the concept of
1 if (eα)α∈A is an orthonormal basis for a Hilbert space H, where A is not necessarily countable,

then H is isometrically isomorphic to `2(A); see Proposition 5.30 of (FOLLAND, 1999)
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“strongly compatible operators” with which the exponential map et a(D), t ∈ R, is a well
defined bounded linear operator on the phase space X and yields the (unique) solution we
seek. Such a compatibility provides a natural way to topologyze the space of all bounded
strongly compatible operators, under which the convergence of the exponential operator
et a(D) holds, instead of a pointwisely convergence, as in (YOSIDA, 1980; CHOE, 1985).
Besides, we study a special Fréchet space of distributions and linear Cauchy problems
on it. The main application concerns the heat equation which in this setting admits a
distribution backwards solution which extends the classical solution obtained by analytic
semigroup theory on Hilbert spaces.

On the other hand, in Chapter 4 we deal with an economic model of the form

u′(t) = f
(
u(t),αu(t − τ)

)
in R4, (1.5)

which is a nonlinear approach to explain the natural economic fluctuations. We study the
existence of a positive equilibrium point and its local stability with or without delay time
τ > 0. Besides, we analyze how such a stability switches as τ and the parameter α vary.
Even though our aim is to set this model under a formulation with infinite delay, this first
step was necessary and it is already an improvement on (TAKEUCHI; YAMAMURA,
2004), whose authors deal with a simplified version of (1.5) in R3 with fixed delay.

Therefore every chapter contributes with our aim under different perspectives.
Chapter 4 deals with a simple application of delay differential equations aiming a more
sophisticated version for which there is no available group theory on Fréchet spaces yet;
whereas Chapter 3 starts out such an abstract theory with some outstanding applications
already. Additionally, Chapter 2 comes to smooth the reading of this thesis by introducing
some topics on semigroup theory on locally convex spaces, functional differential equations
and macroeconomic theory.

What was initially proposed to be my thesis project strongly differs from what this
final version actually is. Also, not everything we wanted to obtain from the study of the
extended Kaldor’s model proposed in (TAKEUCHI; YAMAMURA, 2004) was possible
and many other questions have arisen with not necessarily answers we could give so far.
This is quite natural when it comes to scientific research. In professor Carvalho’s words,
“to pursue a thesis is like to enter into a room with the lights off touching what you find
on the way, trying to find out what it is and how it works without reading instructions;
and times the lights flash so you can have a glance of the room - that is the advisor in
action”. At last, he also once said to me that “if you knew from the beginning what you
were going to achieve with your thesis, it would not be a thesis; it would be an exercise”.
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CHAPTER

2
PRELIMINARIES

With this initial chapter we intend to smooth the reading of the thesis by fixing
some notations, by providing some results and by discussing some topics which we believe
are not as well known as others. However, the reader is expected to be familiar with the
following topics:

(i) basic concepts of set theory (Chapter 0 of (FOLLAND, 1999) is enough);

(ii) topological spaces (we recommend (WILLARD, 2004), although Chapter 4 of (FOL-
LAND, 1999) is enough most of the time);

(iii) functional analysis in Banach spaces (while (FOLLAND, 1999) provides a good
compact course of it, (BREZIS, 2010) is more complete);

(iv) Lebesgue integration theory (see (FOLLAND, 1999; STEIN; SHAKARCHI, 2009));

(v) analysis in euclidean spaces (it suffices to check (LOOMIS; STERNBERG, 2014));
and

(vi) ordinary differential equations (we use (HALE, 2009) as standard reference, but
the reader can start with (ROBINSON, 2001)).

We start the chapter by studying the spaces we aim to set as natural phase space
when formulating evolution problems and modeling phenomena, namely, locally convex
spaces. Thus Section 2.1 contains the basic background on the theory of topological vector
spaces with which we shall acquire a powerful set of tools from Functional Analysis on
Fréchet spaces. In order to propose a distributional formulation to evolution problems,
we present a brief review of Fourier analysis in Section 2.2. Besides, since we seek to
propose an alternative approach to the generation of uniformly bounded groups on Fréchet
spaces, it is appropriate to compare it with the already existing theory on locally convex
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spaces. Although the theory of semigroups of linear operators on Banach spaces is very
well known, the reader may not be familiar with its extension to locally convex spaces.
Hence the purpose of Section 2.3 is to provide this content. About Section 2.4, many
results to ordinary differential equations can be extended to retarded delay differential
equations, which are necessary to carry the reasoning out in Chapter 4. Meanwhile we
shall explore in Section 2.5 how mathematics has been used in modeling economics. And
in order to Kaldor’s business cycle model can be properly appreciated, we give a brief
introduction to macroeconomic theory, by discussing important principles of it, such as:
liquidity preference; aggregate demand and aggregate supply; monetary and fiscal policies;
and growth of the national output. For such a discussion, the reader is expected to be
familiar with the nomenclatures only.

Every function in this text is assumed to be complex valued, unless otherwise
specified. In Sections 2.4 and 2.5 functions are assumed to RN-valued or simply R-valued.
Suppose X = (X ,+, ·) is a vector space equipped with a topology (in Section 2.1, we shall
impose some conditions in order to be a useful topology), we shall denote its dual space
- the space of continuous linear functionals ϕ : X → K - by X ′ or X∗. We shall not deal
with the algebraic dual space of X and therefore we avoid confusion since unfortunately
both notations are commonly used in both senses in functional analysis textbooks. The
evaluation of a given ϕ ∈ X ′ on a vector x ∈ X is denoted by 〈ϕ ,x〉.

2.1 Locally convex spaces

In this section we collect some definitions and results with special focus on locally
convex spaces (hereafter LCSs). While the reader is expected to be familiar with basic
point set topology and functional analysis for Banach spaces, there are some twists that
may or may not be familiar, which are crucial when dealing with LCSs. The main refer-
ences are (FOLLAND, 1999; NARICI; BECKENSTEIN, 2010; OSBORNE, 2013; REED;
SIMON, 1980; RUDIN, 1991; WILLARD, 2004; YOSIDA, 1980).

There are basically three subjects to be discussed: nets; seminorms; and local
convexity. A net is basically a generalized sequence in which the natural numbers are
replaced by a directed set and plays a central role when it comes to study LCS topologies
(although the concept of filters would be a proper substitute). Also, neighborhoods are
not assumed to be open sets, which is a crucial point for most results to be proved; and
they will often be treated in terms of seminorms. Finally, concept of “locally convex” is
the basic property needed to obtain important results such as the Hahn-Banach theorems
and the Banach-Steinhaus theorem.

We start the discussion of LCSs by highlighting the difference between continuity
and sequential continuity. For a function f : R → R, one may define continuity using



2.1. Locally convex spaces 25

sequential convergence - that is, f is said to be continuous at x0 if f (xn)→ f (x0) as n → ∞,
whenever xn → x0 as n → ∞ - which is referred as sequential continuity.

Sequential convergence is able to describe only those topologies in which the num-
ber of basic neighborhoods around each point is no greater than the number of terms
in the sequences. In other words, sequences describe the topology of a space X whenever
X is a first-countable space1. By describing a topology with sequences, we mean obtain-
ing characterizations of basic topological properties from sequences: let X = (X ,τX) and
Y = (Y,τY ) be first-countable spaces, then

a. U ⊂ X is τX -open if and only if (xn)n is eventually in U , whenever xn → x ∈U ;

b. F ⊂ X is τX -closed if and only if x ∈ F whenever (xn)n ⊂ F and xn → x as n → ∞; and

c. a function f : X → Y is continuous if and only if f is sequentially continuous.

As pointed out in (FOLLAND, 1999), considering the pointwise topology, the
sequential closure of the set of all continuous functions C(R,C) is a proper subset of the
set CR of all functions f : R→ C. On the other hand, C(R,C) is a dense subset of CR.

A successful generalization of the notion of sequence lies in retaining the essential
ordering of the natural numbers. We replace the linearity of the order on N by some other
way of giving a definite “positive orientation” to our ordered sets. The following definition
has stood the test of time. A set Λ is said to be a directed set if it is equipped with a
binary relation � such that

• λ � λ ;

• if λ1 � λ2 and λ2 � λ3 then λ1 � λ3; and

• if λ1,λ2 ∈ Λ then there exists λ3 ∈ Λ such that λ1 � λ3 and λ2 � λ3.

The relation � is sometimes referred to as a direction on Λ and is said to direct
Λ. If λ1 � λ2, we may also write λ2 � λ1.

A net in a set X is a mapping λ 7→ xλ from a directed Λ into X . We shall denote
it by (xλ )λ∈Λ or simply (xλ ) if Λ is understood; and we say that it is indexed by Λ. A
net (xλ )λ∈Λ in topological space X converges to x ∈ X if, for every neighborhood U of x,
there exists λ0 = λ0(U) ∈ Λ such that xλ ∈U whenever λ � λ0; we write

x = lim
λ∈Λ

xλ or x = lim
λ

xλ or xλ
X−→

λ∈Λ
x or simply xλ → x;

and we say that (xλ ) is eventually in every neighborhood of x. Since the notion of a
net is a generalization of the notion of a sequence (with N being replaced by Λ), this is
consistent with standard terminology for sequences.
1 See (WILLARD, 2004) for a more extensive discussion about it.
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Example 2.1. We provide some simple examples of directed sets and nets in the following:

• the set N of natural numbers is a directed set when given its usual order. Thus every
sequence (xn)n∈N is a net;

• the set Nx of all neighborhoods of a point x in a topological space X , with U � V

whenever U ⊃V is a directed set and we say that Nx is directed by reverse inclusion.
It provides a fundamental connection between the concepts of nets on X and the
topological properties of X ;

• given a ∈ R, the set R\{a} is a directed set provided that x � y whenever |x−a|>
|y− a|; from whence one may see how nets notion occurs in defining limits of real
variables.

• the collection P of all finite partitions of the closed interval [a,b] into closed subin-
tervals is a directed set when ordered by the relation P1 � P2 whenever P2 refines P1.
Given a real-valued function f on [a,b], we can define a net SL : P → R by letting
SL(P) be the lower Riemann sum of f over the partition P; likewise, we can define
SU : P → R by letting SU(P) be the upper Riemann sum of f over P. Convergence
of both of these nets to the number c simply means∫ b

a
f (x)dx = c.

This example is historically important; it is what first led Moore and Smith to the
concept of a net.

• the Cartesian product Λ1 ×Λ2 of two directed sets is always directed by the order
relation (λ1,λ2)� (λ ′

1,λ
′
2) whenever λ1 �Λ1 λ ′

1 and λ2 �Λ2 λ ′
2. It is the main tool to

a diagonal argument when it comes to prove that a topological space X is Hausdorff
if and only if every net in X converges to at most one point.

Now we introduce the notion of subnets, which performs much the same functions
as subsequences, although with some reservations. Like a subsequence, a subnet involves
a reparametrization of a net, but the manner in which this happens is much more general;
so general, in fact, that a subnet of a sequence need not be a subsequence.

A subnet of a net (xλ )λ∈Λ is a net (zγ)γ∈Γ together with a map Γ 3 γ 7→ λγ ∈ Λ
such that

• for every λ0 ∈ Λ there exists γ0 ∈ Γ such that λγ � λ0 whenever γ � γ0; and

• zγ = xλγ .
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Clearly if a net (xλ )λ∈Λ converges to a point x then so does any subnet (xλγ )γ∈Γ.
At last, a point y ∈ X is a cluster point of (xλ ) if for every neighborhood U of y and
λ ∈ Λ there exists λ0 � λ such that xλ0 ∈U .

Theorem 2.2. Let X and Y be topological spaces, let f : X →Y be a function, x ∈ X and
E ⊂ X .

a. a net has a cluster point x if and only if it has a subnet which converges to x;

b. x ∈ Ē if and only if x is the limit of some net in E;

c. f is continuous at x if and only if f (xλ )
Y→ f (x) whenever xλ

X→ x;

d. X is compact if and only if every net has a cluster point; and

e. A net (xλ ) in a product X = ∏ j∈J X j converges to x if and only if π j(xλ ) → π j(x),
for every canonical projection π j : X → X j.

As a consequence, one may prove the Tychonoff theorem with very little effort,
see (FOLLAND, 1999; WILLARD, 2004). It is frequently useful to consider topologies
on vector spaces other than those defined by norms, the only crucial requirement being
that the topology should be well behaved with respect to the vector operations. Precisely,
a topological vector space X over R or C (hereafter TVS) is a vector space, which is
also a topological space, in which the vector space operations are continuous. Letting K
denote the field R or C we require the maps

X ×X 3 (x,y) 7→ x+ y ∈ X (addition)

and
K×X 3 (r,x) 7→ rx ∈ X (scalar multiplication)

to be continuous.

Topological vector spaces enjoy some nice topological properties earned from the
vector structure. For instance, a TVS is T0 if and only if it is T1 if and only if it is T2

if and only if it is T3 if and only if {0} is closed if and only if
⋂

B∈B

B = {0}, for a fixed

neighborhood base B at 0.

It is time to keep in mind how important Hausdorff condition is, since we want nets
to have unique limits. We shall define the meaning of “Cauchy” here (it is slightly subtle)
and define completeness as “Cauchy ⇒ Convergent”, as expected. For metric spaces, a
sequence (xn)n converges to x when the terms xn get close to x; and the sequence (xn)n

is Cauchy when the terms xn get close to each other. To motivate how that translates
into for TVSs, consider a convergent sequence xn → x in a TVS X . If B is a neighborhood
of 0 then for n sufficiently large, xn ∈ x+B, that is xn − x ∈ B. Aha! That B is fixed; the
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group operation says (in a uniform sense) that a point x is close to another point y when
y− x ∈ B.

A net (xλ )λ∈Λ in X is said to be a Cauchy net if the net (xλ − xγ)Λ×Λ is even-
tually in every neighborhood of 0. And X is said to be complete if every Cauchy net
in X is convergent. One fact we have gotten used to when working with metric spaces
is that sequences are “enough”. When it comes to TVSs, sequential completeness implies
completeness if the space is first countable Hausdorff. It is noteworthy that every LCS
X can be embedded in a complete LCS, in which X forms a dense subset. See (NARICI;
BECKENSTEIN, 2010), Theorem 5.11.5; or (TREVES, 2016), Theorem 5.2.

Most TVSs that arise in practice are locally convex and Hausdorff. A locally convex
topological vector space will be called a locally convex space (abbreviated LCS in the
literature). Of course, the adverb “locally” in “locally convex” means exactly what an
adverb should: there exists a base for the topology consisting of convex sets, that is, sets
A such that if x,y ∈ A then tx+(1− t)y ∈ A, for 0 < t < 1.

Locally convex spaces are often defined in terms of seminorms. Namely, if we are
given a family of seminorms on X, the “semiballs” that they define can be used to generate
a topology in the same way that the balls defined by a norm generate the topology on a
normed vector space. Let us make it precise.

A seminorm on a vector space X is a function X 3 x 7→ p(x) ∈ [0,∞) such that

• p(rx) = |r|p(x), for every r ∈K and x ∈ X ; and

• p(x+ y)⩽ p(x)+ p(y), for every x,y ∈ X . (the triangle inequality)

The first property clearly implies that p(0) = 0. A seminorm such that p(x) = 0
only when x = 0 is called a norm.

Theorem 2.3. Let (pα)α∈A be a family of seminorms on a vector space X and let τ
denote the topology generated by the sets

Bα(x,ε) := {y ∈ X : pα(y− x)< ε},

with α ∈ A,x ∈ X and ε > 0.

a. for every x ∈ X , the sets Bα(x,ε) form a neighborhood subbase at x;

b. a net (xλ ) in X converges to x if and only if pα(xλ − x)→ 0, for every α ∈ A;

c. (X ,τ) is a locally convex space;

d. (X ,τ) is Hausdorff if and only if there exists α ∈ A such that pα(x) 6= 0 whenever
x 6= 0; in this case, (pα)α∈A is said to be a separating family of seminorms; and
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e. if (X ,τ) is Hausdorff and A is countable then (X ,τ) is metrizable with a translation
invariant metric ρ (that is, ρ(x,y) = ρ(x+ z,y+ z) for all x,y,z ∈ X).

Some authors uses this construction as the definition of “locally convex space”,
see (REED; SIMON, 1980). We shall write X =

(
X ,(pα)α∈A

)
to denote the vector space

X equipped with the topology generated by the seminorms pα ,α ∈ A. Such a construction
is not overly restrictive: every LCS has a neighborhood base B at 0 consisting of convex
balanced sets (which means sets B with the following property: for every x ∈ B and r ∈K
such that |r| ⩽ 1, cx ∈ B); then one can take their Minkowski functionals pB defined by
pB(x) := inf{t > 0: t−1x∈ B}, which are seminorms thanks to the nice properties of B; and
apply this construction to (pB)B∈B. The resulting topology is equivalent to the original
one. This situation does happen even more often when A is countable.

Given a TVS X = (X ,τ), a family of seminorms (pα)α∈A on X is said to be a
fundamental family of seminorms (for X) if the topology they generate is equivalent
to the original one, namely τ .

Clearly the main class of maps between TVSs we are interested in is the class of
linear maps, which enjoy nice properties thanks to the vector space structure.

Proposition 2.4. Let X =
(
X ,(pα)α∈A

)
and Y =

(
Y,(qβ )β∈B

)
be TVSs. A linear map

T : X → Y is continuous if and only if for each β ∈ B there exist finitely many indices
α ∈ Ã ⊂ A and C =C(β ,T )> 0 such that

qβ (T x)⩽C ∑
α∈Ã

pα(x).

The notion of boundedness for a subset B of a Banach space (X ,‖ · ‖X) is very
clear and it is equivalent to the following statement: for every neighborhood V of 0 in X

there exists a scalar number t0 = t0(B,V ) > 0 such that B ⊂ tV whenever t ⩾ t0. If B is a
subset of a TVS, this is the standard definition of B being a bounded set. In terms of
seminorms, a subset B of a TVS X =

(
X ,(pα)α

)
is bounded if pα(B) := {pα(x)∈R : x ∈ B}

is a bounded set, for every α . Besides, a linear operator T : X →Y between Banach spaces
is continuous if and only if it is bounded, in the sense that T (B)⊂Y is bounded whenever
B ⊂ X is bounded. This is not quite the same for general TVSs.

Theorem 2.5. Let T : X →Y be a linear transformation between two TVSs and consider
the following possible properties of T :

a. T is continuous;

b. T is bounded;

c. if xn → 0 then {T xn : n ∈ N} ⊂ Y is bounded; and
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d. T is sequentially continuous at 0, that is, T xn → 0 whenever xn → 0.

Then the implications a. ⇒ b. ⇒ c. hold. If in addition X is metrizable then c.
⇒ d. ⇒ a., so that all four properties are equivalent.

Complete metric spaces were introduced along with the definition of metric spaces
by Maurice Fréchet (pronounced as mɔʀis fʀeʃɛ, French IPA) in his doctoral thesis (FRÉCHET,
1906) and vigorously pursued by a host of Polish mathematicians in the 1920’s. Fréchet
and Stefan Banach (pronounced as stɛfan banax, Polish IPA) were contemporaneous math-
ematicians. Fréchet was the first to use the term “Banach space”. Banach repaid this favor
by coining the term “Fréchet space” for complete metrizable TVS. Local convexity condi-
tion was later appended by Bourbaki (pronounced as nikɔla buʀbaki, French IPA).

Proposition 2.6. Let X be a TVS. The following are equivalent:

a. X is locally convex, complete and metrizable with a translation invariant metric;

b. X is locally convex, complete and metrizable;

c. X is complete and its topology is generated by a countable separating family of
seminorms; and

d. X is a Hausdorff complete space which admits a neighborhood base at 0 consisting
of countably many convex balanced absorbing sets.

A TVS X is called a Fréchet space if possesses the properties (a)-(d) of Propo-
sition 2.6. Given a fundamental family of seminorms (p j) j∈N for a Fréchet space X , one
can consider the seminorms qk,k ∈ N, defined by

qk(x) := p1(x)+ · · ·+ pk(x),x ∈ X ,

which turn out to be an equivalent fundamental family of seminorms for X ; and we say
that (qk)k∈N is a saturated family of seminorms, see (NARICI; BECKENSTEIN,
2010). They have the property that qk ⩽ ql whenever k ⩽ l. In this case, by Proposition
2.4, a linear functional f on X is continuous if and only if | f (x)|⩽Cqk(x),x ∈ X , for some
seminorm qk and constant C > 0. Also, boundedness can be reformulated in terms of the
seminorms of a fundamental family for X , instead of all (continuous) seminorms on X .

Example 2.7. • clearly every Banach space is a Fréchet space.

• the space C
(
RN ;C

)
of all continuous functions f : RN →C equipped with the family

of seminorms
pn( f ) := sup

|x|⩽n
| f (x)|,n ∈ N,
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is a Fréchet space. When it comes to study delay differential equations with infi-
nite delay, the space C

(
(−∞,0],C

)
is of particular interest, see (WALTHER, 2016a;

WALTHER, 2016b).

Usually, it is said that this Fréchet space convergence is the uniform convergence on
compact sets. As the reader may deduce, the same idea is true for C(H;C), where
H is a locally compact σ -compact Hausdorff space.

Proof. It is not hard to check that every pn defines a norm on C
(
RN ;C

)
and since

a function is null if and only if it is null in every ball Bn, the family (pn)n∈N is
separating. By Theorem 2.3, C

(
RN ;C

)
is a Hausdorff metrizable LCS with a trans-

lation invariant metric ρ . Therefore one just have to check its completeness, which
is straightforward since the limit of a sequence of continuous functions on Bn is
again a continuous function on Bn.

• the space of all holomorphic functions in the complex plane is a Fréchet space when
equipped with the seminorms pn of C(C;C).

• C∞, the space of infinitely differentiable complex-valued functions on RN , together
with the seminorms

C∞ 3 f 7→ max
|x|,|α|⩽n

∣∣∣∣∂ α f
∂xα (x)

∣∣∣∣ ,n ∈ N,

is a Fréchet space (as well as every space Ck).

• now we consider the Schwartz space S = S
(
RN ;C

)
: the class of those smooth func-

tions which, together with all their derivatives, vanish at infinity faster than any
power of |x|. Formally, we set

S := { f ∈C∞ : ‖ f‖(n,α) < ∞ for every n and α},

where, for n ∈ Z+ and α ∈ ZN
+, the map

f 7→ ‖ f‖(n,α) := sup
x∈RN

(1+ |x|)n|∂ α f (x)|

defines a seminorm on S. Sometimes it is said that S consists of all rapidly decreasing
functions on RN . It is not hard to see that every compactly supported C∞ function
is a Schwartz function as well as the map x 7→ p(x)e−|x|2 , for a given polynomial
p : RN → C.

It is a separable Fréchet space on which the Fourier transform is a topological
isomorphism (by the Fourier Inversion theorem 2.26).

Proof. The only nontrivial points are completeness and separability. Let ( fk)k∈N be
a Cauchy sequence in S i.e. ‖ f j − fk‖(n,α) for all n,α . In particular, for each α the
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sequence
(
∂ α fk

)
k∈N converges uniformly to a function gα . If e j denotes the vector

(0, . . . ,1, . . . ,0) with the 1 in the jth position then letting k → ∞ in

fk(x+ te j)− fk(x) =
∫ t

0
∂ j fk(x+ se j)ds

we obtain
g0(x+ te j)−g0(x) =

∫ t

0
ge j(x+ se j)ds.

The fundamental theorem of calculus implies that ge j = ∂ jg0 and an induction on
|α| then yields gα = ∂ αg0 for all α . It is easy to check that ‖ fk −g0‖(n,α) → 0.

On the separability, since C∞
c

d
↪→ S

d
↪→ Lp for 1 ⩽ p < ∞ - where d

↪→ denotes dense
continuous inclusions -, one concludes that S is separable. See (CORDARO, 1999),
page 100, or (FOLLAND, 1999), Proposition 9.9.

Besides, if f ,g ∈C∞ then the Leibniz formula,

∂ α( f g) = ∑
γ⩽α

(
α
γ

)(
∂ α−γ f

)(
∂ γg
)
,

implies that f ∈ S if and only if xβ ∂ α f is bounded for every multiindex α,β if and
only if ∂ α(xβ f ) is bounded for every multiindex α,β .

• for every finite p ⩾ 1, Lp
loc = Lp

loc

(
RN ;C

)
is a Fréchet space with the seminorms

f 7→
(∫

|x|⩽n
| f (x)|p dx

)1/p

,n ∈ N.

Remark 2.8. There is a certain duality between separability and metrizability, as it
occurs with Banach spaces. Let X be a LCS.

• If X is separable and K is an equicontinuous subset of X ′ then K is metrizable with
respect to σ(X ′,X) topology.

• If X is a separable metrizable space then
(
X ′,σ(X ′,X)

)
is separable.

• The inductive limit of countably many separable spaces is separable.

To check the definition of the weak topology σ(X ′,X) when X is a LCS, see for
instance (OSBORNE, 2013).

The primary reason why LCSs are so useful is that there are guaranteed to be
plenty of continuous linear functionals; and the Hahn-Banach theorem provides them.
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Theorem 2.9 (The Hahn-Banach theorem). Let Y be a subspace of a real vector space
X and let p : X → [0,∞) be a sublinear functional on X .

If f : Y →R is a linear functional which is dominated by p on Y then f extends to
a linear functional F : X → R which is dominated by p on X . If, in addition, X is a TVS
and p is continuous then F is continuous as well.

From the result below, it follows the main separation theorems for convex sets in a
Hausdorff LCS X . In particular, the dual space of X separates points; and it also separates
points from subspaces.

Theorem 2.10 (The Hahn-Banach theorem - geometric form). Let C1 and C2 be two
disjoint nonempty convex subsets of an LCS X . If C1 is closed and C2 is compact then
there are a real number r0 and a continuous linear functional F : X → R for which

F(x)< r0 < F(y) for every x ∈C1 and y ∈C2.

The local convexity and Hausdorff conditions provide the minimal requirements
under which three classic results hold; namely, the Uniform Boundedness Property; the
Open Mapping theorem; and the Closed Graph theorem.

Theorem 2.11 (The Banach-Steinhaus theorem). Let X and Y be Hausdorff LCSs, let
H ⊂ L (X ,Y ) and consider the following three conditions on H :

(i) H is equicontinuous.

(ii) H is bounded for the bounded convergence.

(iii) H is bounded for the pointwise convergence.

Then

a. (i) ⇒ (ii) ⇒ (iii) always.

b. if X is sequentially complete then (iii) ⇒ (ii).

c. if X is Fréchet then (i)-(iii) are all equivalent.

Technically, the term “uniform boundedness theorem” applies best to part b. while
“Banach-Steinhaus theorem” applies best to part c.. As stated here, Theorem 2.11 is
more general than the classical Banach-Steinhaus theorem but there seems to be some
disagreement in the literature as to exactly what result should be called the “Banach-
Steinhaus theorem” and what should be called the “uniform boundedness theorem”.
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Remark 2.12. A family H ⊂ L (X ,Y ) is said to be equicontinuous if for every neigh-
borhood V of 0 in Y there exists a neighborhood U of 0 in X such that T (U) ⊂ V for
every T ∈ H . We say that H is bounded for the bounded convergence if for every
bounded set B ⊂ X the set ⋃

T∈H

T (B)

is bounded in Y ; and H is bounded for the pointwise convergence if for every x ∈ X

the set {T x : T ∈ H } is bounded in Y .

Clearly these concepts may be reformulated in terms of seminorms. We may write
X =

(
X ,(pα)α∈A

)
and Y =

(
Y,(qβ )β∈B

)
. Hence H is equicontinuous if for every α ∈ A

there exist β = β (α) ∈ B and a constant C = C(α) > 0 such that qβ (T x) ⩽ Cpα(x) for
every T ∈ H and x ∈ X . Similarly for the other concepts.

As a consequence the limit operator of a pointwisely convergent pointwisely bounded
net of operators in L (X ,Y ) is a continuous linear operator as well, provided that X is
minimally “good”. In case you are curious, we should require X to be a barreled TVS and
Y to be a LCS. A TVS is said to be barreled if every absorbing balanced convex closed
subset is a neighborhood of 0. Fortunately every Fréchet space is barreled and some re-
sults we present actually require the space to be only barreled and sometimes something
else not too strong such as being Hausdorff. If one deals only with sequences, things turn
out to be slightly simpler.

As a curiosity, we present the Arzelà-Ascoli theorem for TVSs, probably a surprise
to some readers as it was for us. It essentially states that H ⊂

(
C(X ,K),τK

)
is compact

if and only if it is equicontinuous, where K=R or K=C and τK denotes the topology of
uniform convergence on compact sets (which is also called the compact-open topology).

Theorem 2.13 (The Arzelà-Ascoli theorem for TVSs). Let X be a TVS.

a. If H is an equicontinuous subset of
(
C(X ,K),τK

)
and is bounded for the pointwise

convergence then H is precompact.

b. if X is locally compact and H is a precompact subset of
(
C(X ,K),τK

)
then H is

equicontinuous and bounded for the pointwise convergence.

There are several versions of the Open Mapping theorem for TVSs, involving
different weaker assumptions on the TVSs and a weaker concept of a mapping “being
open”. Given two TVSs X and Y , a linear map A : X →Y is almost/nearly open if A(U)

is a neighborhood of 0 in Y whenever U is a neighborhood of 0 in X .

Theorem 2.14 (The Open Mapping theorem). Let X be a Fréchet space and let Y be a
Hausdorff LCS. If A : X → Y is a continuous nearly open linear map then A is open (and
onto).
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Theorem 2.15. Let X and Y be Fréchet spaces and let A : X → Y be a linear map.

a. (Closed Graph theorem) if A is closed then it is continuous.

b. (Open Mapping theorem) if A is closed and onto then it is open.

Actually, to obtain the Closed Graph theorem, it suffices to assume that X is either
a Baire TVS or a barreled TVS; and that Y is a complete pseudometrizable LCS. Besides,
since the idea of the proof of the Open Mapping theorem is to apply the Closed Graph
theorem to Ã−1, where Ã : X/A−1(0)→Y is defined by Ã

(
x+A−1(0)

)
:= Ax, one sees that

it suffices to assume that the codomain of A is either a Baire TVS or a barreled TVS; and
that its domain is a complete pseudometrizable LCS.

Remark 2.16. By the category theorem ((RUDIN, 1991), Theorem 2.2), every complete
metrizable TVS is a Baire space. Since local convexity is so essential as we have seen,
Proposition 2.6 implies that the best examples of Baire TVSs are Fréchet spaces.

Of course, the category theorem also states that locally compact Hausdorff spaces
are Baire spaces. But as the well known Riesz theorem claims, every locally compact TVS
has finite dimension; and we would go back to euclidean geometry.

2.2 Elements of Fourier analysis and distribution theory
We shall deal with functions and distributions defined on RN instead on an open

subset of RN , since the latter will not be necessary. Hence we simplify the notation by not
mentioning the space RN ; for instance, we write L1 instead of L1(RN) or L1(RN ,C

)
.

Theorem 2.17 (The Dominated Convergence theorem). Let ( fn) be a sequence of L1

functions such that fn → f a.e. and | fn| are dominated by some nonnegative L1 function
then f ∈ L1 and

∫
f = lim

n

∫
fn.

Theorem 2.18 (The Fubini-Tonelli theorem). Suppose that (X ,M ,µ) and (Y,N ,ν)
are σ -finite measure spaces. Given a measurable function f : X ×Y → C, if either f is
nonnegative or f ∈ L1 then∫

f d(µ ×ν) =
∫ (∫

f dµ
)

dν =
∫ (∫

f dν
)

dµ

holds.

Theorem 2.19. Let f : RN →C be a measurable function and let c and s denote positive
constants.

a. if | f (x)|⩽ c|x|−s on B := B(0,1) for some s < N then f ∈ L1(B);
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b. if | f (x)|⩾ c|x|−n on B then f /∈ L1(B);

c. if | f (x)|⩽ c|x|−s on Bc for some s > N then f ∈ L1(Bc); and

d. if | f (x)|⩾ c|x|−n on Bc then f /∈ L1(Bc).

Theorem 2.20 (The Lebesgue Differentiation theorem). If f ∈ L1
loc then

lim
r→0+

1
|B(x,r)|

∫
B(x,r)

f (y)dy = f (x), for almost every x.

Corollary 2.21. If f ∈ L1
loc satisfies

∫
f ϕ = 0 for every ϕ ∈C∞

c then f = 0.

Theorem 2.22 (The Riesz Representation theorem). Let 1 < p,q < ∞ satisfy 1
p +

1
q = 1.

If u ∈
(
Lp)′ then there exists a unique function f ∈ Lq such that ‖ f‖Lq = ‖u‖(Lp)′ and

〈u,ϕ〉=
∫

f ϕ for every ϕ ∈ Lp.

Hence Lq is isometrically isometric to
(
Lp)′.

Theorem 2.23. Let 1 < p < ∞, ϕ ∈ L1 with
∫

ϕ = a and set ϕt(x) := t−Nϕ(t−1x).

a. if f ∈ Lp then f ∗ϕt → a f in the Lp norm as t → 0;

b. If f is bounded and uniformly continuous then f ∗ϕt → a f uniformly as t → 0; and

c. if f ∈ L∞ and f is continuous in an open set U then f ∗ϕt → a f uniformly on compact
subsets of U as t → 0.

Proposition 2.24. C∞
c (and hence S) is dense in Lp, 1 ⩽ p ⩽ ∞.

We begin by defining the Fourier transform of a function f ∈ L1 by

F f (ξ ) = f̂ (ξ ) :=
∫
RN

e−2πiξ ·x f (x)dx,

where ξ · x = 〈ξ ,x〉 denotes the RN inner product of ξ and x. As in (FOLLAND, 1999),
we use the notation F for the Fourier transform only in certain situations where it is
needed for clarity. Clearly ‖ f‖u ⩽ ‖ f‖L1 and ξ 7→ f̂ (ξ ) is continuous by the Dominated
Convergence theorem; thus

F : L1 → BC

is linear and continuous.

Theorem 2.25. Let f ,g ∈ L1 and let τz stand for the translation map: τz f (x) := f (x− z).

a. F (τz f )(ξ ) = e−2πiξ ·z(F f )(ξ ) and
(
τzF f

)
(ξ ) = F

(
e2πi〈z,·〉 f (·)

)
(ξ );
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b. if T is an invertible linear transformation on RN and S = (T ∗)−1 is its inverse trans-
pose then

F ( f ◦T ) = |detT |−1(F f )◦S;

c. F ( f ∗g) = (F f )(Fg);

d. if xα f ∈ L1 whenever |α|⩽ k then f̂ ∈Ck and

∂ α(F f
)
(ξ ) = F

(
(−2πix)α f

)
(ξ );

e. if f ∈Ck; ∂ α f ∈ L1 whenever |α|⩽ k; and ∂ α f ∈C0 whenever |α|⩽ k−1, then

F
(
∂ α f

)
(ξ ) = (2πiξ )α(F f

)
(ξ );

and

f. (The Riemann-Lebesgue Lemma) F (L1)⊂C0.

In the result above, C0 denotes the space of continuous functions f : RN →C such
that f (x)→ 0 as |x| → ∞.

We are now ready to invert the Fourier transform. If f ∈ L1, we define

qf (x) := f̂ (−x) =
∫
RN

e2πiξ ·x f (ξ )dξ .

Theorem 2.26 (The Fourier Inversion theorem). If f , f̂ ∈ L1 then f agrees almost every-
where with a continuous function f0 and(

f̂
)
q=

(
qf
)̂
= f0.

Consequently, F is an isomorphism of S onto itself.

Theorem 2.27 (The Plancherel theorem). The Fourier transform F is a unitary isomor-
phism on L2, that is, an isomorphism such that(

F f ,Fg
)

L2 = ( f ,g)L2, for every f ,g ∈ L2.

Nearly all the spaces routinely used in analysis are one of four types: Banach
spaces, Fréchet spaces, LF-spaces, or the dual spaces of Fréchet spaces or LF-spaces. The
main example of an LF-space is precisely the test functions space on RN : C∞

c , which is so
important that it is conceivable that LF-spaces, as a class of locally convex spaces, would
be defined even if C∞

c were the only example. Let Bn := {x ∈ RN : |x|⩽ n}; then

Xn := {ϕ ∈C∞
c : suppϕ ⊂ Bn},n ∈ N,

is a Fréchet space with the following three properties (which turn out to define LF-spaces):
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• Xn ⊂ Xn+1;

• the topology Xn+1 induces on Xn is its Fréchet topology; and

• Xn 6= X for every n.

The base for the LF-topology on C∞
c is given by all convex balanced subsets B⊂C∞

c

such that B∩Xn is a neighborhood of 0 in the Fréchet topology of Xn, for every n. Hence,

• a sequence (ϕn) in C∞
c converges to 0 in C∞

c if there exists a compact subset K ⊂RN

such that every ϕn belongs to C∞
c (K) and ϕn

C∞
c (K)−→

n→∞
0;

• let Y be an LCS and T : C∞
c →Y be a linear operator. Since every C∞

c (Bn) is metriz-
able, T is continuous if and only if T

∣∣
C∞

c (Bn)
is sequentially continuous at 0, for every

n.

The name “LF-space” comes from the fact that those spaces can be seen as a limit
of Fréchet spaces, in some sense. The reader may promptly infer about the definition of
LB-spaces and take as an example the space of all polynomials of one real variable. LF-
spaces are complete Hausdorff LCSs but never (pseudo)metrizable and hence they define
a strictly larger class of that one formed by Fréchet spaces. Besides LF-spaces provide a
good example of complete meager TVSs; see (NARICI; BECKENSTEIN, 2010).

Given a function f ∈ L1
loc, the map ϕ 7→

∫
ϕ f is a well-defined linear functional on

C∞
c and the pointwise values of f can be recovered a.e. from it by the following result,

which is an application of the Lebesgue differentiation theorem:

Theorem 2.28. Suppose |ϕ(x)|⩽ c(1+ |x|)−n−ε for some c,ε > 0 and
∫

ϕ = 1. For x ∈RN

and t > 0, let ϕt(x) = t−nϕ(t−1x). If f ∈ L1
loc then, for every x in the Lebesgue set of f ,

lim
t→0

f ∗ϕt(x) = f (x);

in particular, for almost every x and for every x at which f is continuous.

This means that we may abandon the classical definition of function as a map that
assigns to each point of RN a vector value. Instead of dealing with the pointwise values
of f , we can consider the family of integrals

∫
f ϕ as ϕ ranges over C∞

c when it comes to
recognize it as a function. But there are many linear functionals on C∞

c that are not of
the form ϕ 7→

∫
ϕ f and this provides a notion of “generalized functions”.

A distribution on RN is a continuous linear functional u on C∞
c and we write

u : C∞
c → C

ϕ 7→ 〈u,ϕ〉
.
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In other words, a distribution on RN is a linear functional u : C∞
c → C with the property

that for every compact subset K ⊂ RN there exist a positive constant c = c(K,u) and a
non-negative integer k = k(K,u) such that

|〈u,ϕ〉|⩽ c ∑
|α|⩽k

sup
x∈RN

|∂ αϕ(x)|, for ϕ ∈C∞
c (K,C).

The space of all distributions on RN is denoted by D′ =D′(RN), which is equipped
with the ⋆-weak topology, that is, the topology of the pointwise convergence. The stan-
dard notation D′ for the space of distributions comes from Schwartz’s notation D for
C∞

c , which is also quite common. We say that two distributions u,v ∈ D′ are equal if
〈u− v,ϕ〉= 0, for every ϕ ∈C∞

c .

Example 2.29. • every function f ∈ Lp
loc defines a distribution by setting

〈 f ,ϕ〉 :=
∫
RN

f (x)ϕ(x)dx, for every ϕ ∈C∞
c ;

• the point mass at the origin, namely ϕ 7→ ϕ(0), is also a distribution - which plays
a central role in distribution theory and it is denoted by δ ; and

• if µ is a Radon measure on RN then ϕ 7→
∫

ϕ dµ is a distribution.

The theory of distributions frees differential calculus from certain difficulties that
arise because nondifferentiable functions exist. We define the derivative ∂ αu of a distri-
bution u by

〈∂ αu,ϕ〉 := (−1)α〈u,∂ αϕ〉,

which is motivated by the formula
∫
(∂ α f )ϕ = (−1)|α| ∫ f (∂ αϕ), for f ∈C|α| and ϕ ∈C∞

c .

Hence the usual formal rules of calculus hold and every distribution u has partial
derivatives which are again distributions; in particular, u is infinitely differentiable. Be-
sides, if u ∈D′ is actually differentiable then this new notion of derivative coincides with
the usual one. Similarly, this procedure motivates the following definitions for a given
distribution u.

• (Multiplication by smooth functions) If ψ ∈ C∞ then ψu is the distribution
given by

〈ψu,ϕ〉 := 〈u,ψϕ〉, for ϕ ∈C∞
c .

• (Translation) Let τz stand for the translation map (as in Theorem 2.25). For
ϕ ∈C∞

c , we set
〈τzu,ϕ〉 := 〈u,τ−zϕ〉.

Usually the point mass at z, τzδ , is denoted by δz.
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• (Composition with linear maps) If T is an invertible operator on RN then

〈Tu,ϕ〉 := |detT |−1〈u,ϕ ◦T−1〉, for ϕ ∈C∞
c ,

defines a distribution.

• (Convolution with test functions) We use the following notation for the reflex-
ion map: ϕ̃(x) = ϕ(−x). If ψ ∈ C∞

c then the convolution u ∗ψ is the distribution
defined by

〈u∗ψ,ϕ〉 := 〈u,ϕ ∗ ψ̃〉, for ϕ ∈C∞
c ,

which is motivated by the formula
∫
( f ∗ψ)ϕ =

∫
f (ϕ ∗ ψ̃), for a given function f ∈

L1
loc. Or equivalently u∗ψ is the distribution defined by the C∞ function x 7→ 〈u,τxψ̃〉.

Such a definition comes from the formula f ∗ψ(x) =
∫

f (τxψ̃), for a given function
f ∈ L1

loc; and it naturally carries out the property:

∂ α(u∗ψ) = (∂ αu)∗ψ = u∗ (∂ αψ).

As a consequence, one can prove that C∞
c is dense in D′ in the topology of D′.

The support of a distribution u is denoted by suppu and is defined as follows:
x /∈ suppu if there exists an open neighborhood U of x such that 〈u,ϕ〉 = 0, for every
ϕ ∈ C∞

c (U). The space of all compactly supported distributions is denoted by E′

and can be identified with the dual space of C∞. More precisely, if u ∈ E′ then it extends
uniquely to a continuous linear functional on C∞; conversely, if u is a continuous linear
functional on C∞ then u

∣∣
C∞

c
∈ E′. The linear operations discussed above preserve the class

E′ and additional convolution properties allow us to define u∗v and v∗u as distributions,
provided that u ∈D′ and v ∈ E′. Actually, u∗ v = v∗u. See (RUDIN, 1991; SCHWARTZ,
1966).

For a function f : RN → R, the formula ∂̂ α f (ξ ) = (2πiξ )α f̂ (ξ ) provides a connec-
tion between smoothness and decay: f is smooth if and only if f̂ rapidly decays to 0 as
|ξ | → ∞. If one can apply the inverse Fourier transform then also f rapidly decays to 0 as
|x| → ∞ if and only if f̂ is smooth. Thus some ordinary differential equations can be trans-
formed into algebraic equations, which are easier to deal with and to solve. The same idea
holds for L2 functions with weak derivatives or even distributions with their distributional
derivatives and the result that formally establish such a connection is the Paley-Wiener-
Schwartz theorem (for L2 functions and for compactly supported distributions). It relates
decay properties of a function or distribution at infinity with analyticity of its Fourier
transform. The theorem is named for Raymond Paley (1907-1933) and Norbert Wiener
(1894-1964), who originally applied to square-integrable functions, see (STEIN; WEISS,
1971); the first version using distributions was due to Laurent Schwartz (1915-2002). It



2.2. Elements of Fourier analysis and distribution theory 41

basically states that a distribution is compactly supported if and only if its Fourier trans-
form can be extended to an analytic function whose growth has a particular exponential
boundedness.

Proposition 2.30. If u ∈ E′ then the distribution û is actually a function on RN , namely,

û(ξ ) =
〈
u,exp

(
−2πi〈ξ , ·〉

)〉
,ξ ∈ RN ,

which can be extended to an analytic function on CN .

Theorem 2.31 (The Paley-Wiener-Schwartz theorem). An analytic function V : CN →C
is the Fourier transform of a compactly supported distribution u if and only if

|V (z)|⩽ c(1+ |z|)L exp(R |y|), for every z = x+ iy ∈ CN = RN + iRN ,

for some choice of constants c,R > 0 and L ∈ N, which depend on u.

He have extended several linear operations to distributions in D′ or in E′ such
as differentiation and convolution (with a fixed appropriately supported distribution v).
But the Fourier transform F is a notable omission in that list. It happens that F does
not map C∞

c into itself and hence F : D′ → D′ is not well defined. Actually, if ϕ ∈ C∞
c

then ϕ̂ cannot vanish on any nonempty open set unless ϕ ≡ 0. In fact, let ϕ̂ = 0 on a
neighborhood of ξ0 of RN , which we may assume to be 0 (otherwise we would deal with
ψ(x) = e−2πiξ0·x). Since suppϕ is compact, ϕ has a Maclaurin representation and we can
integrate term by term to obtain

ϕ̂(ξ ) =
∞

∑
k=0

1
k!

∫
(−2πiξ · x)kϕ(x)dx = ∑

α

ξ α

α!

∫
(−2πix)αϕ(x)dx = ∑

α

ξ α

α!
∂ α ϕ̂(0) = 0

by assumption, from whence ϕ̂ = 0 and then ϕ = 0.

On the other hand, the Schwartz class S is a slightly larger space of test functions
such that C∞

c
d
↪→ S

d
↪→ C∞ and F : S → S is a topological isomorphism. The dual of this

Fréchet space provides the suitable distributional setting to define the Fourier transform.

A tempered distribution is a continuous linear functional u on S and hence we
write u ∈ S′. Since C∞

c
d
↪→ S, we may and shall, identify S′ with the set of distributions that

extend continuously from C∞
c to S.

Example 2.32. • every compactly supported distribution is tempered: E′ ⊂ S′; and

• if f ∈ L1
loc with ‖(1+ |x|)N f‖L1 < ∞ then ϕ 7→

∫
ϕ f is a tempered distribution. And

similarly for Lp
loc functions.

• every Lp function, 1 ⩽ p ⩽ ∞, is a tempered distribution; so is every polynomial and
more generally every measurable function which is dominated by some polynomial.
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The reader is invited to check that the operations of differentiation, translation
and composition with linear transformations all map S and S′ into themselves. However
the map u 7→ ψu preserves S and S′ if ψ and all its derivative have at most polynomial
growth at infinity: ∣∣∂ αψ(x)

∣∣⩽Cα(1+ |x|)n(α) for every α,

which are called slowly increasing functions. Clearly every polynomial is slowly in-
creasing.

At last, inspired on the equality
∫

f̂ g =
∫

f ĝ for f ,g ∈ L1, the Fourier transform û

of a tempered distribution u is defined by

〈û,ϕ〉 := 〈u, ϕ̂〉 for ϕ ∈ S,

whence û is again a tempered distribution and we immediately obtain analogous properties
of those in Proposition 2.25. Moreover, we can extend the inverse Fourier transform on S

to S′ by setting 〈qu,ϕ〉 := 〈u, qϕ〉, ϕ ∈ S; thus F is a topological isomorphism on S′ as well.
This definition and the continuous inclusion E′ ↪→ S′ justify that Proposition 2.30 is well
stated.

When one says that the Fourier transform is well behaved on L2, there are at least
one main reason to agree with it: by the Plancherel theorem, F is a unitary isomorphism
on L2 which converts differentiation into multiplication by the coordinate functions. As
a consequence, we have the following: let k ∈ N and f ∈ L2, its distributional derivatives
∂ α f are actually L2 functions for every |α|⩽ k if and only if (2πiξ )α f̂ belongs to L2 for
every |α|⩽ k if and only if (1+4π2|ξ |2)k/2 f̂ belongs to L2, because

c1
(
1+4π2|ξ |2

)k ⩽ ∑
|α|⩽k

|ξ α |2 ⩽ c2
(
1+4π2|ξ |2

)k
,

for some positive constants c1 and c2, which depend on k and N.

The space Hk of all L2 functions which satisfy this condition can be equipped with
one of the following equivalent norms:

f 7→

(
∑

|α|⩽k

∥∥∂ α f
∥∥2

L2

)1/2

and f 7→
∥∥∥(1+4π2|ξ |2)k/2 f̂

∥∥∥
L2
.

The advantage of the latter norm is that it makes sense for any k ∈ R. Besides, for
any s ∈ R, the map ξ 7→ (1+ 4π2|ξ |2)s/2 is a slowly increasing function, consequently a
tempered distribution which turns out to be a Fourier multiplier used to define the Bessel
potentials Λs : S′ → S′ by setting

Λsu :=
(
(1+4π2|ξ |2)s/2û

)
q for every u ∈ S′.
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These facts collected provide the background to define the generalized Sobolev
spaces Hs = Hs(RN ;C

)
by

Hs :=
{

u ∈ S′ : Λsu ∈ L2},s ∈ R,

which is a Hilbert space with the inner product (·, ·)Hs defined by

(u,v)Hs :=
∫
RN

ΛsuΛsv,

Readers who wish to learn more about Fourier multipliers and generalized Sobolev
spaces W s,p = W s,p(RN ;C

)
, with s ∈ R and 1 ⩽ p ⩽ ∞, (actually their definition is quite

guessable at this point), can find a brief introduction in (ADAMS; FOURNIER, 2003) and
detailed treatments in (BERGH; LOFSTROM, 2012; PEETRE; DEPT, 1976; TRIEBEL,
1978).

2.3 Semigroups of linear operators on LCSs
Although we shall not use the entire theory of the equicontinuous C0-semigroups

on LCSs, we shall present it anyway since it may be not known by many readers who
deal with semigroups in Banach spaces. It is crucial to understand the generalization we
obtained in Chapter 3.

To avoid confusion, in this section we shall write (X ,‖ · ‖X) to denote Banach
spaces and we shall write

(
X ,(pα)α∈A

)
or simply X to denote sequentially complete

Hausdorff LCSs.

The theory of semigroups of bounded linear operators in a Banach space is con-
cerned with the problem of determining the most general bounded linear operator valued
function T (t), t ⩾ 0, which satisfies the equations

T (t + s) = T (t)◦T (s) and T (0) = IdX . (2.1)

The problem was investigated by E. Hille [2] and K. Yosida [5] independently of
each other around 1948. Thanks to the notion of the infinitesimal generator A of T (t),
which is pointwisely defined by the limit of t−1(T (t)− IdX

)
as t → 0+ whenever it exists,

they discussed the generation of T (t) in terms of A and obtained a characterization of the
infinitesimal generator in terms of its spectral properties.

Proposition 2.33 (Hille). Let
(
T (t)

)
t⩾0 be a family of bounded linear operators in

(X ,‖ · ‖X) such that T (t + s) = T (t)◦T (s) for every t,s > 0. If (0,∞) 3 t 7→ log‖T (t)‖L (X)

is bounded from above on every interval (0,τ), τ > 0, then

lim
t→∞

t−1 log‖T (t)‖L (X) = inf
t>0

t−1 log‖T (t)‖L (X).
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Proof. Set f (t) := log‖T (t)‖L (X). It is easily checked that f (t + s)⩽ f (t)+ f (s).

First assume that β := inf
t>0

t−1 f (t) is finite. Given ε > 0, take tε > 0 such that
f (tε)⩽ (β + ε)tε . Now let t > tε and choose a nonnegative integer n = n(t) which satisfies

ntε ⩽ t < (n+1)tε , then f (t)⩽ f (ntε)+ f (t −ntε)⩽ ntε
f (tε)
tε

+ f (t −ntε), whence

β ⩽ f (t)
t

⩽ n(t)tε
t

(β + ε)+
f
(
t −n(t)tε

)
t

.

By construction, t−1n(t)tε ⩽ 1; and t−n(t)tε ∈ (0, tε) so that f (t−n(t)tε) is bounded
from above as t → ∞. Thus limt→∞ t−1 f (t) = β ; the argument is similar for β =−∞.

A family
(
T (t)

)
t⩾0 of bounded linear operators in X is said to be a semigroup on

X if it satisfies (2.1); we write T (·) for short. If in addition T (·) satisfies

x = lim
t→0+

T (t)x for every x ∈ X ,

we say that T (·) is a strongly continuous semigroup or a semigroup of class C0 or
simply a C0-semigroup.

By Proposition 2.33, every C0-semigroup T (·) on (X ,‖ · ‖X) has an exponential
boundedness, in the sense that

‖T (t)‖L (X) ⩽ M exp(β t) for every t ⩾ 0,

for some real constants M > 0 and β . We sometimes say that T (·) is β -exponentially
bounded. Indeed, let M := sup

0⩽t⩽τ
‖T (t)‖L (X) < ∞ - which is possible for some τ > 0, by

the Banach-Steinhaus theorem - and let β := τ−1 log‖T (τ)‖L (X), that is ‖T (τ)‖L (X) =

exp(βτ). Given t ⩾ 0, we may write t = nτ + r, where 0 ⩽ r < τ and n = 0,1,2 . . . and then

‖T (t)‖L (X) ⩽ ‖T (τ)‖n
L (X)‖T (r)‖L (X) = M exp(nβτ)⩽ M exp(|β |τ)exp

(
β (nτ + r)

)
.

Moreover, by setting S(t) := e−β tT (t), the family of operators S(·) defines a C0-
semigroup on X such that ‖S(t)‖L (X) ⩽ M for every t ⩾ 0. Under the association between
T and S, we shall often assume without loss of generality that β = 0. In this case, if M is
no greater than 1 then T (·) is called a contraction C0-semigroup.

Theorem 2.34. A semigroup T (·) on
(
X ,‖ ·‖X

)
is strongly continuous if and only if it is

weakly continuous; that is,

[0,∞) 3 t 7→ 〈x∗,T (t)x〉 ∈ C

is continuous, for every x ∈ X and every x∗ ∈ X∗.
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This result is quite surprising and the reader may see its proof in (YOSIDA, 1980),
Theorem IX.1, or in (ENGEL et al., 2006), Theorem 5.8. We provide a sketch of the proof
though: first, one can check by the Banach-Steinhauss theorem that ‖T (t)‖L (X) is bounded
for every t > 0 small enough; by setting x(t) := T (t)x0, owing to the fact that the set M of
all finite Q-linear combinations of vectors x(s), with s ∈Q, is a dense set in {x(t) : t ⩾ 0},
one obtains

limsup
t→0+

‖x(t)− x0‖X ⩽
(

1+ sup
[0,1]

‖T (t)‖L (X)

)
‖xn − x0‖X

and the proof is complete, since inf
xn∈M

‖xn − x0‖X = 0.

From now on let X =
(
X ,(pα)α∈A

)
be a sequentially complete Hausdorff LCS

equipped with the topology generated by the family of seminorms (pα)α∈A.

An equicontinuous C0-semigroup on X is a family
(
T (t)

)
t⩾0 of bounded op-

erators on X that satisfies (2.1) and are equicontinuous in t in the sense of the Banach-
Steinhaus theorem for Hausdorff LCSs; that is, for every α ∈ A there exist β = β (α) ∈ A

and a positive constant c = c(α) such that

sup
t⩾0

pα
(
T (t)x

)
⩽ c pβ (x) for every x ∈ X . (2.2)

Keeping in mind that the aim is to solve linear Cauchy problems in X , such as{
ut = Au, t ⩾ 0
u(0) = u0

, (2.3)

the definition below becomes natural by interpreting u(t;u0) := T (t)u0 as the evolution of
the problem starting at u0. In other words, the linear operator A can be seen as the time
derivative of the solution C0-semigroup T (·) on X .

Given an equicontinuous C0-semigroup T (·) on X , we define its infinitesimal
generator A by

Ax := lim
t→0+

T (t)− I
t

(x), (2.4)

that is, A is the linear operator defined on D(A), the set of points x ∈ X for such the limit
above exists and for x ∈ D(A), Ax is defined by (2.4). At least the null vector is in D(A);
but actually it is a much larger subspace of X , as we shall see in Theorem 2.35.

Theorem 2.35. Let T (·) be an equicontinuous C0-semigroup on X and let A be its
infinitesimal generator.

a. A is a densely defined sequentially closed linear operator;

b. for every x∈D(A), the map [0,∞)3 t 7→ T (t)x∈D(A) is well defined, it is continuously
differentiable and it satisfies

d
dt

T (t)x = AT (t)x = T (t)Ax for every t > 0;
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c. if λ ∈ C has positive real part then the resolvent operator (λ −A)−1 exists, it is
continuous and is given by

(λ −A)−1x = R(λ ;A)x :=
∫ ∞

0
exp(−λ s)T (s)xds for every x ∈ X .

d. For every x ∈ X ,
x = lim

λ→∞
λ (λ IX −A)−1x

and
AR(λ ;A)x =

(
λR(λ ;A)− IX

)
x. (2.5)

If, in addition, x ∈ D(A) then A commutes with R(λ ;A) in (2.5) and in particular
the Yosida approximation,

Ax = lim
λ→∞

λA(λ IX −A)−1x,

holds as well.

e. if B is the infinitesimal generator of an equicontinuous C0-semigroup S(·) on X and
A = B then T (t) = S(t) for every t ⩾ 0.

Proof. a. For every n ∈ N, let Cn : X → X be the linear operator defined by the Laplace
transform of t 7→ T (t) multiplied by n, ie,

Cnx :=
∫ ∞

0
ne−nsT (s)xds, for every x ∈ X ,

in the sense of the Riemann integral, which is obtained by using the seminorms pα on X

in place of the absolute value of a number. That every Cn is a bounded linear operator on
X and that the improper integral is well defined follows from the sequential completeness
of X and the inequality below:

pα(Cnx)⩽ lim
N→∞

∫ N

0
ne−ns pβ

(
T (s)x

)
ds ⩽ c(α)pβ (α) lim

N→∞

∫ N

0
ne−ns ds = c(α)pβ (α),

where c(α)> 0 and β (α) ∈ A were taken as in the definition of equicontinuity of T (·).

We claim that Cn(X)⊂ D(A) for every n ∈ N and that

lim
n→∞

Cnx = x for every x ∈ X , (2.6)

whence
∞⋃

n=1

Cn(X) and D(A) are dense in X . Given x ∈ X , we have

h−1(T (h)− IX
)
Cnx =

enh −1
h

∫ ∞

h
ne−nsT (s)xds−h−1

∫ h

0
e−nsT (s)xds

=
enh −1

h

[
Cnx−

∫ h

0
ne−nsT (s)xds

]
−h−1

∫ h

0
ne−nsT (s)xds,
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where the second term on the right tends to nx as h → 0+, by the continuity of s 7→
ne−nsT (s)x. Indeed, given ε > 0 and α ∈ A, for h > 0 small enough,

pα

(
h−1

∫ h

0
ne−nsT (s)xds−nx

)
⩽ h−1

∫ h

0
npα

(
e−nsT (s)x− x

)
⩽ nε.

Similarly, one may prove that the first term on the right tends to nCnx as h → 0+. Hence
Cnx ∈ D(A) and ACnx = n(Cn − IX)x for every x ∈ X .

Now, given ε > 0 and α ∈ A, we may write

pα(Cnx− x) = pα

(∫ ∞

0
ne−ns(T (s)x− x

)
ds
)

⩽
∫ δ

0
ne−ns pα

(
T (s)x− x

)
ds+

∫ ∞

δ
ne−ns

(
pα
(
T (s)x

)
+ pα(x)

)
ds

where δ > 0 was chosen so that pα
(
T (s)x− x

)
< ε whenever 0 ⩽ s < δ .

Since
∫ ∞

0
ne−ns ds = 1, the first term on the right is dominated by ε ; and since(

T (s)x
)

s⩾0 is equicontinuous in s, the second term on the right goes to 0 as n → ∞.

We shall prove b. and c. and a fortiori conclude that A is a sequentially closed
operator.

b. If x ∈ D(A) then

T (t)Ax = lim
h→0+

T (t +h)−T (t)
h

x = lim
h→0+

T (h)− IX

h
T (t)x

so that T (t)x ∈ D(A), T (t)Ax = AT (t)x and t 7→ T (t)x is right differentiable, whenever
x ∈ D(A). It suffices to prove that the left derivative exists everywhere and it coincides
with the right derivative. To do so, we invoke the following result:

Lemma: if one of the Dini derivatives D+ f ,D+ f ,D− f and D− f of a continuous
real-valued function f is finite and continuous then f is continuously differentiable and
its derivative is the Dini derivative.

The reader may see its proof in (YOSIDA, 1980), page 239. Given x ∈ D(A), let
ϕ ∈X ′ be on continuous functional on X , then the map t 7→ f (t) := 〈ϕ ,T (t)x〉, is continuous
and satisfies

d+

dt
f (t) = 〈ϕ ,AT (t)x〉= 〈ϕ ,T (t)Ax〉,

whence f is differentiable in t and

〈ϕ ,T (t)x〉−〈ϕ ,x〉=
∫ t

0

d+

ds
f (s)ds =

〈
ϕ ,
∫ t

0
T (s)Axds

〉
.

Since ϕ ∈ X ′ is arbitrary, T (t)x− x =
∫ t

0
T (s)Axds for every x ∈ D(A); and then by

the continuity of s 7→ T (s)Ax, we see that
d
dt

T (t)x := lim
h→0

T (t +h)−T (t)
h

x = T (t)Ax.
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c.,d. First we claim that, for every n ∈ N, (nI −A)−1 exists. Because if not there
would exist x0 6= 0 such that Ax0 = nx0. By the geometric form of the Hahn-Banach theorem
(Theorem 2.10), take ϕ ∈ X ′ such that ϕ(x0) = 1 and then set f (t) := 〈ϕ ,T (t)x0〉, which is
differentiable by item b., since x0 ∈D(A). On the one hand, the equicontinuity of

(
T (·)

)
t⩾0

implies that f (t) is bounded in t. But on the other, the unique solution of the differential
equation

d f
dt

(t) = 〈ϕ ,T (t)Ax0〉= 〈ϕ ,T (t)nx0〉= n f (t),

with initial condition f (0) = ϕ(x0) = 1, is f (t) = ent , a contradiction. Thus the inverse
(nIX −A)−1 must exist, for every n ∈ N.

Besides, ACnx = n(Cn− IX)x implies that (nIX −A)Cnx = nx for every x ∈ X , whence
nIX −A maps Cn(X)⊂D(A) onto X in a one-to-one way. Owing to the fact that (nIX −A)−1

does exist, nIX −A must map D(A) onto X in a one-to-one way, consequently Cn(X) = D(A)

and (nIX −A)−1 = n−1Cn ∈ L (X).

We are ready to prove that the graph of A, {(x,Ax) : x ∈ D(A)}, is a sequentially
closed subset of X ×X . Let (xn)n∈N be a sequence in D(A) such that xn → x ∈ X and
Axn → y ∈ X then

x = lim
n
(IX −A)−1(IX −A)xn = (IX −A)−1(x− y)

so that x ∈ D(A) and (IX −A)x = x− y; and we are done.

Now, if λ ∈ C has positive real part then

R(λ ;A)x :=
∫ ∞

0
e−λ sT (s)xds, for x ∈ X ,

defines a bounded linear operator on X . Fixed τ ∈ R, it is easily checked that A− iτIX is
the infinitesimal generator of

(
e−iτtT (t)

)
t⩾0, which is an equicontinuous C0-semigroup on

X as well as T (·). Arguing as before, one concludes that R(s+ iτ;A) provides the resolvent
operator

(
(s+ iτ)IX −A

)−1 of
(
e−iτtT (t)

)
t⩾0, whenever s > 0. Also, one should notice that

D(A) = (λ IX −A)−1(X) and

lim
λ→∞

λ (λ IX −A)−1x = x for every x ∈ X .

Besides, by composing (λ IX −A)−1 = R(λ ;A) and (λ IX −A) in different orders, one
obtains that

A(λ IX −A)−1x =
(
λ (λ IX −A)−1 − IX

)
x for every x ∈ X ;

and additionally AR(λ ;A)x = R(λ ;A)Ax holds whenever x ∈ D(A).

e. If x ∈ D(A) = D(B) then the map t 7→ T (t − s)S(s)x is differentiable and

d
ds

T (t − s)S(s)x =−AT (t − s)S(s)x+T (t − s)BS(s)x
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which is zero because A commutes with T (·) and A = B. And since T (t − s)S(s)x has the
same value at s = 0 and s = t, namely T (t)x = S(t)x, one sees that T (t) = S(t) in D(A),
which is dense in X ; and the proof is complete.

It is noteworthy that the same arguments in the proof holds for nets provided
that X is complete rather than sequentially complete. Doing so, one obtains that the
infinitesimal generator of an equicontinuous C0-semigroup is a closed operator instead of
a sequentially closed operator, for instance. But clearly X “being complete” is a stronger
requirement than X “being sequentially complete”. As the reader promptly sees the right
half plane of the complex plane is always in the resolvent set of the infinitesimal generator
of an equicontinuous C0-semigroup. This means that such a uniform continuity has im-
plicitly a geometric spectral condition, which was manageable when dealing with Banach
spaces by multiplying by an exponential factor eβ t , t ⩾ 0.

Let us examine a few examples.

Example 2.36. We define the linear operator T (t) on the Banach space BC(R,R), for
t ⩾ 0, by (

T (t)ϕ
)
(s) := ϕ(t + s) for every ϕ ∈ BC.

Clearly the condition (2.1) holds. Since every function ϕ is uniformly continuous
on R and ‖T (t)ϕ‖u = ‖ϕ‖u, it follows that T (t)ϕ → ϕ as t → 0+ for every ϕ and hence
T (·) is an equicontinuous contraction C0-semigroup on BC.

Now we turn to its infinitesimal generator A. We claim that D(A) consists of those
functions ϕ ∈ BC which are differentiable with ϕ ′ belongs to BC; and that Aϕ(s) = ϕ ′(s)

for every ϕ ∈ D(A).

Let J := (1−A)−1 ∈ L (BC). If ϕ ∈ D(A) = J(BC) then for some ψ ∈ BC we have
ϕ(t) := (Jψ)(t) =

∫ ∞
t e−(s−t)ψ(s)ds, which is differentiable and

ϕ ′(t) =−ψ(t)+ϕ(t) = (J− IBC)ψ(t) = AJψ(t) = Aϕ(t),

because AJ = −(1− J); from whence D(A) ⊂ {ϕ ∈ BC : ϕ is differentiable and ϕ ′ ∈ BC}.
Conversely, let ϕ : R→ C be such that ϕ ,ϕ ′ ∈ BC; we shall verify that ϕ ∈ D(A). To do
so, we define ψ by setting

ϕ ′(t)−ϕ(t) =−ψ(t),

and we define ϕ̃ := Jψ ∈ D(A); whence ϕ̃ ′(t)− ϕ̃(t) =−ψ(t) (proceeding as before). Note
that

(
ϕ − ϕ̃

)′
(t) =

(
ϕ − ϕ̃

)
(t) so that (ϕ − ϕ̃)(t) = cet but ϕ − ϕ̃ is supposed to be uniformly

bounded, so c = 0 necessarily. Thus ϕ = ϕ̃ ∈ D(A) and Aϕ(t) = ϕ ′(t).

Example 2.37. Let T (t) : BC(R,C)→ BC(R,R), t > 0, be defined by(
T (t)ϕ

)
(s) :=

∫
R

Gt(s− r)ϕ(r)dr,
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where Gt denotes the Gaussian probability density,

Gt(r) =
1√
2πt

e−r2/2t for r ∈ R and t > 0;

and we set T (0) := IBC. The family
(
T (t)

)
t⩾0 is an equicontinuous semigroup because

‖T (t)ϕ‖u ⩽ ‖ϕ‖u‖Gt‖L1 = ‖ϕ‖u and

1√
2π(t + t̃)

e−r2/2(t+t̃) =
1√
2πt

1√
2π t̃

∫
R

e−(r−r̃)2/2te−r̃2/2t̃ dr̃,

which is a well known formula which can be deduced by using the Fourier transform. Now,
to prove that T (·)ϕ → ϕ as t → 0+, we argue as follows: given ε > 0 let δ > 0 be such that
|ϕ(s)−ϕ(s̃)|< ε whenever |s− s̃|< δ , so

|(T (t)ϕ)(s)−ϕ(s)|=
∣∣∣∣∫RGt(s− r)

(
ϕ(r)−ϕ(s)

)
dr
∣∣∣∣

=

∣∣∣∣∫RG1(r)
(
ϕ(s− r

√
t)−ϕ(s)

)
dr
∣∣∣∣ (by replacing r by (s− r)/

√
t
)

⩽ ε
∣∣∣∣∫|r√t|<δ

G1(r)dr
∣∣∣∣+ ∣∣∣∣∫|r√t|⩾δ

G1(r)
(
ϕ(s− r

√
t)−ϕ(s)

)
dr
∣∣∣∣

⩽ ε +2‖ϕ‖u

∫
|r
√

t|⩾δ
G1(r)dr → ε as t → 0+,

because
∫

G1(r)dr = 1. Hence ‖(T (t)ϕ)− ϕ‖u → 0+ and T (·) is an equicontinuous C0-
semigroup on BC. About its infinitesimal generator A, let J := (1−A)−1 ∈ L (BC) and
ϕ ∈ D(A) = J(BC) then for some ψ ∈ BC we have

ϕ(t) = Jψ(t) =
∫
R

ψ(r)
(∫ ∞

0

1√
2πs

e−s−(t−r)2/2s ds
)

dr

=
∫
R

ψ(r)
(∫ ∞

0

2√
2π

e−s2−(t−r)2/2s2
ds
)

dr
(
by replacing s by s2)

=
∫
R

ψ(r)
1√
2

e−
√

2|t−r| dr,

where the last equality holds because
∫ ∞

0 e−
(

s2+c2/s2
)

ds =
√

π
2 e−2c, for c > 0. Besides

ϕ ′(t) =
∫ ∞

t
ψ(r)e−

√
2(r−t) dr−

∫ t

−∞
ψ(r)e−

√
2(t−r) dr

and

ϕ ′′(t) =−ψ(t)−ψ(t)+
√

2
∫ ∞

t
ψ(r)e−

√
2(r−t) dr+

√
2
∫ t

−∞
ψ(r)e−

√
2(t−r) dr

= 2
(
−ψ(t)+ϕ(t)

)
.

Also, Aϕ = AJψ = (J − IBC)ψ = ϕ −ψ so that Aϕ = ϕ ′′/2 for every ϕ ∈ D(A). On
the other hand, let ϕ and ϕ ′′ belong to BC, define ψ and ϕ̃ by ϕ ′′ − 2ϕ = −2ψ and
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ϕ̃ := Jψ ∈ D(A), whence ϕ̃ ′′− 2ϕ̃ = −2ψ . This implies that
(
ϕ − ϕ̃

)
(t) = c1e

√
2t + c2e

√
2t ,

which cannot be bounded unless c1 = c2 = 0. Thus ϕ = ϕ̃ ∈ D(A) and Aϕ = ϕ ′′/2.

Therefore, the differential operator 1
2

d2

dt2 is the infinitesimal generator of the
equicontinuos C0-semigroup associated to the Gaussian kernel on BC.

In both examples, BC(R,R) can be replaced by Lp(R,R) with few adaptations.

Theorem 2.38. Let A ∈ L (X) be such that
(
Ak)

k∈N is an equicontinuous family in k.

a. for every x ∈ X , the series
∞

∑
k=0

(tA)k

k!
x

converges in X , for every t ⩾ 0.

b. for every t ⩾ 0, the map x 7→
∞

∑
k=0

(tA)k

k!
x is a continuous linear operator; which we

shall denote by exp(tA) or et A.

c. if B ∈ L (X) is such that
(
Bk)

k∈N is an equicontinuous family in k then

exp
(
t(A+B)

)
= exp(tA)exp(tB) for every t ⩾ 0,

whenever AB = BA.

d. for every x ∈ X ,

lim
t→0+

exp(tA)− I
t

x = Ax

and hence
d
dt

etAx = exp(tA)Ax = Aexp(tA)x for every t ⩾ 0.

Proof. a.,b. By the equicontinuity of
(
Ak)

k∈N, if x ∈ X and α ∈ A then

pα

(
n

∑
k=m

(tA)k

k!
x

)
⩽

n

∑
k=m

(t)k

k!
pα(Akx)⩽ c(α)pβ (α)(x)

n

∑
k=m

(t)k

k!
→ 0 as n,m → ∞,

so that
(

n

∑
k=0

(tA)k

k!
x

)
n∈N

is a Cauchy sequence in X , therefore convergent and we denote

its limit by exp(tA)x or et Ax. Besides, by putting m = 0 in the expression above, one
sees that pα

(
et Ax

)
⩽ etc(α)pβ (α)(x) for t ⩾ 0, so that x 7→ et Ax defines a bounded linear

operator on X .
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c. Given x ∈ X and α ∈ A, we have

pα
(
(A+B)Nx

)
⩽

N

∑
n=0

N!
(N −n)!n!

pα
(
AN−nBnx

)
⩽

N

∑
n=0

N!
(N −n)!n!

c(α)pβ (α)

(
Bnx
)

⩽ 2Nc(α) sup
n∈N

pβ (α)

(
Bnx
)

from whence it follows that
(
2−N(A+B)N)

N∈N is equicontinuous in N and hence we can

define et(A+B). Owing the fact that AB = BA, we rearrange the series
∞

∑
k=0

(
t(A+B)

)k

k!
x to

obtain
(

∞

∑
k=0

(tA)k

k!

)(
∞

∑
k=0

(tB)k

k!
x

)
as in the case of numerical series.

d. Finally, for x ∈ X and α ∈ A,

pα

(
ehA − IX

h
x−Ax

)
⩽

∞

∑
n=2

hn−1

n!
pα
(
Anx
)
⩽ c(α)pβ (α)(x)

∞

∑
n=2

hn−1

n!
→ 0 as h → 0+.

We shall prove the following fundamental result concerning the representation (2.7)
below by the Yosida approximations; and the characterization of equicontinuous C0-
semigroups in terms of the corresponding infinitesimal generators.

Theorem 2.39 (The Hille-Yosida generation theorem). Let A : D(A)⊂ X → X be a linear
operator and let R(n;A) denote its resolvent operator (nI −A)−1 ∈ L (X), whenever it
exists, with n ∈ N. Consider the following statements:

(i) A is the infinitesimal generator of an equicontinuous C0-semigroup T (·); and

(ii)
(
(I −n−1A)−m)

n,m is an equicontinuous family in n ∈ N and m ∈ Z+.

Then

a. (i) ⇒ (ii) and

T (t)x = lim
n→∞

exp
(
tA(IX −n−1A)−1)x for every x ∈ X , (2.7)

with uniform convergence in t on every compact interval of t.

b. if A is a densely defined closed operator and the resolvent R(n;A) exists for every
n ∈ N then (ii) ⇒ (i).
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Proof. a. It is not hard to check that the resolvent equality

R(µ;A)−R(λ ;A) = (λ −µ)R(λ ;A)R(µ;A)

holds whenever λ ,µ ∈ C have positive real part, from whence we deduce that

dR(λ ;A)
dλ

= lim
R(µ;A)−R(λ ;A)

µ −λ
=−R(λ ;A)2

and moreover {λ ∈ C : ℜλ > 0} 3 λ 7→ R(λ ;A) ∈ L (X) is infinitely differentiable with

dmR(λ ;A)
dλ m = (−1)mm!R(λ ;A)m+1 =

∫ ∞

0
(−s)me−λ sT (s)xds

for every m = 0,1,2, . . .. The differentiation under the integral sign is possible because(
T (t)x

)
t⩾0 is equicontinuous in t and because

∫ ∞

0
(−s)me−λ s ds =

m!
λ m+1 if ℜλ > 0. Now

we prove the equicontinuity of
(
(I −n−1A)−m): given α ∈ A, n ∈ N and m ∈ Z+, we have

pα
((

nR(n;A)
)m+1x

)
⩽ nm+1

m!

∫ ∞

0
(−s)me−ns pα

(
T (s)x

)
ds ⩽ sup

s⩾0
pα
(
T (s)x

)
and since T (·) is equicontinuous and nR(n;A) = (IX −n−1A)−1.

b. On the other hand let Jn := (IX − n−1A)−1 so that AJnx = JnAx = n(Jn − IX)x

whenever x ∈ D(A). Since
(
Jn(Ax)

)
n∈N is equibounded in n ∈ N,

Jnx− x = n−1JnAx → 0 as n → ∞,

which holds for x ∈ X as well, owing the fact that D(A) is dense in X and
(
Jn
)

n∈N is
equicontinuous in n ∈ N. For every t ⩾ 0 and n ∈ N, we set Tn(t) : X → X by

Tn(t)x := exp(−nt)exp(ntJn)x = exp
(
tn(Jn − IX)

)
x = exp(tAJn)x for x ∈ X ,

which is well defined because
(
Jm

n
)

n∈N,m∈Z+
is equicontinuous in n and m:

pα
(

exp(ntJn)x
)
⩽

∞

∑
m=0

(nt)m

m!
pα(Jm

n x)⩽ exp(nt)c(α)pβ (α)(x).

As a consequence,
(
Tn(t)

)
n,t is an equicontinuous family in n ∈N and t ⩾ 0. Apply-

ing Theorem 2.38, item d., to AJn ∈L (X) we obtain that d
dt Tn(t)x = AJnTn(t)x = Tn(t)AJnx

and then for x ∈ D(A) and α ∈ A

pα
(
Tn(t)x−Tm(t)x

)
= pα

(∫ t

0

d
ds

Tm(t − s)Tn(s)xds
)

= pα

(∫ t

0
Tm(t − s)Tn(s)

(
AJn −AJm

)
xds
)

⩽
∫ t

0
c(α)pβ (α)

(
(Jn − Jm)Ax

)
ds → 0 as n,m → ∞,
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where the convergence in t is uniform on every compact interval of t. Since D(A) is dense
in X , the operator T (t) : X → X , given by

T (t)x := lim
n→∞

Tn(t)x for x ∈ X ,

is a well defined bounded linear operator,
(
T (t)

)
t⩾0 is an equicontinuous family in t and

[0,∞) 3 t 7→ T (t)x is a continuous map.

We claim that
(
T (t)

)
t⩾0 satisfies the semigroup property (2.1) and A is precisely

its infinitesimal generator. Clearly T (0) = IX and Tn(s+ t) = Tn(s)Tn(t), for s, t ⩾ 0 and
n ∈ N. By writing x(t) := T (t)x and xn(t) := Tn(t)x to simplify the notation, we have

pα
(
x(t + s)− x(t)x(s)

)
⩽ pα

(
x(t + s)− xn(t + s)

)
+ pα

(
xn(t + s)− xn(t)xn(s)

)
+ pα

(
xn(t)xn(s)− xn(t)x(s)

)
+ pα

(
xn(t)x(s)− x(t)x(s)

)
⩽ pα

(
x(t + s)− xn(t + s)

)
+ c(α)pβ (α)

(
xn(s)− x(s)

)
+ pα

((
xn(t)− x(t)

)
x(s)

)
→ 0 as n → ∞,

so that pα
(
x(t + s)− x(t)x(s)

)
= 0 for every α ∈ A, from which it follows that T (t + s) =

T (t)T (s) for every s, t ⩾ 0.

Let B : D(B)⊂ X → X denote the infinitesimal generator of T (·). By Theorem 2.35,
item e., it suffices to prove that A = B. As the reader may readily verify, lim

n→∞
Tn(t)AJnx =

T (t)Ax for every x ∈ D(A), which implies that B is an extension of A. Indeed if x ∈ D(A)

then

h−1(T (h)x− x
)
= h−1 lim

n→∞

(
Tn(h)x− x

)
= h−1 lim

n→∞

∫ t

0
Tn(s)AJnxds

= h−1
∫ t

0

(
lim
n→∞

Tn(s)AJnx
)

ds

= h−1
∫ t

0
T (s)Axds → Ax as h → 0+

so that the limit lim
h→0+

h−1(T (h)x−x
)

exists and its equal to Ax. In other words, if x ∈ D(A)

then x ∈ D(B) and Ax = Bx.

Fix n ∈ N. On the one hand, since B is the infinitesimal generator of T (·), nIX −B

maps D(B) onto X in a one-to-one way. On the other, by hypothesis the resolvent R(n;A)

exists so that nIX −A also maps D(A) onto X in a one-to-one way. Thus A and B must
coincide; and the proof is complete.

If X =(X ,‖·‖X) is a Banach space then (ii) is equivalent to ‖(1−n−1A)−m‖L (X)⩽ c

for every n ∈N and m ∈ Z+, for some positive constant c which does not depend on n and
m. For the case of contraction semigroups, c is taken to be 1.
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2.4 Functional differential equations
When one wonders about how to explain observed processes from biology, physics,

engineering, economics and chemistry, one often concludes that the present state is a
consequence of past states and their evolution as interacting with some external forces.
As a consequence, modelings where the principle of causality - that is, the principle that
events from the past and those from the present are independent - is assumed to hold
ought to be taken as only a first approximation of the true situation. When a model does
not incorporate a dependence on its past history, it generally consists of so-called ordinary
differential equations (hereafter ODEs) or partial differential equations (hereafter PDEs).
Models incorporating past history generally include delay differential equations (hereafter
DDEs) or functional differential equations (hereafter FDEs).

In Chapter 4, we shall consider an extended version of the economic Kaldor model
in R4 which takes the form

du(t)
dt

= u′(t) = f
(
u(t),αu(t − τ)

)
, (2.8)

with τ ⩾ 0 and α > 0 is an economic parameter which measures how strong is the
government fiscal policy; therefore it is an autonomous delayed differential equation in
R4 (TAKEUCHI; YAMAMURA, 2004). Originally, the model was formulated as an ODE
in R2 without the government role and it explains the economic fluctuations as a natural
phenomenon which arises in economy; see (KALDOR, 1940). The extended version how-
ever includes the government policies and the money market; and, when it comes to put
such policies in practice, the model now considers the fact that government takes time to
recognize an opportunity to interfere, to plan its action and to finally implement it, which
is precisely where the role of the delay time lays.

Our aim here is to provide the theory necessary to obtain existence and uniqueness
of a solution of (2.8) which depends continuously on the economic parameters involved;
keeping in mind that we need to analyze how the stability of the equilibrium point jointly
responds to α and τ . Although the equation to be treated in Kaldor’s model is autonomous,
in this section we shall state the results to the more general equation, since there is nearly
no difficulty in proving such results in this setting.

Let Ω be an open subset of R×C , where C :=
(

C
(
[−τ,0],RN),‖ · ‖u

)
denotes

the Banach space of continuous functions mapping the interval [−τ,0] into RN with the
topology of uniform convergence, which is given by the norm

‖ϕ‖u := sup
−τ⩽t⩽0

|ϕ(t)| for every ϕ ∈ C .

Besides, let ut ∈ C be defined by ut(s) := u(s+ t), for some continuous function u which
is suitably defined on a neighborhood of [−τ,0]. We shall then consider problems of the
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form
u′(t) = f (t,ut), (2.9)

which is called a retarded delay differential equation (hereafter RDDE). It is note-
worthy that the problem (2.9) is well posed if one specifies a function defined on [−τ,0] as
an initial data. For a precise discussion on well-posedness, see (HALE; LUNEL, 1993). The
first step is to establish when (2.9) admits a unique solution which depends continuously
on the initial data.

Theorem 2.40. Suppose that f : Ω ⊂ R×C → RN is continuous.

a. for every (t0,ϕ) ∈ Ω there is a solution of (2.9) passing through (t0,ϕ);

b. if f is Lipschitz in ϕ in every compact subset of Ω then for every (t0,ϕ) ∈ Ω there
is a unique solution of (2.9) passing through (t0,ϕ);

Besides, let uk = uk(tk,ϕk, fk) be the solution of v̇(t) = fk(t,vt) through (tk,ϕk) ∈ Ω, for
every k ∈ Z+, where u0 =: u exists and is unique on [t0 − τ,T ].

c. if (tk,ϕk) → (t0,ϕ0) and ‖ fk − f0‖u → 0, as k → ∞, in some properly chosen neigh-
borhood V ⊂ Ω then every solution uk exists on [tk − τ,T ] for k large enough and
uk → u0 uniformly on [t0 − τ,T ].

Remark 2.41. • One may take V as an ε-neighborhood of the compact set {(t,u0) : t ∈
[t0,T ]} ⊂ Ω, such that f0 is bounded on V .

• by uk → u0 uniformly on [t0 − τ,T ], one should read the following: for any ε > 0,
there exists k̃ = k̃(ε) such that xk(t) is defined on [t0 − τ + ε,T ] whenever k ⩾ k̃ and
uk → u0 uniformly on [t0 − τ + ε,T ].

• the proof of Theorem 2.40 is carried out by analogy with the result for ordinary
differential equations, therefore it is a direct application of Schauder fixed-point
theorem.

For now, suppose that f : R×C →RN satisfies f (t,0) = 0 for every t ∈R then the
solution u = 0 of (2.9) is said to be

(i) stable if for any s ∈R and ε > 0 there exists δ = δ (s,ε) such that ut(s,ϕ) ∈ B(0,ε)
for t ⩾ s, whenever ϕ ∈ B(0,δ );

(ii) asymptotically stable if it is stable and there exists r0 = r0(s) > 0 such that
u(s,ϕ)(t)→ 0 as t → ∞, whenever ϕ ∈ B(0,r0);

(iii) uniformly stable if the number δ in the definition is independent of s; and
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(iv) uniformly asymptotically stable if it is uniformly stable and there exists r0 > 0
such that for every η > 0 there exists an instant of time t0(η)> 0 such that ut(s,ϕ)∈
B(0,η) for t ⩾ s+ t0(η) and s ∈ R, whenever ϕ ∈ B(0,r0).

In general, if u(t) is any solution of (2.9) then u is said to be stable if the solution
v = 0 of the equation

v′(t) = f (t,vt +ut)− f (t,ut)

is stable. Similarly, one may define the other concepts of stability for u. As the reader
may already infer, f was assumed to be defined on the entire space R×C instead of on
an open subset of it just to avoid some notational inconveniences.

A great deal about delay differential equations can be learned by a study of its sim-
plest representative, namely a differential equation with a fixed delay, for a real function
t 7→ u(t):

u′(t) =−αu(t −1), (2.10)

where α is a real number. We may interpret (2.10) as a system governed by feedback
with a time lag for which the feedback is negative with respect to the zero solution
whenever α > 0 and it is negative whenever α < 0. If the initial data u0 is a continuous
real function then a repeated integration argument on the intervals [n−1,n] results in a
unique continuous solution u : [−1,∞)→ R which is differentiable for t > 0, it has a right
derivative at t = 0 and it satisfies (2.10) for every t ⩾ 0. It is an unpleasant fact that
even for this simple linear equation, the stability of the trivial equilibrium requires an
analysis of the roots of a transcendental equation. Proceeding exactly as for ODEs, we
seek (complex) values of λ such that u(t) = exp(λ t) is a solution of (2.10), which happens
if and only if λ ∈ C is a root of the characteristic equation

λ +αe−λ = 0,

and in this case we say that λ is a characteristic root of (2.10). Owing to the fact that
λ 7→ h(λ ) := λ +αe−λ is an analytic function, we have the following lemma.

Lemma 2.42. a. The set of characteristic roots has no accumulation point in C and
consequently is a countable (possibly finite) set;

b. If there exist infinitely many characteristic roots λn then |λn| → ∞ as n → ∞.

c. There are only finitely many characteristic roots with positive real part.

d. Every characteristic root λ has finite order, that is, there exists n ∈ N such that
h(λ ) = h′(λ ) = · · ·= h(n−1)(λ ) = 0 and h(n)(λ ) 6= 0.

e. If λ is a characteristic root, so is its conjugate λ .
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In contrast to scalar autonomous ODEs, oscillatory solutions u(t) of (2.10) do exist
and are associated to non-real characteristic roots λ ∈C. We summarize some well known
properties of the zero solution of (2.10) depending on α ; see (SMITH, 2010) for example.

a. if α < 0 then u = 0 is unstable.

b. if 0 < α < π/2 then u = 0 is asymptotically stable.

c. if α = π/2 then u(t) = sin(tπ/2) and u(t) = cos(tπ/2) are solutions, hence periodic
solutions.

d. if α > π/2 then u = 0 is unstable.

e. every solution of (2.10) is oscillatory2 if and only if α > e−1.

More generally, consider the following autonomous linear RDDE

u′(t) = Lut , (2.11)

where L : C → RN is continuous, then its characteristic equation is given by

h(λ ) := det
(

λ I −L
(

exp(λ ·)I
))

= 0,λ ∈ C. (2.12)

Based on our experience with ODEs we have the right to expect that the trivial
solution is asymptotically stable if all roots λ of the characteristic equation have negative
real part and that it is unstable if there is a root with positive real part. Indeed, this is
the case.

Theorem 2.43. a. the zero solution of (2.11) is uniformly asymptotically stable if
every characteristic root has negative real part;

b. the zero solution of (2.11) is unstable if ℜλ > 0 for some characteristic root λ ; and

c. if some characteristic root is a nonsimple pure complex root then (2.11) is unstable.

As the reader already knows, the local stability of an autonomous nonlinear sys-
tem of ODEs can be determined by studying its correspondent linearized system. More
precisely, the eigenvalues location in the complex plane dictates whether the equilibrium
point of the linearized system is stable or not; and hence we conclude about the local
stability of the original system. RDDEs herds such a nice property although stochastic
(funcional) differential equations do not.
2 A solution u(t) of (2.10) is said to be oscillatory if it has arbitrarily large zeros.
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Theorem 2.44 ((KUANG, 1993), Theorem 2.4.2). Consider the perturbed equation

u′(t) = Lut +g(ut), (2.13)

where L : C → RN is linear continuous. Suppose that g : C → RN is continuous together
with its first derivative gϕ , with g(0) = 0 and gϕ (0) = 0.

a. if the zero solution of (2.11) is uniformly asymptotically stable then the zero solution
of (2.13) is also uniformly asymptotically stable; and

b. if ℜλ > 0 for some characteristic root λ then the zero solution of (2.13) is unstable.

In other words, the local stability of the trivial solution (i.e., the zero solution)
of (2.13) depends on the locations of the characteristic roots of the associated linearized
equation. The characteristic equation is a function of the delay time τ and hence so
are its characteristic roots. Consequently, as the length of τ changes, the location of
the characteristic roots changes in the complex plane and thus the stability of the trivial
solution may also change, by Theorem 2.43. Such a phenomenon is referred to as stability
switch. On the one hand, for a scalar delay equation

n

∑
k=0

ak
dk

dtk u(t)+
m

∑
k=0

bk
dk

dtk u(t − τ) = 0,

where an 6= 0 and n⩾m, the characteristic equation takes the form Q0(λ )+Qτ(λ )e−λτ = 0,
where Q0 and Qλ are the polynomials associated to the coefficients ak and bk, respectively.
On the other hand, for systems with one delay τ their characteristic equation may be
written in the same but Q0 may not be a polynomial if the system has several delays.

Theorem 2.45 ((KUANG, 1993), Theorem 3.4.1). Consider the equations

Q0(λ )+ e−λτQτ(λ ) = 0, for λ ∈ C, (2.14)

and
F(y) := |Q0(iy)|2 −|Qτ(iy)|2 = 0, for y ∈ R. (2.15)

Suppose that λ 7→ Q0(λ ),Qτ(λ ) are analytic functions for ℜλ > 0 and that

(i) there is no common pure imaginary roots of Q0 and Qτ ;

(ii) Q0(−iy) = Q0(iy) and Qτ(−iy) = Qτ(iy), for every y ∈ R;

(iii) λ = 0 is not a root for (2.14);

(iv) limsup
|λ |→∞
ℜλ⩾0

∣∣∣∣Qτ(λ )
Q0(λ )

∣∣∣∣< 1; and
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(v) the equation (2.15) admits only finitely many real roots.

Then

a. if F(y) = 0 has no positive roots then no stability switch occurs.

b. if F(y) = 0 has at least one positive root and each of them is simple then, as τ
increases, a finite number of stability switches occurs and eventually u∗ becomes
unstable.

We shall present part of the proof in Chapter 4 in order to jointly analyze how
the stability of the equilibrium point of the extended Kaldor model switches as τ and an
important economic parameter vary.

At last, we present the classical Routh-Hurwitz criteria to determine whether all
the roots of a polynomial have negative real parts. See (GANTMACHER; BRENNER,
2005).

Theorem 2.46 (The Routh-Hurwitz criteria). Consider the polynomial

Q(λ ) := an +an−1λ + · · ·+a1λ n−1 +λ n,

where ai ∈ R, for i = 1, · · · ,n. All roots of Q have negative real parts if and only if
D1, . . . ,Dn > 0, where

D j :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 0 0 0 0 · · · 0
a3 a2 a1 1 0 0 · · · 0
a5 a4 a3 a2 a1 1 · · · 0
... ... ... ... ... ... . . . ...

a2 j−1 a2 j−2 a2 j−3 a2 j−4 a2 j−5 a2 j−6 · · · a j

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

However, we shall apply it for two cases, where the degree of the polynomial is
either three or four.

Corollary 2.47. Consider the polynomials

Q0(λ ) := a4 +a3λ +a2λ 2 + · · ·+a1λ 3 +λ 4

and
Qτ(λ ) := b3 +b2λ +b1λ 2 +λ 3,

where ai,b j ∈ R, for i = 1,2,3,4 and j = 1,2,3. Then

a. all roots of Q0 have negative real parts if and only if a1,a3,a4 > 0 and a1a2a3 −
a2

1a4 −a2
3 > 0.

b. all roots of Qτ have negative real parts if and only if b1,b3 > 0 and b1b2 −b3 > 0.
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2.5 Mathematization of economics
In James Tobin’s words, a contemporaneous economist who defends government

intervention to stabilize output and avoid recessions, “the question of growth is nothing
new but a new disguise for an age-old issue, one which has always intrigued and preoccu-
pied economics: the present versus the future”.

As stated in (MANKIW, 2003), thanks to rising incomes, material standards of
living have improved substantially over time for most families in most countries. Aca-
demics (BARRO; Sala-i-Martin, 2004; Sala-i-Martin, 2006; MANKIW, 2003) and organi-
zations such as World Bank agree that the economic growth and poverty reduction have
a positive correlation and hence predicting the former is an important goal to be pur-
sued. Economists have realized throughout the last century how imperative mathematics
is for such a goal and one of the main reasons for it is the breakdown of many economies,
especially under the pressure of high inflation and the major influence of inflationary
expectations, which directed attention to dynamics instead of a comparative statics ap-
proach. By its very nature, dynamics involves time derivatives or difference equations,
where time is considered in discrete units.

We shall present some basic aspects of economics in order to properly discuss and
justify the Kaldor model (which is an ODE in R2) and its extended version (which leads
to an autonomous DDE in R4), together with the assumptions to obtain stability; which
we shall state to be reasonable from an economic point of view. Most of the text below
was extracted from (MANKIW, 2003) with few modifications if any.

Figure 1 – Real GDP per person in the U.S. Economy in the last century.

Why have some countries experienced rapid growth in incomes over the past cen-
tury while others stay mired in poverty? Why do some countries have high rates of inflation
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while others maintain stable prices? Why do all countries experience recessions and de-
pressions - recurrent periods of falling incomes and rising unemployment - and how can
government policy reduce the frequency and severity of these episodes? Macroeconomics,
the study of the economy as a whole, attempts to answer these and many related ques-
tions. The macroeconomist’s ability to predict the future course of economic events is no
better than the meteorologist’s ability to predict next month’s weather. But quite a lot
about how the economy works is known and this knowledge is useful both for explaining
economic events and for formulating economic policy.

Three macroeconomic variables are especially important when it comes to measure
the performance of an economy: real gross domestic product (GDP), the inflation rate
and the unemployment rate. Real GDP measures the total income of everyone in the
economy (adjusted for the level of prices). The inflation rate measures how fast prices are
rising. The unemployment rate measures the fraction of the labor force that is out of work.
Macroeconomists study how these variables are determined, why they change overtime
and how they interact with one another.

Figure 1 shows that real GDP per person tends to grow over time and that this
normal growth is sometimes interrupted by periods of declining income, called recessions
or depressions. As it often happens when it comes to macroeconomics graphs, real GDP
is plotted here on a logarithmic scale so that equal distances on the vertical axis represent
equal percentage changes. For instance, the distance between 5,000 and 10,000 (a 100
percent change) is the same as the distance between 10,000 and 20,000 (a 100 percent
change). For such a graph, data source is U.S. Bureau of the Census (Historical Statistics
of the United States: Colonial Times to 1970) and U.S. Department of Commerce.

On the other hand, microeconomics is the study of how firms and individuals
make decisions and how these decision makers interact. Because macroeconomic events
arise from many microeconomic interactions, macroeconomy theory uses many of the tools
of microeconomics, whence we assume the following 10 principles (see (MANKIW, 2011;
MARSHALL, 2013)):

• people face tradeoffs:

Suppose you have an amount of resources that are finite (which is quite often, right?).
When one pursues a goal which depends on these resources, one has to weigh the
cost of such a goal in terms of theses resources and also to compare it with other
goals that consume these resources to decide which option is better (in some sense).
This is a tradeoff.

Example: Consider when parents have to decide how to spend their family income.
They can buy food, clothing or a family vacation. Or they can save some of the
family income for retirement or the children’s college education. When they choose
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to spend an extra dollar on one of these goods, they have one less dollar to spend on
some other good. As society, individuals face a central tradeoff between efficiency
and equity. Efficiency means that society is getting the most it can from its scarce
resources. Equity means that the benefits of those resources are distributed fairly
among society’s members. In other words, efficiency refers to the size of the economic
pie and equity refers to how the pie is divided. Often, when government policies are
being designed, these two goals conflict.

• the cost of something is what you give up to get it:

If one wonders about the decision to go to college, one promptly thinks of its benefits
(for instance, intellectual enrichment and a lifetime of better job opportunities) and
its cost. But what is the cost? You might be tempted to add up the money you
spend on tuition, books, room and board. Yet this total does not truly represent
what you give up to spend a year in college. If you were not going to college, you
still would need a place to sleep and food to eat. Indeed, the cost of room and board
at your school might be less than the rent and food expenses that you would pay
living on your own. In this case, the savings on room and board are a benefit of
going to college.

But the major problem with this calculation of costs is that it ignores the largest
cost of going to college: your time. When you spend a year listening to lectures,
reading textbooks and writing papers, you cannot spend that time working at a job.
The opportunity cost of an item is what you give up to get that item.

• rational people think at the margin:

In many situations, people make the best decisions by thinking at the margin. Sup-
pose, for instance, that you asked a friend for advice about how many years to stay
in school. If he were to compare for you the lifestyle of a person with a Ph.D. to that
of a grade school dropout, you might complain that this comparison is not helpful
for your decision. You have some education already and most likely are deciding
whether to spend an extra year or two in school. To make this decision,you need to
know the additional benefits that an extra year in school would offer (higher wages
throughout life and the sheer joy of learning) and the additional costs that you
would incur (tuition and the forgone wages while you are in school). By comparing
these marginal benefits and marginal costs, you can evaluate whether the extra year
is worthwhile.

• people respond to incentives:

Because people make decisions by comparing costs and benefits, their behavior may
change when the costs or benefits change. That is, people respond to incentives.
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• trade can make everyone better off:

Trade between the United States and Japan is not like a sports contest, where one
side wins and the other side loses. Your family would not be better off isolating
itself from all other families. If it did, your family would need to grow its own food,
make its own clothes and build its own home. Countries as well as families benefit
from the ability to trade with one another because trade allows them to specialize
in what they do best and to enjoy a greater variety of goods and services. Here “to
do best” may mean a lot of things: for instance, to produce a high quality good
using a not widely known technology or a better input if we think about minerals
and their derivatives; to provide a faster medical attendance due to better trained
employees and so on. The Japanese as well as the Americans and the French and
the Egyptians and the Brazilians are as much partners in the world economy as
they are competitors among them.

• markets are usually a good way to organize economic activity:

Today, most countries are trying to develop a market where economy is organized
by the decisions of millions of firms and households - this is called a market economy.
Firms decide whom to hire and what to make. Households decide which firms to
work for and what to buy with their incomes. These firms and households interact
in the marketplace, where prices and self-interest guide their decisions. In his 1776
book An Inquiry into the Nature and Causes of the Wealth of Nations, economist
Adam Smith made the most famous observation in all of economics: Households and
firms interacting in markets act as if they are guided by an “invisible hand” that
leads them to desirable market outcomes. It is the most basic statement that the
price is a consequence of demand and supply forces, when in a fair market economy.

Because households and firms look at prices when deciding what to buy and sell,
they unknowingly take into account the social benefits and costs of their actions.
As a result, prices guide these individual decision makers to reach outcomes that,
in many cases, maximize the welfare of society as a whole. It also explains the
even greater harm caused by policies that directly control prices and it explains the
failure of communism, since in communist countries, prices were not determined in
the marketplace but were dictated by central planners. These planners lacked the
information that gets reflected in prices when prices are free to respond to market
forces (demand and supply).

• governments can sometimes improve market outcomes:

There are two broad reasons for a government to intervene in the economy: to
promote efficiency and to promote equity. That is, most policies aim either to enlarge
the economic pie or to change how the pie is divided.
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If a chemical factory does not bear the entire cost of the smoke it emits, it will
likely emit too much. Here, the government can raise economic well-being through
environmental regulation. When a scientist makes an important discovery, he pro-
duces a valuable resource that other people can use. In this case, the government
can raise economic well-being by subsidizing basic research, as in fact it does. Also,
if a single economic actor (or small group of actors) has a substantial influence on
market prices then a market failure is in course. For example, suppose that everyone
in town needs water but there is only one well; as a consequence, its owner has an
excessive market power - in this case a monopoly - over the sale of water. The well
owner is not subject to the rigorous competition and hence regulating the price that
the monopolist charges can potentially enhance economic efficiency.

The invisible hand is even less able to ensure that economic prosperity is distributed
fairly. A market economy rewards people according to their ability to produce things
that other people are willing to pay for. A goal of many public policies is to achieve
a more equitable distribution of economic well-being.

• a country’s standard of living depends on its ability to produce goods and services:

Almost all variation in living standards is attributable to differences in countries’
productivity - that is, the amount of goods and services produced from each hour of
a worker’s time. To boost living standards, policymakers need to raise productivity
by ensuring that workers are well educated, have the tools needed to produce goods
and services and have access to the best available technology.

• prices rise when the government prints too much money:

In Germany in January 1921, a daily newspaper cost 0.30 marks. Less than two
years later, in November 1922, the same newspaper cost 70,000,000 marks. All other
prices in the economy rose by similar amounts. This episode is one of history’s most
spectacular examples of inflation, an increase in the overall level of prices in the
economy.

What causes inflation? In almost all cases of large or persistent inflation, the culprit
turns out to be the same - growth in the quantity of money. Taking money as
an ordinary good, the reasoning is as follows: when a government creates large
quantities of the nation’s money (supply rising), the value of the money falls and
hence you will need more money to buy a particular good.

• society faces a short-run tradeoff between inflation and unemployment:

A simple explanation is that it arises because some prices are slow to adjust. Suppose,
for example, that the government reduces the quantity of money in the economy. In
the long run, the only result of this policy change will be a fall in the overall level of
prices. Yet not all prices will adjust immediately. It may take several years before all
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firms issue new catalogs, all unions make wage concessions and all restaurants print
new menus. That is, prices are said to be sticky in the short run. Because prices
are sticky, various types of government policy have short-run effects that differ from
their long-run effects. When the government reduces the quantity of money, for
instance, it reduces the amount that people spend. Lower spending, together with
prices that are stuck too high, reduces the quantity of goods and services that firms
sell. Lower sales, in turn, cause firms to lay off workers. Thus, the reduction in the
quantity of money raises unemployment temporarily until prices have fully adjusted
to the change.

The curve that illustrates this tradeoff between inflation and unemployment is called
the Phillips curve, after the economist who first examined this relationship. The
Phillips curve remains a controversial topic among economists, but most of them
today accept the idea that there is a short-run tradeoff between inflation and un-
employment. By changing the amount that the government spends, the amount it
taxes and the amount of money it prints, policymakers can, in the short run, influ-
ence the combination of inflation and unemployment that the economy experiences.
These instruments define what are called monetary and fiscal policies; and since
they are potentially so powerful, how policymakers should use these instruments to
control the economy, if at all, is a subject of continuing debate.

Even the most sophisticated economic analysis is built using the ten principles
introduced here. The model whose stability we shall study aims to explain the economic
fluctuations in terms of national GDP. Economic models illustrate the relationships among
the variables in mathematical terms. They are useful because they help us to dispense
with irrelevant details and to focus on important connections.

At last we present the essence of one of the most important macroeconomic models
- the IS-LM model, which was introduced in a classic article by the Nobel-Prize-winning
economist John R. Hicks; see (HICKS, 1937). In (KEYNES, 1964), Keynes proposed that
an economy’s total income was, in the short run, determined largely by the desire to
spend by households, firms and the government. The more people want to spend, the
more goods and services firms can sell. The more firms can sell, the more output they
will choose to produce and the more workers they will choose to hire. Thus the problem
during recessions and depressions, according to Keynes, was inadequate spending.

Under IS-LM perspective, there are only two markets which determines economy
dynamics in short run: the goods market and the money market. IS stands for invest-
ment and saving, and the IS curve represents what’s going on in the market for goods
and services. LM stands for “liquidity” and “money”, and the LM curve represents what’s
happening to the supply and demand for money. Recall that money supply is entirely con-
trolled by the government, since it prints every banknote in circulation and consequently
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determines the available money quantity. Thus IS modeling concerns how consumers de-
cide to spend or to save their money meanwhile LM modeling concerns the supply and
demand for real money balances, which determine what interest rate prevails in the econ-
omy. The reader may think on interest rate as the price of money therefore.

The equilibrium of the economy is the point at which the IS curve and the LM
curve cross. This point gives the interest rate r and the level of income Y that satisfy
conditions for equilibrium in both the goods market and the money market, for given
values of government spending, taxes, the money supply and the price level. Instead of
examine every aspect of the model, we choose to state some of its conclusions:

1. a decrease in government purchases or an increase in taxes reduces income.

2. a higher interest rate lowers planned investment and this in turn lowers national
income. The downward-sloping IS curve summarizes this negative relationship be-
tween the interest rate r and income Y .

3. increases in the money supply lower the interest rate.

4. a higher level of income raises the demand for real money balances and this in turn
raises the interest rate. The upward-sloping LM curve summarizes this positive
relationship between income and the interest rate.

5. the IS-LM model combines the elements of the Keynesian cross and the elements of
the theory of liquidity preference (a dollar in the future is less valuable than a dollar
today). The IS curve shows the points that satisfy equilibrium in the goods market
and the LM curve shows the points that satisfy equilibrium in the money market.
The intersection of the IS and LM curves shows the interest rate and income that
satisfy equilibrium in both markets.





69

CHAPTER

3
GROUPS OF BOUNDED OPERATORS ON

FRÉCHET SPACES

We consider the linear Cauchy problem{
ut = a(D)u, t ∈ R
u(0) = u0

, (3.1)

where a(D) : X → X is continuous operator on a Fréchet space X . Imposing a condition
- which is neither stronger nor weaker than the equicontinuity of the powers of a(D) -
we present necessary and sufficient conditions for generation of a uniformly continuous
group on X which provides the unique solution of (3.1). As a consequence, if a(D) is
a pseudodifferential operator with constant coefficients defined on FL2

loc - a particular
Fréchet space of distributions - then we also provide necessary and sufficient conditions
so that the restriction {et a(D)}t⩾0 is a well defined semigroup on L2 and E′. We conclude
that the solution of the heat equation on FL2

loc for all t ∈R extends the standard solution
on Hilbert spaces for t ⩾ 0.

3.1 Introduction
If A is a pseudodifferential operator, e.g., A = d

dx , one may consider the Cauchy
problem associated to it, namely {

ut = Au, t ∈ I

u(0) = u0
, (3.2)

and try to solve it for a certain class of functions u0 and a fixed interval of time I.
By modeling biological, physical and economic phenomena, evolution problems such as
(3.2) naturally arise from partial differential equations (hereafter, PDEs) by interpreting
(t,x) 7→ u(t,x) as a vector-valued mapping t 7→ u(t, ·), let us say, u(t, ·) ∈ L2(RN).
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A function R×RN 3 (t,x) 7→ u(t,x)≡
(
u(t)

)
(x) ∈ X is said to be a solution of (3.2)

if it is differentiable on the temporal variable t, it satisfies d
dt u(t,x) = Au(t,x) for every

(t,x) and it satisfies the so-called initial condition, that is, u(0,x) = u0(x) for every x ∈RN ,
for a given function u0 : RN → X .

The main approach consists in dealing with a closed linear operator A : D(A) ⊂
X → X , which is densely defined on a Banach space X . On the one hand, this setting
has provided a rich theory over the last fifty years with which (3.2) can be solved by a
strongly continuous semigroup

(
T (t) : X → X

)
t⩾0 whenever some spectral conditions on

A are fulfilled. On the other hand, many well-known topological vector spaces arising in
PDEs analysis are not normable - such as C1((−∞,0]

)
in equations with infinite delay. In

this setting, a natural trade-off arises: to lose good topological properties on the space
but to obtain better properties on the operators. For instance, every linear differential
operator with constant coefficients is bounded on the Schwartz space.

Let X be a Hausdorff locally convex space (hereafter, HLCS). The map

t 7→ exp(tA)u0 :=

(
∞

∑
n=0

tn

n!
An

)
u0, for u0 ∈ X , (3.3)

provides the unique solution of (3.2) on X for t ⩾ 0, whenever X is sequentially com-
plete and (An)n∈N is an equicontinuous family of bounded operators defined on X , see
Section 2.3.

The generation of a C0-semigroup on HLCSs as (3.3) has already been dealt by
other authors adding hypothesis on the generator or on the phase space X . In (CHOE,
1985; LEMLE; WU, 2011), the C0-semigroup is assumed to be quasi-equicontinuous and
in (KRAAIJ, 2016) it is assumed to be locally equicontinuous and X is equipped with
an auxiliary norm. Others treat the question in some particular Fréchet spaces, such as
done by Dembart (DEMBART, 1974) (who considered the phase space as the space of
the continuous functions defined on [a,b] into a fixed topological vector space E) and by
Frerick et al. (FRERICK et al., 2013) (by setting X =KN, that is, the collection of scalar
sequences).

Hence we felt confident to point out some results about the generation of uni-
formly continuous groups (whose definition invokes a stronger convergence rather than
a pointwise one) on Fréchet spaces. We extend for instance the main generation result
recently obtained in (GOLIńSKA; WEGNER, 2015), where the authors do not establish
the necessity implication for the exponential map convergence in the topology of bounded
convergence. Besides, we provide further applications to linear Cauchy problems in which
A = a(D) is a pseudodifferential operator on FL2

loc; remarkably, we can extend the ana-
lytic semigroup generated by the heat operator −(1−∆) on L2 to the group

(
e−t (1−∆)

)
t∈R

on FL2
loc and thus obtain a distributional solution of the heat equation backwards in time.
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This chapter is organized as follows. We establish in Section 3.2 the generation
theorem (Theorem 3.4) on abstract Fréchet spaces for bounded linear operators which
enjoy a simple compatibility property with respect to the Fréchet topology. In Section 3.3,
we construct a large Fréchet space which consists of distributions, namely FL2

loc, and
which also contains L2 and the space of compactly supported distributions, E′(RN), as
topological vector subspaces. Section 3.4 is utterly concerned with applying the results of
Section 3.2 to evolution problems in FL2

loc including criteria for regularization process of
the solution and positive invariance on L2. Some conclusions and open problems we keep
in sight are presented in Section 3.5.

3.2 Strongly compatible operators and generation theo-
rem

Let X =
(
X ,(p j) j∈N

)
be a Fréchet space and L (X) be the space of all bounded

linear operators on X . We shall require the appropriate compatibility between the operator
A and the Fréchet topology on X so that its exponential operator is well defined and
provides the solution of the associated Cauchy problem.

Definition 3.1. An operator A ∈ L (X) is said to be strongly compatible with (p j) j∈N

and we write A ∈ Lsc(X) if, for every j ∈ N,

pX
j (A) := sup

p j(x)=1
p j(Ax)< ∞. (3.4)

If X = (X ,‖ ·‖X) is a Banach space then T ∈L (X) if and only if T ∈Lsc(X). Note
that the identity operator on X is always strongly compatible whichever is the choice
of seminorms. Since one may not know all continuous seminorms on X explicitly, such a
dependence on (p j) is convenient, in the sense that one just has to compute (3.4) for some
well known fundamental family of seminorms on X . The condition (3.4) is not obvious,
since the set {x ∈ X : p j(x) = 1} is not bounded, in general. Recall that a set is bounded
if and only if it is bounded with respect to every seminorm p j.

Proposition 3.2. The countable family of seminorms
(

pX
j
)

j∈N defines a Fréchet topology
on Lsc(X).

Proof. First we claim that if A ∈ Lsc(X) then

p j(Ax)⩽ pX
j (A)p j(x) (3.5)

for every x ∈ X and every j; and consequently, pX
j (A

n)⩽ pX
j (A)

n, for every n ∈ N.

Indeed, for a fixed j ∈ N, if x ∈ X satisfies p j(Ax) 6= 0 then x0 =
1

p j(x)
x satisfies

p j(Ax0) ⩽ pX
j (A), from whence we deduce that p j(Ax) ⩽ pX

j (A) p j(x), for every x ∈ X .
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Moreover, since p j(Anx) ⩽ pX
j (A) p j(An−1x), for every x ∈ X and every natural number

n ⩾ 2, the result then follows by induction.

Besides, (3.5) implies that

(P1) p j(Ax) = 0 whenever p j(x) = 0, for every j; and

(P2)
(

pX
j
)

j∈N is a separating family of seminorms, because pX
j (A) = 0 for every j implies

by (3.5) that p j(Ax) = 0 for every j; and since (p j) j∈N is separating, Ax = 0 for every
x ∈ X , that is, A = 0 in L (X).

As a consequence, the topology it generates on Lsc(X) is Hausdorff and metrizable,
by Theorem 2.3.

About the completeness, suppose that (Ak)k∈N is a Cauchy sequence with respect
to
(

pX
j
)

j∈N. By (3.5), we get that (Akx)k is a Cauchy sequence in X , for every x ∈ X , so
that the map

X 3 x 7→ Ax := lim
k→∞

Akx ∈ X

is a well defined linear operator on X . One has only to notice that

p j(Ax) = lim
k→∞

p j(Akx)⩽ lim
k→∞

pX
j (Ak)p j(x)

to conclude that A ∈ Lsc(X). Therefore
(
Lsc(X),

(
pX

j
)

j∈N
)

is a Fréchet space.

In (COSTA, 2019), an operator which satisfies property (P1) is said to be
compatible with (p j) j, which turns out to be a natural condition to obtain
hyperbolicity. It is a simple exercise to verify that if A ∈ L (X) is compatible with
(p j) j∈N then one of the expressions below

sup
p j(x)=1

p j(Ax), sup
p j(x)<1

p j(Ax) and sup
p j(x)⩽1

p j(Ax)

is finite if and only if all three are; and in this case, they all coincide.

Definition 3.3. A family {T (t) : t ∈ R} ⊂ L (X) is said to be a C0-group on X if it
satisfies the conditions T (0) = idX , T (t + s) = T (t)T (s) and T (τ)x X−→

τ→0
x, for every s, t ∈ R

and x ∈ X . In this case, we shall write T (·) instead of {T (t) : t ∈ R}.

Its infinitesimal generator A : D(A)⊂ X → X is defined by

Ax := lim
t→0

T (t)x− x
t

,

where x ∈ D(A) if and only if the limit above exists.

In addition, if T (t)→ I in Lsc(X) as t → 0, T (·)⊂Lsc(X) is said to be a uniformly
continuous group on X .
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If the parameter t of the family of bounded operators T (t) is now indexed on the
interval [0,∞) in the definition above then by replacing lim

t→0
by lim

t→0+
we get the concept

of C0-semigroups, its infinitesimal generator and the concept of uniformly continuous
semigroup.

Theorem 3.4. Let A : D(A)⊂ X → X be a linear operator. The following are equivalent:

a. A is everywhere defined and it is strongly compatible with
(
X ,(p j) j∈N

)
;

b. A is the infinitesimal generator of a uniformly continuous group T (·) on
(
X ,(p j) j∈N

)
;

in which case it is given by

T (t) = etA :=
∞

∑
n=0

(tA)n

n!
∈ Lsc(X), for every t ∈ R,

where the convergence is with respect to the Lsc(X)-topology.

Proof. Let A ∈ Lsc(X) and SN :=
N

∑
n=0

(tA)n

n!
∈ Lsc(X). Given ε > 0,

pX
j (SN −SM)⩽

N

∑
n=M+1

1
n!
(
t pX

j (A)
)n

< ε,

for N,M large enough. Clearly e0A is the identity operator on X . Also, since
∞

∑
n=0

(tA)n

n!
is

absolutely convergent, we conclude that e(s+t)A = esAetA for all t,s ∈ R, by the classical
formula for product of series. Besides,

pX
j (e

tA − idX) = pX
j

(
∞

∑
n=1

(tA)n

n!

)
⩽

∞

∑
n=1

(
t pX

j (A)
)n

n!
= et pX

j (A)−1,

whence {etA : t ∈ R} is a uniformly continuous group on X .

By the definition of an infinitesimal generator, if x ∈ X and t 6= 0 we have

p j

(
etAx− x

t
−Ax

)
⩽ 1

t

∞

∑
n=2

(
t pX

j (A)
)n

n!
p j(x) =

(
et pX

j (A)−1
t

− pX
j (A)

)
p j(x),

hence A is the infinitesimal generator of {etA : t ∈ R}.

As for its reciprocal, consider the normed spaces X j :=
(
X/p−1

j
(
{0}
)
,‖ ·‖ j), where

‖[x] j‖ j := inf
p j(z)=0

p j(x− z), for [x] j ∈ X/p−1
j
(
{0}
)
.

It suffices to prove the result assuming that every X j is a Banach space; otherwise
one could deal with the completions of X j. We may assume that p j ⩽ p j+1 for every j, so
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that X1 ⊂ X2 ⊂ ·· · ⊂ X . Let Tj(t) : X j → X j be defined by Tj(t)[x] j := [T (t)x] j.

Claim 1: {Tj(t) : t ∈ R} is a uniformly continuous group on X j, for every j.

We may write ‖Tj(t)[x] j‖ j = infp j(z)=0 p j

(
T (t)x−T (t)z−

(
z−T (t)z

))
, which is dom-

inated by

inf
p j(z)=0

{
pX

j
(
T (t)

)
p j(x− z)+ p j(z)+ p j

(
T (t)z

)}
= pX

j
(
T (t)

)
‖[x] j‖ j,

since T (t) is strongly compatible with (pk)k∈N; so that Tj(t) ∈ L (X j).

It is clear that Tj(0) is the identity operator on X j. Also, for t,s ∈ R, we get that
Tj(t)

(
Tj(s)[x] j

)
= [T (t)◦T (s)x] j = Tj(t + s)[x] j and

‖Tj(t)− idX j‖L (X j) = sup
‖[x] j‖ j=1

inf
p j(z)=0

p j
(
T (t)x− x− z

)
is dominated by sup

‖[x] j‖ j=1
inf

p j(z)=0
pX

j
(
T (t)− idX

)
p j(x− z) = pX

j
(
T (t)− idX

) R−→
t→0

0.

The maps x 7→ σ j(x) := [x] j and [x] j+1 7→ π j
(
[x] j+1

)
:= [x] j are continuous and, by

construction, we get
(
Tj(t)◦π j

)
([x] j+1) =

(
π j ◦Tj+1(t)

)
([x] j+1).

It is natural to seek the infinitesimal generator of T (·) using the infinitesimal gen-
erators A j of Tj(·), wondering whether exists a linear operator A : X → X such that every
A j : X j → X j is just the projection of A on X j induced by σ j; that is, [Ax] j = A j[x] j holds
for every j and x ∈ X . Well, this is the case.

Claim 2: there exists a unique linear operator A : X → X that turns

X A //

σ j
��

X
σ j
��

X j A j

// X j

(3.6)

into a commutative diagram, for every j ∈N. Besides, A∈Lsc(X) and it is the infinitesimal
generator of T (·).

Fix x ∈ X . Since every σ j is surjective, we obtain a sequence (z j) j in X , which
depends on x, such that σ j(z j) = A j ◦σ j(x) for every j ∈ N, then

σ j(z j) = A j ◦σ j(x) = π j
(
A j+1 ◦σ j+1(x)

)
= π j

(
σ j+1(z j+1)

)
= σ j(z j+1)

so that pl(z j − zk) = 0 whenever j,k ⩾ l. Hence we define a linear operator A : X → X by
setting Ax := lim

j→∞
z j, which satisfies

σ j(Ax) = σ j

(
lim
k→∞

zk

)
= lim

k→∞
k⩾ j

σ j(zk − z j)+σ j(z j) = σ j(z j) =
(
A j ◦σ j

)
(x).
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Since (p j) j is a separating family of seminorms, x 7→ Ax is well defined and it is
the unique linear operator that turns (3.6) into a commutative diagram. Moreover,

sup
p j(x)⩽1

p j(Ax) = sup
p j(x)⩽1

{
inf

p j(z)=0
p j(Ax)− p j(z)

}
⩽ sup

p j(x)⩽1

{
inf

p j(z)=0
p j(Ax− z)

}
= sup

p j(x)⩽1
‖[Ax] j‖ j

⩽ sup
‖[x] j‖ j⩽1

‖A j[x] j‖ j < ∞

and the last inequality holds because ‖[x] j‖ j ⩽ p j(x). Hence A ∈ Lsc(X).

It is not hard to see that these projections σ j have a handy property: if [xλ ] j
λ∈Λ−→

X j
[0] j

for every j, then (xλ )λ∈Λ is convergent in X and xλ
λ∈Λ−→

X
0.

Finally, given x ∈ X , for every j ∈ N we have[
Ax− T (t)x− x

t

]
j
= [Ax] j −

[T (t)x] j − [x] j

t
= A j[x] j −

Tj(t)[x] j − [x] j

t
,

so that the net T (t)x− x
t

converges to Ax, for every x ∈ X ; and we conclude that

T (t) =
∞

∑
n=0

tn

n!
An = etA, for every t ∈ R.

As in Banach spaces, groups with the same infinitesimal generator coincide.

Proposition 3.5. If T (·) and S(·) are uniformly continuous groups on X with

lim
t→0

T (t)− idX

t
= A = lim

t→0

S(t)− idX

t
in Lsc(X),

then T (t) = S(t) for every t ∈ R.

Proof. We shall prove that given τ,ε > 0, we get pX
j
(
T (t)−S(t)

)
⩽ ε for every 0⩽ t ⩽ τ and

j ∈ N. By continuity of the map t 7→ pX
j
(
S(t)

)
pX

j
(
T (t)

)
, we get that pX

j
(
T (t)

)
pX

j
(
S(s)

)
⩽

c = c( j,τ,S,T )> 0, whenever 0 ⩽ s, t ⩽ τ .

By hypothesis, there exists a positive constant δ = δ ( j,τ,ε,S,T ) > 0 such that
h−1 pX

j
(
T (h)− S(h)

)
⩽ ε

τc
for 0 ⩽ h ⩽ δ . For 0 ⩽ t ⩽ τ , take n ∈ N such that t/n < δ , so

pX
j
(
T (t)−S(t)

)
= pX

j
(
T
(
n t

n

)
−S
(
n t

n

))
is dominated by

n−1

∑
k=0

pX
j

(
T
(
(n− k−1)t

n

))
pX

j

(
T
( t

n

)
−S
( t

n

))
pX

j

(
S
(

kt
n

))
and such an expression is dominated by nc

ε
τc

t
n
⩽ ε .
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Corollary 3.6. If T (·) is a uniformly continuous group on X then

a. there exists a unique operator A in Lsc(X) such that T (t) = etA;

b. the operator A in part a) is the infinitesimal generator of T (·);

c. there exist nonnegative numbers ω j such that pX
j
(
T (t)

)
⩽ exp(ω j t), for every t ∈R;

and

d. the map R 3 t 7→ T (t) ∈ Lsc(X) is differentiable and

dT (t)
dt

= A◦T (t) = T (t)◦A, for every t.

Consequently, the Cauchy problem{
T ′(t) = AT (t), t ∈ R
T (0) = idX

possesses a unique solution whenever A ∈ Lsc(X), by Gronwall’s inequality.

Remark 3.7. Let X be a sequentially complete HLCS. Several remarks are in order:

1) in (YOSIDA, 1980), the generation result reads as follows: Let B ∈ L (X). If for
every continuous seminorm p on X there exists a continous seminorm q = q(p) on
X such that

sup
k∈N

p
(
Bkx
)
⩽ q(x), for every x ∈ X , (3.7)

then the map

X 3 x 7→
∞

∑
k=0

tBk

k!
x, for every t ⩾ 0,

is well defined and it is continuous.

If (3.7) holds, {Bk}k∈N is said to be an equicontinuous family with respect to k. It is
a result of generation of a C0-semigroup with pointwise convergence. On the other
hand, by Proposition 3.2, if A ∈ Lsc(X) then

p j(Akx)⩽ [pX
j (A)]

k p j(x), for every x ∈ X and for every j,k ∈ N,

which might not have the uniformity of (3.7) on k. And since nothing is assumed
over other seminorms but (p j) j, the conditions are not comparable. In fact, let
X =C(R) with the seminorms p j(ϕ) := sup|ξ |≤ j |ϕ(ξ )|, j ∈ N. If A : X → X is given
by Aϕ = aϕ , where a(ξ ) = |ξ |2,ξ ∈ R, then Akϕ = |ξ |2kϕ , for any k ∈ N, so we may
choose ϕ0 such that p j(Akϕ0) = j2k, for any k ∈ N. Thus given j we cannot find a
continuous seminorm q such that p j(Akϕ0)≤ q(ϕ0) for all k ∈ N.
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Moreover, Theorem 3.4 provides a complete characterization of uniformly continu-
ous group, with convergence in the space of operators. It is also noteworthy
that the reciprocal of Yosida’s result requires that B : D(B)⊂ X → X is known to be
densely defined and that the resolvent (nidX −B)−1 ∈ L (X) exists for every n ∈ N.

2) In (BABALOLA, 1974), a C0-semigroup {S(s) : s ⩾ 0} in X is called a (C0,1)-
semigroup if for every continuous seminorm p on X there exist a positive number
σp and a continuous seminorm q = q(p) on X so that

p
(
S(s)x

)
⩽ eσpsq(x), for every x ∈ X and every s ⩾ 0. (3.8)

The author then establishes results about the generation of (C0,1)-semigroups (in-
stead of uniformly bounded groups) and the perturbation of infinitesimal gener-
ators. Again (3.8) is not comparable with (3.4), since A ∈ Lsc(X) implies that
p j
(
T (t)x

)
⩽ pX

j
(
T (t)

)
p j(x), by Theorem 3.4.

3) Let Γ be a fundamental family of seminorms on X and let Lb(X) be the space
L (X) equipped with the topology of uniform convergence on the bounded subsets
of X , which is stronger than the Lsc(X)-topology. The main result in (GOLIńSKA;
WEGNER, 2015) reads as follows: suppose that there exists µ > 0 with the property
that for every p ∈ Γ there exist q = q(µ, p) ∈ Γ and M = M(µ, p)⩾ 0 such that

p(Akx)⩽ Mµkq(x), for every x ∈ X and k ∈ N. (3.9)

Then A generates a uniformly continuous semigroup which is given by the exponen-
tial series expansion, with convergence in Lb(X).

If (3.4) holds then (3.9) holds by setting µ = pX
j (A),q = p and M = 1. Although (3.4)

is a stronger condition, it is certainly easier to compute with and it is used to topolo-
gyze Lsc(X) appropriately so that exp(A) is well defined as the exponential Lsc(X)-
series expansion. Besides, we obtained a complete characterization in Theorem 3.4
which is not achieved in (GOLIńSKA; WEGNER, 2015).

4) In (FRERICK et al., 2013), the authors study the generation of C0-semigroups on
quojections and its main application concerns the following question from (CONE-
JERO, 2007): If T (·) is a C0-semigroup on KN, is there a bounded operator A such
that T (·) is represented pointwisely by the exponential series expansion of A? That
is not our aim.

5) Other authors also deal with C0-semigroup generation under weak assumptions, such
as the semigroup T (·) to be quasi-equicontinuous (in the sense that there exists a
constant β ⩾ 0 such that

(
e−β tT (t)

)
t⩾0 is an equicontinuous family with respect

to t) in (CHOE, 1985; LEMLE; WU, 2011); or the semigroup T (·) to be locally
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equicontinuous (in the sense that for every t ⩾ 0 and every continuous seminorm p

there exists a continuous seminorm q = q(t, p) such that p
(
T (s)x

)
⩽ q(x) for every

0 ⩽ s ⩽ t and x ∈ X) as in (KRAAIJ, 2016).

3.3 A Fréchet space of distributions
Doubtlessly, geometric intuition has been a good guide to solving many differential

problems by seeking solution on Hilbert spaces - the more general topological vector
spaces which enjoy euclidean geometric properties. Recall that every Hilbert space is
isometrically isomorphic to some `2 sequences space, see (FOLLAND, 1999), Proposition
5.30. In practice, this means that there is no other geometry in infinite dimensional Hilbert
spaces rather than that one `2 has. Hence, by formulating a (Cauchy) problem on a Hilbert
space, one promptly requires the solution to obey such a (unique) Hilbert geometry. We are
convinced that such a formulation has restrained our understanding of many phenomena.
About the Banach case, it is known that every separable Banach space can be embedded
in some (separable) Hilbert space, and separability is a common property when it comes
to applications.

Thus we chose to deal with weaker topologies to obtain a continuous solution
of linear Cauchy problems associated to certain pseudodifferential operators and as a
consequence we can study the meaning of the heat equation solution backwards in time.
The first generalization of Banach spaces that comes to mind are the Fréchet spaces,
where the norm topology is replaced by the topology generated by a separating family of
seminorms, which therefore actually behaves as a norm.

Recall that if ϕ is a Schwartz function (for which we write ϕ ∈ S(RN ,C)), its Fourier
transform is given by (

Fϕ
)
(ξ ) = ϕ̂(ξ ) =

∫
RN

e−2πix·ξ ϕ(x)dx,

whereas ϕ 7→ qϕ stands for the inverse Fourier transform. Let S′(RN ,C) be equipped with
the ⋆-weak topology. See Section 2.1 or (FOLLAND, 1999; HÖRMANDER, 1980).

Definition 3.8. A pseudodifferential operator a(D) : S
(
RN)→ S

(
RN) of order m on RN

with constant coefficients (or constant coefficients m-ΨDO, for short) is a linear map given
by (

a(D)ϕ
)
(x) :=

(
a ϕ̂
)
q(x),x ∈ RN ,

for every ϕ ∈ S
(
RN), where a ∈ C∞(RN) satisfies the property that for all multiindex α

there is a constant cα > 0 such that
∣∣∂ αa(ξ )

∣∣ ⩽ cα(1+ |ξ |)m−|α|, for every ξ ∈ RN .

We shall now present a remarkable Fréchet space, namely FL2
loc, which was in-

troduced by Treves (TREVES, 1976) and whose elements are distributions of D′. Also,
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owing to the fact that every distribution u with compact support (and we write u ∈ E′)
and every L2 function belong to FL2

loc, some good properties of the Fourier transform on
L2 are preserved and the Paley-Wiener-Schwartz theorem can be extensively invoked.

Let FL2
loc be the completion of the metric space (E,d) constructed as follows: let

E := F−1(S′∩L2
loc
)

be endowed with the topology generated by the seminorms p j(u) := ‖ û‖L2(B j)
for u ∈ E

and j ∈ N, which turns out to be a separating family, whence the function

d(u,v) :=
∞

∑
j=1

2− j p j(u− v)
1+p j(u− v)

defines a metric on E. It is not hard to see that its topology as a complete metric space is
equivalent to the one generated by the extended seminorms p j : FL2

loc → [0,∞) and hence
FL2

loc =
(
FL2

loc,(p j) j∈N
)

is a Fréchet space.

We provide further properties.

Proposition 3.9. a. the Fourier transform F : FL2
loc → L2

loc is well defined and it is
continuous;

b. every element of FL2
loc is a distribution D′(RN). Hence, FL2

loc is a Fréchet space
of distributions;

c. L2 and E′ are topological subspaces of FL2
loc and

(
L2,‖·‖L2

)
↪→FL2

loc. In particular,
every Sobolev space

(
Hs,‖ · ‖s

)
is continuously embedded on FL2

loc, s ⩾ 0;

d. every constant coefficients m-ΨDO a(D) induces a strongly compatible operator on(
FL2

loc,(p j) j∈N
)

by setting

a(D)[u] :=
[
a(D)u

]
, for [u] ∈ FL2

loc.

Consequently, R 3 t 7→ ea(D)tu0 ∈ FL2
loc provides the unique solution of{

ut = a(D)u, t ∈ R
u(0) = u0 ∈ FL2

loc
,

e.
(
FL2

loc,(p j) j∈N
)

is a quojection.

Proof. Let [u] ∈ FL2
loc. If (ul)l∈N ∈ [u] then (ûl)l∈N is a Cauchy sequence in L2

loc, whence
there exists a unique w ∈ L2

loc such that ûl
l→∞−→ w in L2

loc and we set [̂u] := w, which does
not depend on the choice of (ul)l in [u]. Thus we define

C∞
c 3 ϕ 7→ 〈[u],ϕ〉 :=

∫
RN

[̂u](ξ )ϕ(ξ )dξ ∈ C.
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Let K be a compact subset of RN . If suppϕ ⊂ K ⊂ B(0, j) then

|〈[u],ϕ〉|⩽ ‖[̂u]‖L2(B(0, j)) ‖ϕ‖L2(K) ⩽ |B(0, j)|1/2p j([u]) sup
K

|ϕ |,

whence [u] is actually a distribution and one can write u instead of [u].

By Paley-Wiener-Schwartz theorem we obtain the inclusion E′⊂E and by Plancherel
theorem the embedding

(
L2,‖ · ‖L2

)
↪→ E; and (c) follows.

Let a(D) be a constant coefficients m-ΨDO and [u] ∈ FL2
loc. If |ξ |⩽ j then

F
(
a(D)u

)
(ξ ) = lim

l→∞
L2(B(0, j))

F
(
a(D)ul

)
(ξ ) = lim

l→∞
L2(B(0, j))

a(ξ ) ûl(ξ ) = a(ξ ) [̂u](ξ ),

where [̂u] is the limit in L2(B(0, j)
)

of the Fourier transform of some sequence (ul)l∈N ∈ [u],
by definition. That a(D) is strongly compatible with p j follows from

p j
(
a(D)[u]

)
=

(∫
|ξ |⩽ j

|a(ξ )|2
∣∣[̂u](ξ )∣∣2 dξ

)1/2

⩽ ‖a‖L∞(B(0, j)) p j
(
[u]
)
.

As for (e), let X j =FL2
loc/p

−1
j ({0}), so we have to prove that every X j is a Banach

space.

We claim that every X j ≡ L2(B(0, j)
)
. By definition, if [u] ∈ FL2

loc then[
[u]
]

j :=
{
[u]+ [v] : p j([v]) = 0

}
=
{
[ f ] ∈ FL2

loc : [̂ f ](ξ ) = [̂u](ξ ) a.e. |ξ | ≤ j
}

and
∥∥∥[[u]] j

∥∥∥
X j

=
∥∥∥[̂u]∥∥∥

L2(B(0, j))
, therefore one can identify

[
[u]
]

j with [̂u]
∣∣∣
B(0, j)

.

As pointed out in (TREVES, 1976), FL2
loc is a reflexive Fréchet space, whose dual

space, FL2
c , is the inductive limit of a sequence of Hilbert spaces. The space L2

c denotes
those L2 functions with compact support whereas FL2

c is constructed by analogy with
FL2

loc. To prove such a statement, one just has to use the Riesz representation theorem
for L2(B j) spaces and the Open Mapping theorem for LCSs.

3.4 Some applications to PDEs
Since E′(RN) is a subspace of FL2

loc, one may wonder whether a semigroup {eta(D) :
t ⩾ 0} in FL2

loc lets E′(RN) invariant. We provide a sufficient condition for every N and
the equivalence only for N = 1. Besides, owing to the fact that

(
L2,‖ · ‖L2

)
↪→ FL2

loc, we
provide a complete characterization of the semigroups {eta(D) : t ⩾ 0} in FL2

loc which let
L2(RN) invariant, for any N.

If z ∈ CN we shall write z = ξ + iη , with ξ = ℜz and η = ℑz in RN .
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Theorem 3.10. Let a(D) be a constant coefficients m-ΨDO, with m > 0, let ξ 7→ a(ξ ) be
its symbol and {eta(D) : t ∈ R} be the group generated by a(D) on FL2

loc

(
RN), according

to Proposition 3.9 (d).

a. Suppose that a(ξ ) = ∑|α|≤m aαξ α . If m = 1 and ℜ aα = 0 whenever |α|= 1 then

eta(D)
(
E′(RN))⊂ E′(RN), for every t ∈ R. (3.10)

In addition, if N = 1 then the converse holds.

b. If there exists C > 0 such that ℜa(ξ )≤−C|ξ |m whenever |ξ | is large enough, then
we have the following regularization effect:

eta(D)
(
E′(RN))⊂ S

(
RN), for all t > 0. (3.11)

c. We have the following positive invariance:

eta(D)
(
L2(RN))⊂ L2(RN), for all t ⩾ 0 (3.12)

if and only if
sup

ξ∈RN
et ℜ a(ξ ) < ∞, for all t ⩾ 0. (3.13)

d. if ℜ a(ξ )⩽ 0 whenever |ξ | is large enough, then (3.12) holds.

Proof. a. If |α|= 1 then aα = ib j with b j ∈ R for every j = 1,2, . . .n and

a(D) = ∑
|α|≤1

aαDα = a0 +
n

∑
j=1

ib j(2πi)−1 ∂
∂x j

,

so that ξ 7→ a(ξ ) = a0 +∑n
j=1 ib jξ j. Let u ∈ E′(RN), ξ ∈ RN and t ∈ R, then

F
(
eta(D)u

)
(ξ ) = eta(ξ )û(ξ ) = eta0

[
e2πi( tb

2π )·ξ û(ξ )
]
= eta0F

(
τ(tb/2π)u

)
(ξ ),

where b = (b1, · · · ,bn) and τh stands for the translation by h ∈ RN . Hence (3.10) holds,
eta(D) : E′(RN)→ E′(RN) is well defined and it coincides with eta0 times the translation
by tb/2π.

Now setting N = 1, suppose that (3.10) holds and let u ∈ E′(R).

On the one hand, by Paley-Wiener-Schwartz theorem eta(D)u ∈ E′(R) if and only if
F
(
eta(D)u

)
: R→C has an analytic extension V =V(t,u) : C→C and there exist constants

C =C(t,u),R = R(t,u) > 0 and L = L(t,u) ∈ N such that

|V (z)|⩽C(1+ |z|)LeR|ℑ z|, for every z ∈ C.
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On the other hand, since C 3 z 7→ a(z) ∈ C is a polynomial, we deduce that R 3
ξ 7→ F

(
eta(D)u

)
(ξ ) = eta(ξ )û(ξ ) admits a unique analytic extension, which is given by

C 3 z 7→ eta(z)û(z) =V (z) ∈ C.

Besides,
∣∣F(eta(D)u

)∣∣= et ℜa(z)|û(z)| holds, for every t ∈R and z ∈C. Combining this with
the estimate of V , setting u = δ and t = 1, we obtain

eℜa(z) ⩽C(1+ |z|)LeR|ℑ z|, for every z ∈ C, (3.14)

which holds if and only if the order m of a(z) is equal to 1. Otherwise, z 7→ ℜa(z) is
a polynomial with degree ⩾ 2 and onto R, which contradicts (3.14). Hence we write
a(ξ ) = a0 + a1ξ , for some a0,a1 ∈ C, and we claim that ℜa1 = 0; from which the result
follows. By (3.14)

eℜa(ξ ) = eℜa0eℜa1 ξ ≤C(1+ |ξ |), for every ξ ∈ R,

which cannot be true for all ξ ∈ R if ℜa1 6= 0.

b. Let u ∈ E′(RN) and t ⩾ 0, then RN 3 ξ 7→ F
(
eta(D)u

)
(ξ ) = eta(ξ )û(ξ ) is a C∞

function. By Paley-Wiener-Schwartz theorem

|F
(
eta(D)u

)
(ξ )|= etℜa(ξ )|û(ξ )| ≤Cu(1+ |ξ |)Luetℜa(ξ )

and by hypothesis the right side of this inequality vanishes at infinity faster than any
power of |ξ |. Now it is easy to deduce that ξ 7→ F

(
eta(D)u

)
(ξ ) is a Schwartz function;

and (b) follows.

c. For u ∈ L2(RN), eta(D)u ∈ L2(RN) if and only if F
(
eta(D)u

)
(ξ ) = eta(ξ )û belongs

to L2(RN) if and only if |eta(ξ )û(ξ )|= et ℜa(ξ )|û(ξ )| belongs to L2(RN).
Suppose that (3.13) holds. Let u ∈ L2(RN) and t ⩾ 0 then

∫
RN

e2t ℜa(ξ )|û(ξ )|2 dξ ⩽
(

sup
ξ∈RN

e2t ℜa(ξ )

)
‖û‖L2 ,

so that (3.12) is true. Conversely, suppose that (3.13) does not hold. Take t ⩾ 0, a sequence
(ξn)n∈N in RN and a collection of disjoint balls Bn :=B(ξn;rn) such that |ξn|→∞, e2t ℜa(ξn)⩾
2n/n and e2t ℜa(ξ ) ⩾ 2n/2n for every ξ ∈ Bn, for every n ∈ N. Let fn be defined by

RN 3 ξ 7→ fn(ξ ) :=
2−n/2

|Bn|1/2 χBn(ξ ),

then the function f := ∑n fn belongs to L2(RN), since

∫
RN

f 2(ξ )dξ =
∫
RN

(
∞

∑
n=1

f 2
n (ξ )

)
dξ =

∞

∑
n=1

∫
RN

f 2
n (ξ )dξ =

∞

∑
n=1

1
2n < ∞.
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On the other hand, eta(D)
qf does not belong to L2(RN), because∫

RN
e2t ℜ a(ξ )| f (ξ )|2 dξ =

∞

∑
n=1

∫
Bn

e2t ℜ a(ξ ) f 2
n (ξ )dξ ⩾

∞

∑
n=1

1
2n

= ∞.

Hence (3.12) does not hold for u := qf ∈ L2(RN), from which (c) and (d) follow.

Hence in order to obtain a C0-semigroup on L2(RN) which is generated by a linear
differential operator with constant coefficients, we may replace the spectral conditions of
Hille-Yosida theorem (on Banach spaces) by the condition (3.13).

Proposition 3.11. Consider the heat equation in RN :{
ut +u = ∆u, t > 0
u(0) = u0

. (3.15)

If u0 ∈ FL2
loc the evolution problem (3.15) can be solved for every t ∈ R in a

distributional sense. Moreover, if u0 ∈ L2 then such a solution extends the solution given
by the analytic semigroup generated by −(1−∆) on L2 forwards in time.

Proof. On the one hand, A := 1−∆ : H2(RN)⊂ L2(RN ,C)→ L2(RN ,C), as a linear oper-
ator in L2, is a sectorial operator with ℜσ(A) > 0, whence −(1−∆) generates an ana-
lytic semigroup on L2 indicated by {e−At : t ≥ 0}. Besides, the fractional power spaces
associated to A are the usual Sobolev spaces Hs, characterized by Bessel potentials:
Hs =

{
u ∈ S′ : (1+4π2|ξ |2)s/2û ∈ L2

}
.

On the other hand, the map ξ 7→ a(ξ ) := −(1+ 4π2|ξ |2) is the symbol of the 2-
ΨDO operator a(D) := −(1−∆) : FL2

loc → FL2
loc, which generates a continuous group

on FL2
loc, denoted by {ea(D) t : t ∈ R}. Also, by Corollary 3.10, {ea(D) t : L2 → L2}t⩾0 is a

continuous semigroup.

Thus we obtained two semigroups in L2 generated by the heat operator under two
different approaches of generation. However we claim that they are the same semigroup
and therefore the group on FL2

loc extends the analytic semigroup defined on L2. Let
t > 0 and u0 ∈ L2. First, F

(
e−tAu0

)
= e−(1+4π2|ξ |2) t û0, as in (HENRY, 1981), page 34;

besides by the definition of ea(D) t , we may apply the Fourier transform on it to obtain
F
(
ea(D) tu0

)
= eta(ξ )û0. Since they are elements of L2, we conclude by Plancherel theorem

that both semigroups coincide on L2.

The amusing consequence of it is that the heat equation (3.15) can be solved
backwards in time for any initial data u0 ∈ L2 ⊂ FL2

loc, in a distributional sense. Essen-
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tially, for u0 ∈ L2, the regularity of e−tAu has three stages indexed by the time parame-
ter: for t < 0, e−t(1−∆)u0 ∈ FL2

loc, that is, the solution backwards belongs to a space of
very low regularity; if t = 0, there is nothing to add, u0 belongs to L2; and for t > 0,
e−t(1−∆)u ∈

⋂
s∈RHs ⊂C∞, which is the regularization effect forward in time promoted by

this sectorial operator.

The exponential factor in F
(
e−t(1−∆)u0

)
= e−(1+4π2|ξ |2) t û0 explains how the regu-

larity of (3.15) responds to the time parameter, since∫
RN

e−2t(1+4π2|ξ |2)(1+ |ξ |)2Mdξ < ∞, for t > 0 and M ∈ N,

and
lim

|ξ |→∞
e−2t(1+4π2|ξ |2)(1+ |ξ |)2M = ∞, for t < 0 and M ∈ N.

The key point here is that the fractional power spaces associated to 1−∆ are
completely characterized by a property which essentially connects Fourier analysis with
the usual Hilbert spaces.

Example 3.12 (The i derivative operator on R). If A = i d
dx : H1 ⊂ L2 → L2 then we

cannot solve (3.2) using the mainstream approach of Banach spaces because A does not
fulfill the spectral conditions of Hille-Yosida theorem. On the other hand, since a(ξ ) =
−2πξ is its symbol, it generates a semigroup {eitd/dx : t ⩾ 0} on L2 by Theorem 3.10 (c),
which provides its unique solution on L2.

Example 3.13 (The positive power of the Laplace operator on Rn). Let α >

0. The symbol ξ 7→ a(ξ ) = −(4π2|ξ |2)α is associated to the operator −(−∆)α so that
e−t(−∆)α

u ∈ S(Rn), for every t > 0, whenever u ∈ E′(Rn), by Theorem 3.10 (b).

In particular, the solution of the Cauchy problem{
ut =−(−∆)αu, t ∈ R
u(0) = δ ,

belongs to S(RN) for every t > 0, where δ stands for Dirac δ -distribution.

Example 3.14 (The derivative operator on R). Consider the Cauchy problem{
ut = ux, t ∈ R
u(0) = u0 ∈C∞ . (3.16)

Under the mainstream approach, one may impose three restrictions in order to solve (3.16):
i) t ⩾ 0; ii) u0 has a derivative u′0 and both are uniformly bounded continuous functions
(we write u0,u′0 ∈Cb(R,C)); and iii) restricting the domain of A = d

dx so that it is a closed
densely defined operator on Cb(R,C). Thus, the C0-semigroup generated by d

dx is the
translation semigroup, see (PAZY, 1983).
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On the other hand, we can solve (3.16) in the (Fréchet) phase space C∞(R,C)
without any further assumptions; besides the group d

dx generates extends the C0-semigroup
above. Let C∞

exp be the set of all functions ϕ ∈C∞ such that, for every m ∈ Z+ and j ∈ N,
there exists a constant M = M(ϕ ,m, j)> 0 such that

sup
n∈N

sup
|x|⩽ j

∣∣∣∣M−n dn+m

dxn+m ϕ(x)
∣∣∣∣< ∞.

Proposition 3.15. Every ϕ ∈C∞
exp is a real analytic function. Moreover,

a. C∞
exp is a dense subspace of C∞(R);

b. the partial sums SN :=
N

∑
n=0

tn

n!
dn

dxn ϕ converges in C∞(R) to a function in C∞
exp, for

every ϕ ∈C∞
exp and t ∈ R; its limits is denoted by et d

dx ϕ ;

c. et d
dx : C∞

exp →C∞
exp is well defined, it is a bounded linear operator and hence by density

et d
dx ∈ L

(
C∞(R)

)
;

d. the family of operators {et d
dx : t ∈R} is a uniformly continuous group on C∞(R) such

that (
et d

dx ϕ
)
(s) = ϕ(s+ t), for every s ∈ R.

Proof. Since x 7→ e−x2 belongs to C∞
exp, one may argue with it as a mollifying function to

obtain the proof.

3.5 Final Comments
If X is a Fréchet space and A : X → X is strongly compatible with it then the

operator exp(t A) is strongly compatible as well and solves the Cauchy problem{
ut = Au, t ∈ R
u(0) = u0 ∈ X

.

We have established criteria to identify whether the semigroup generated by a
constant coefficients m-ΨDO defined on FL2

loc acts on L2 and E′; and we analyzed the
regularization of initial data backwards and forwards by the solution group of the heat
equation on FL2

loc, which extends the standard solution on Hilbert spaces for positive
times. This explains partially the regularization process which the exponential of the
Laplacian operator performs.

The strong connection with the mainstream approach and the results achieved have
convinced us that we may consider hyperbolicity (see (COSTA, 2019)), non-autonomous
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linear operators A = A(t), generation of analytic semigroups and semilinear problems as
well. Besides, it is not clear how the E′ equipped with its original topology is related to
its topology as a subspace of FL2

loc.

Our future aims concern all these subjects.
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CHAPTER

4
AN EXTENDED KALDOR’S MODEL WITH

DELAYED FISCAL POLICY

This chapter is devoted to analyze the stability of the economy according to an
extended version of Kaldor’s economic growth model, which was formulated by Takeuchi
and Yamamura (TAKEUCHI; YAMAMURA, 2004) and considers the role of the govern-
ment and the effect of its both monetary and fiscal policies. We improve the treatment
given by these authors by considering the full version of the model, that is, with four vari-
ables instead of three - namely, national income, capacity of production, bonds value and
money supply. Besides, we study how a possible government inefficiency concerning its
fiscal policy decision-making can affect the economic stability; which is achieved by intro-
ducing a time delay which represents the time between the recognition of an opportunity
of implementing a fiscal policy measure and the actual implementation.

In the Section 4.1, after a brief discussion about this extended version, its improve-
ments, its restrictions and some assumptions, we prove the existence and uniqueness of a
positive equilibrium point. We then establish sufficient conditions so that such a point is
asymptotically stable, which can be done with or without delay time on the fiscal policy
implementation, as we shall see in Section 4.2. For further conclusions, we run simula-
tions and analyze the effect of the fiscal policy strength and the delay time size over the
long-term stability in the model. See Section 4.3. All results, some conclusions and future
considerations are included in Section 4.4.

4.1 An extended Kaldor’s business cycle model

We shall briefly describe the original version of Kaldor’s model (KALDOR, 1940)
and some of its reformulations (CHANG; SMYTH, 1971; GANDOLFO, 1997; KADDAR;
ALAOUI, 2008; ICHIMURA, 1955; KRAWIEC; SZYDLOWSKI, 1999). The reader is
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expected to have some familiarity with macroeconomics theory; at least the contents we
presented in Section 2.5. Most of economic quantities depends on time although we do
not write it down explicitly.

Under the Keynesian theory1, investment (denoted by I) and savings (denoted
by S) depend positively on the (national) income/GDP (denoted by Y ). By definition,
S is the portion of income Y that is not consumed, for which we write S = Y −C, where
C clearly stands for (national) consumption. Since the production adjusts in order to
satisfy the demand for goods, the equilibrium is achieved precisely when I = S. Indeed, if
I > S then C+ I >Y which means that aggregate demand for goods exceeds supply, which
stimulates production to increase. On the other hand, if I < S then supply exceeds demand,
whence production decreases. Thus there are only two extreme scenarios by considering
a linear dependence on Y , as it was frequently the case in early 20th century. If we write

S(Y ) = S0 +a0Y

I(Y ) = I0 +a1Y
,

then either a0 > a1 or a1 < a0. In the first case, the equilibrium point (where (Y, I) = (Y,S))
is stable; and in the latter it is unstable. In other words, economic activity is either
completely stable or completely unstable, which does not fit reality. The case a0 = a1 is
unimportant since it would imply that the economy is static, which again does not fit the
reality. This modeling can be improved by allowing the curves Y 7→ S(Y ) and Y 7→ I(Y ) to
actually be curves.

In the early forties, Nicholas Kaldor (pronounced as nɪkələs kəldoʊr, English IPA),
a Cambridge economist in the post-war period, developed a business cycle model which
explained the natural fluctuations of the economy as we have observed in Fig. 1. He
was one of the first economists to propose a nonlinear formulation for investment I and
saving S as functions of income Y and capital stock (denoted by K), which was a tremen-
dous improvement over classical linear models and it is invariably present over the last
decades: (BLINDER; SOLOW, 1973; CHANG; SMYTH, 1971; CESARE; SPORTELLI,
2005; GANDOLFO, 1997; ICHIMURA, 1955; KRAWIEC; SZYDLOWSKI, 1999; MAT-
SUMOTO; SZIDAROVSZKY; ASADA, 2016; MATSUMOTO; SZIDAROVSZKY, 2016;
MIRCEA; NEAMTU; OPRIS, 2011; TAKEUCHI; YAMAMURA, 2004). In the sixties,
Goodwin (GOODWIN, 1967) proposed a model inspired on Lotka-Volterra equations
with the same aim, which also has been studied over the years, as in (GABISCH; LORENZ,
1989; MATSUMOTO; MERLONE; SZIDAROVSZKY, 2018; MATSUMOTO; NAKAYAMA;
SZIDAROVSZKY, 2018).

1 (KEYNES, 1964): Regarded widely as the cornerstone of Keynesian thought, by challeng-
ing the established classical economics and introducing new concepts right after the Great
Depression.
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Originally, Kaldor’s model was studied with graphic techniques and the first rig-
orous mathematical study is due to (ICHIMURA, 1955) and later (CHANG; SMYTH,
1971), under which we can enumerate the following assumptions:

K1) Y,K 7→ I(Y,K),S(Y,K) are nonlinear functions;

K2) Y ′(t) = α
(
I(t)−S(t)

)
, with α > 0;

K3) K′(t) = I(Y,K) so that the variation of capital stock is simply the investment;

K4) ∂ I
∂K

< 0 <
∂ I
∂Y

,
∂S
∂K

,
∂S
∂Y

;

K5) ∂ I
∂Y

>
∂S
∂Y

at “normal” level of production; and

K6) ∂ I
∂Y

<
∂S
∂Y

if the economy faces either a recession (too low levels of production) or a
too strong growth (high levels of production).

Here, K denotes the capital stocks: the total value of the buildings, machines,
warehouses and so on which are used to produce goods and services. Thus K1) states
that the decision to invest or not (which means to save money) depends on the income Y

and on the already available capacity of production K, which is pretty obvious. The key
point is the nonlinear dependence.

The reader probably might have noticed that Y is sometimes called GDP and (na-
tional) income. They are the same: the quantity of money one obtains by producing goods
and offering services. It is noteworthy that income is a nomenclature from microeconomics
(therefore the income a person or a family acquires) while GDP comes from macroeco-
nomics (which deals with economies instead of individuals). Such a quantity dictates how
rich a country is and it grows as long as the nation is capable of accumulating richness,
which is possible basically by either increasing the capacity of production or decreasing
the amount of money kept under the mattress; and K2) express it.

About the investment assumption K3), it is reasonable to state that the variation
of capital stock is a consequence of the actual investment, which is assumed to be equal
to the planned investment, so that K′(t) = I(t). That I and S depend positively on the
income Y is a typical assumption of Keynesian theory: as richer a nation is more money
are available to invest and to save. On the other hand, imposing that IK < 0 < SK is quite
natural: as the capital stock increases, the necessity to increase production get smaller and
smaller, and the best opportunities to invest are taken, remaining only those investments
that are not that profitable (hence IK < 0); also as a consequence, as production expands,
the prices fall and this is crucial for consumers because now less money is required to
maintain the usual consume, that is, there will be more money available to be saved
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(hence SK > 0). Clearly, IK stands for the partial derivative of I with respect to K; and
analogously for the others.

Expectations are a key point when it comes to modeling economy. Differently
from the natural sciences, dynamics enters macroeconomics in such a way that the present
depends not only on the past but also on the future, owing to the fact that economic agents
have expectations (or beliefs) about the future which strongly influence their decision on
the present. At the moment there is no generally accepted way of modeling expectations
and every one of them has its strengths and weaknesses.

Under normal levels of production, there is the expectation that economy will
keep growing and this confidence promotes more investment than savings. However, if a
recession is in course then one believes that its investments are not worthwhile and that
the best thing one can do is to keep its money under the mattress; and if the production
is taken to be saturated then there will be an expectation that the economic growth is
coming to an end, whence the people rather save than invest. Such a reasoning is expressed
in assumptions K5) and K6).

When one recalls that S = Y −C, Kaldor’s model reads as follows:{
Y ′(t) = α

(
C(t)+ I(t)−Y (t)

)
K′(t) = I

(
Y (t),K(t)

) , (4.1)

which is an autonomous ODE in R2, as we promised. A qualitative analysis of local sta-
bility leads to the existence of a limit cycle; arguing with either the Poincaré-Bendixson
theorem as in (CHANG; SMYTH, 1971) or with the Hopf bifurcation theorem as in (GAN-
DOLFO, 1997). In (ICHIMURA, 1955), Liénard techinques are used to guarantee the os-
cillations. As a consequence, national income and capacity of production suffer alternating
cycles of increasing and decreasing that characterize the economic activity.

A simplifying implicit assumption is that the economy is closed, that is, there is no
trade with other nations. If this were not the case, one would have a similar formulation
which aggregates the economy of all nations taken into account; and then the model would
explains the evolution of the global economy instead of a particular one.

Several different delay formulations of (4.1) have been considered in the last years.
For instance, substituting its second equation by

K′(t) = I
(
Y (t − τ0),K(t − τ1)

)
−δK(t),

one obtains a formulation that considers the gestation lag of investment and the de-
preciation effect thanks to the positive parameter δ . The case τ0 > 0 = τ1 was firstly
studied in (KRAWIEC; SZYDLOWSKI, 1999), - where the model is thereafter called the
Kaldor-Kalecki model, referring to (KALDOR, 1940; KALECKI, 1935) - and more re-
cently in (MATSUMOTO; SZIDAROVSZKY; ASADA, 2016), where the authors proved
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that the dynamic behavior is affected quantitatively by the investment delay but not
qualitatively; the case τ0 = τ1 > 0 was considered by (KADDAR; ALAOUI, 2008), and
also by (MIRCEA; NEAMTU; OPRIS, 2011), adding a noise perturbation. In 2009, Zhou
and Li (ZHOU; LI, 2009) analyzed a combination of IS-LM model and Kaldor’s model
with two time delays in the capital accumulation processes.

Following (WOLFSTETTER, 1982), Takeuchi and Yamamura (TAKEUCHI; YA-
MAMURA, 2004) added the government and a delay time on its fiscal policy to the
model, which were important elements missing, as pointed out in (BLINDER; SOLOW,
1973; MATSUMOTO, 2008). Such a formulation in R4 consists on an adaptation on the
equations in (KALDOR, 1940), a government budget constraint and a monetary market
equation. To make this precise, we introduce some economic quantities:

(i) the aggregate value of bonds varies with time, so we write t 7→ B(t). Every bond is
assumed to be a consol, that is, a bond with a fixed income security and no maturity
date;

(ii) money supply M(t) - which is entirely controlled by the government - together with
money demand t 7→ L

(
Y (t),M(t)

)
are the forces of the money market, in the sense

that
M′(t) = L

(
Y (t),M(t)

)
−M(t); (4.2)

(iii) the price level t 7→ p
(
Y (t)

)
is an index that corrects the real value of bonds and the

money power throughout the time;

(iv) the tax revenue is

t 7→ T (t) = T
(
Y (t),B(t)

)
= θ

(
Y (t)+

B(t)
p
(
Y (t)

))−T0,

where 0 < θ < 1 is the tax rate over the income and the profits on the bonds, and
T0 > 0;

(v) government expenditure is

t 7→ G(t) = G0 +β
(
Y ∗−Y (t − τ)

)
,

where G0 is the fixed spending and β > 0 measures how the expenditure responds
to the excess (or lack) of national income, assuming that the government always
know the equilibrium national income Y ∗. The constant delay τ ⩾ 0 represents the
policy lag, since it naturally takes time to recognize opportunities to implement a
stabilization policy and to actually put it in practice;

(vi) the interest rate of the bonds is t 7→ r
(
Y (t),M(t)

)
and it is basically the money price;
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Hence the government budget constraint reads as follows:

M′(t)
p(Y )

+
B′(t)

r(Y,M)p(Y )
= G(t)+

B(t)
p(Y )

−T (Y,B), (4.3)

which equates the changes in the stocks of bonds and money to the government deficit,
since it is assumed that selling bonds and printing banknotes finance the government
deficit. Besides,

(vii) the national consumption is

C(t) =C0 + c1

(
Y (t)+

B(t)
p(Y )

−T (t)
)
+ c2

(
B(t)

r(Y,M)p(Y )
+

M(t)
p(Y )

)
,

where 0 < c1,c2 < 1 are the marginal propensity to consume the available income
and the available wealth respectively and C0 > 0 is the minimal (basically vital)
consumption; and

(viii) the (nonlinear) investment function t 7→ I
(
Y (t),K(t),M(t)

)
represents the amount of

money spent on buying goods for future use, which should provide more money.

By considering the money depreciation over time, the variables B and M have to be
corrected by the price level, whence the values Y,C, I,T,G,K,B/p and M/p are measured
in real terms (let us say, euro or dollar).

An extended version of Kaldor’s model in R4 arises by adding (4.2) and (4.3) to
the original formulation (4.1) together with the adapted consumption and investment
functions and the government expenditure; it reads as follows:

Y ′(t) = α
(
C(t)+ I(t)+G(t)−Y (t)

)
K′(t) = I

(
Y (t),K(t),M(t)

)
M′(t)
p(Y )

+
B′(t)

r(Y,M)p(Y )
= G(t)+

B(t)
p(Y )

−T (Y,B)

M′(t) = L(Y,M)−M(t)

(4.4)

On the one hand, fiscal policy refers to the mechanism of increasing or decreasing
the expenditure G, which directly affects the economic activity, stimulating it or discour-
aging it, respectively. The government pursues such a policy by adjusting the parameter
β , which is assumed to be positive, since the Kaldor model is essentially a Keynesian
one. One could consider that fiscal policy includes the alteration of taxation levels as well,
which is achieved by adjusting the parameter 0 < θ < 1. But we do not consider this way
because the tax rate θ is predetermined and nearly unchangeable by political reasons.
The immediate consequence of such an assumption is that we do not analyze the stability
of the equilibrium point with respect to this parameter.
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On the other hand, monetary policy refers to the fact that is the government who
effectively prints every banknote in circulation and consequently determines the available
money quantity, which affects the price level and the interest rate and consequently in-
vestment and national production. These two policies together allow the government to
promote economic stability or, unfortunately, instability.

As in (BLINDER; SOLOW, 1973), Takeuchi and Yamamura considered two ex-
treme scenarios (both lead to an R3 formulation): money finance case by setting B′ ≡ 0
in (4.4); and bond finance case by setting M′ ≡ 0. In the former, the government controls
the money supply but bonds offer keeps constant B = B; and in the latter, the government
controls the bonds supply in order to finance its deficit but it cannot adjust its money
supply (M = M). And then the model stability is analyzed under these two settings with
or without delay time τ . However such scenarios separately do not fit the practical gov-
ernment activity, therefore we take a step forward by analyzing the model (4.4) in R4

with its full budget constraint and with or without delay time.

By setting u = (u1,u2,u3,u4)≡ (Y,K,B,M) in (4.4), we obtain



u′1(t) =α
(
−
(
1− (1−θ)c1

)
u1(t)−βu1(t − τ)+ I(u)

+

(
(1−θ)c1 + c2/r(u)

)
u3(t)+ c2u4(t)

p(u)

+C0 + c1T0 +G0 +βY ∗
)

u′2(t) = I(u)

u′3(t) =r(u)p(u)
(
−θu1(t)−βu1(t − τ)

+
(1−θ)u3(t)+u4(t)−L(u)

p(u)

+G0 +βY ∗+T0

)
u′4(t) =L(u)−u4(t)

. (4.5)

All the functions are assumed to be as smooth as necessary. Additionally, consider
the following assumptions for every u ∈ R4

+:

(A1) L(u)
∣∣∣
u4=0

> 0, lim
u4→∞

L(u)< 0 and ∂L
∂u4

(u)⩽ 0 <
∂L
∂u1

(u);

(A2) I(u)
∣∣∣
u2=0

> 0, lim
u2→∞

I(u)< 0 and ∂ I
∂u2

(u)< 0 <
∂ I

∂u1
(u),

∂ I
∂u4

(u);

(A3) p(u)> 0 and d p
du1

(u)> 0; and
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(A4) 0 < r(u)< 1 and ∂ r
∂u4

(u)< 0 <
∂ r

∂u1
(u).

Under these assumptions, we can prove the existence and the uniqueness of a
positive equilibrium point.

Assume the government establishes some equilibrium income Y ∗ > 0 as target and
pursues it. By (A1), the right-hand side of the last equation in (4.5) applied for u1 = Y ∗

is a function of u4, namely u4 7→ L(Y ∗,u4)− u4, such that it is positive for u4 = 0 and it
becomes negative as u4 increases, since ∂L

∂u4
(u) ⩽ 0 and lim

u4→∞
L(u) < 0. Thus we obtain a

unique value u4 = M∗ > 0 for which that expression is null.

Setting u1 = Y ∗ and u4 = M∗ in the second equation of (4.4), thanks to (A2), we
may argue as before to obtain a unique value u2 = K∗ > 0 such that I(Y ∗,K∗,M∗) = 0.
Now we set u1 = Y ∗,u2 = K∗ and u4 = M∗ in the first and third equations of (4.4). Their
right-hand sides vanish if and only if 0 =C(Y ∗,B,M∗)+G0 −Y ∗

0 = G0 +
B

p(Y ∗,M∗)
−T (Y ∗,B),

(4.6)

which is a linear system on the variables B and G0. So there exists a unique positive
equilibrium point u∗ = (Y ∗,K∗,B∗,M∗) if and only if the government can fix a compatible
value G0 > 0 so that the system above admits a unique positive solution B = B∗. It is
noteworthy that u∗ does not depend on β . Also, about the conditions (A3) and (A4),
we just have used the fact that the functions p and r are positive.

Therefore, we have proved the following result.

Lemma 4.1. Suppose that the conditions (A1)-(A4) hold. Given Y ∗ > 0, if (4.6) admits
a unique positive solution (B∗,G0) then (4.5) admits a unique positive equilibrium point
u∗ associated to Y ∗, which does not depend on β .

In (TAKEUCHI; YAMAMURA, 2004), under suitable additional technical assump-
tions one has to deal with expressions where either it is possible to extract a unique positive
Y ∗ from one of the equations and then M∗ > 0 from other so that I(Y ∗,K,M∗) = 0 provides
a unique K∗ > 0; or by imposing a lower bound to Y ∗ it is possible to obtain B∗ > 0 as
function of Y ∗ and the remaining argumentation follows analogously.

However we do not have such a scenario, that is, it is not possible to determine a
unique Y ∗> 0 since every of the four equations of (4.4) depends nontrivially on at least two
variables. Thus we assume that the government is able to establish a national income Y ∗ >

0 as target and a compatible expenditure value G0 > 0. Doing so, one can obtain a unique
associated equilibrium point u∗ = (Y ∗,K∗,B∗,M∗) in R4

+ as we did. In our opinion, such a
setting is realistic because governments pursue annual growth rates - consequently they
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reconsider future values of Y ∗ as the economy grows - and they adjust their expenditures
and policies accordingly. The reader should recognize now why Lemma 4.1 requires (B∗,G0)

to be positive.

Remark 4.2 (About the assumptions). It is natural to expect that the richer a nation
the more money it demands; and clearly the money demand L(u) decreases as more money
u4 = M is provided, whence the derivative assumptions of (A1) are reasonable from the
economic point of view.

As the infrastructure of a nation improves together with its capacity of production
- K2 increasing - the best opportunities of investment disappear; such a phenomenon
is expressed by ∂ I

∂u2
< 0. Besides, investment is stimulated by economic activity and it

essentially requires money, whence we unsurprisingly required ∂ I
∂u1

and ∂ I
∂u4

to be positive.

In capitalist economies, prices rising is an intrinsic reaction to the economic growth,
justifying d p

du1
is assumed to be positive. The only point that the government should be

concerned about is to keep the associated inflation under control. Clearly p(u) must be
positive since it is associated with a weighted mean of all prices practiced in the markets.

The interest rate r(u) is a percentage that defines the remuneration over the money
loaned by investors to the government. The reader knows this financial operation by bonds.
The more money is available, the smaller is the necessity of the government to be financed
by third parties and hence it offers lower remunerations to investors, that is, ∂ r

∂u4
< 0.

Moreover, ∂ r
∂u1

> 0 follows from liquidity preference theory, as in the IS-LM model,
which basically states that one dollar today is worth more than one dollar tomorrow. The
logic is the following: greater income implies greater money demand which increases the
price of money, that is, the interest rate r.

The government cannot print banknotes as it pleases it because it would promote
a scenario of hyperinflation very hard to handle with and which would immediately cause
loss of a prime function of money: store of value. In such an extreme situation, no one wants
an additional one dollar bill: money demand is negative! This is expressed by lim

u4→∞
L(u)< 0.

Finally, investment refers to the gain of production capacity while depreciation refers to
its loss due whether to wear and tear or to obsolete technology. If the production capacity
is too high, there is no new investment projects for some time until the point where there
is inevitably depreciation; and lim

u2→∞
I(u)< 0 expresses it.

4.2 Local stability of Kaldor’s model
Now we analyze the local stability of Kaldor’s model (first without delay and later

with it) by considering its linearization, as in (HALE; LUNEL, 1993; KUANG, 1993), for
the nontrivial equilibrium point u∗ obtained in Lemma 4.1.
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4.2.1 Model without delay time

We shall evaluate the Jacobian matrix for the differential system (4.5) on u∗, omit-
ting the argument of functions and its derivatives or even the symbol ∗. For instance, we
simply write r1 to denote ∂ r

∂u1
(u∗). This minor abuse of notation rarely causes problems

and it will be very handy for the expressions to come, which will require several renamings.

By (4.6), if G∗ = (θY ∗−G0−T0)/(1−θ) then B∗ = p∗G∗ and the Jacobian matrix
evaluated at u∗ is given by

J =


F11(β ) αI2 F13 F14

I1 I2 0 I4

F31(β ) 0 F33 r∗F44

L1 0 0 −F44

 , (4.7)

where

k1 = α
(
1− (1−θ)c1

)
k2 = αc2

b11 = k1 + k2

[
r1G∗

(r∗)2 +
ṗ∗L
(p∗)2

]
+ ṗ∗F13G∗ b31 = r∗

(
L1 +θ p∗+(1−θ)ṗ∗G∗)

F11(β ) :=−αβ +αI1 −b11 F31(β ) :=−p∗r∗β −b31

F13 =
k2 +(α − k1)r∗

p∗r∗
F14 = αI4 + k2

[
1
p∗

− r4G∗

(r∗)2

]
0 < F33 = (1−θ)r∗ < 1 F44 = 1−L4.

Furthermore, we write

µ = p∗r∗F13 −αF33 ν = F44 − I2

σ = ν −F33 Γ = k2

[
1
p∗

− r4G∗

(r∗)2

]
so that k1,k2,b11,F13,b31,F14,Γ,F44,ν > 0. The characteristic equation is

λ 4 +a1(β )λ 3 +a2(β )λ 2 +a3(β )λ +a4(β ) = 0,

where a j ≡ a j(β ) := a j0 +a j1β , for j = 1,2,3,4, are given by

• a10 = b11 −αI1 +σ ,

• a11 = α ,

• a20 =−I2(αI1 + I2)+ν
(
−I2 −F33 − F14L1

ν

)
+σ(b11 −αI1)+F13b31,

• a21 = αν +µ ,

• a30 = F13F44
(
b31 − r∗L1

)
− b11F33I2F44

[
1

F33

(
1− ΓL1

b11F44

)
+

1
I2
− 1

F44

]
+ F33

(
F14L1 +

F44(αI1 + I2)
)
−b31I2F13,
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• a31 =−αI2F44 +µν ,

• a40 =−I2F13F44
(
b31 − r∗L1

)
+b11F33I2F44

[
1− ΓL1

b11F44

]
and

• a41 =−µI2F44.

We shall analyze whether or not the stability of u∗ is sensitive with respect to how
strong the fiscal policy is, that is, with respect to the parameter β > 0. By Routh-Hurwitz
criteria, u∗ is asymptotically stable if and only if a1,a3,a4 > 0 and a1a2a3 −a2

3 −a2
1a4 > 0.

Lemma 4.3. Suppose that

(H1) c2 > (1−θ)(1− c1)r∗ and σ > 0;

(H2) F33 +F14L1/ν <−I2 < αI1 < b11; and

(H3) 1
F33

(
1− ΓL1

b11F44

)
+

1
I2
− 1

F44
> 0.

Then

a. if a40 ⩾ 0 then a j > 0, j = 1,2,3,4 for every β > 0;

b. if a40 < 0 then a j > 0, j = 1,2,3,4 for every β >−a40/a41.

Moreover, a41 > 0 if and only if c2 > (1−θ)(1− c1)r∗.

Proof. It is not hard to see that µ = α
(
c2 − (1−θ)(1− c1)r∗

)
, which is positive by (H1)

and then a21 > 0. Also, by (H2)

a10 = b11 −αI1

>0

−I2 −F33

>0

+F44

>0

> 0

and
a20 =−I2 (αI1 + I2)

>0

+ν
(
−I2 −F33 −

F14L1

ν

)
>0

+σ (b11 −αI1)

>0

+F13b31 > 0,

whence a1(β ),a2(β ) > 0 for every β > 0. Clearly a30 and a31 are sums of positive terms
since I2 < 0; whence a3(β ) > 0 for every β > 0. Although a41 > 0 by (H1), a40 is a sum
of a positive term and a negative one, whence instead of controlling its sign we consider
the sign of a4(β ) for both cases as stated.

Remark 4.4. Since ν is a sum of two (possibly large) positive numbers and F33 is a
product of two numbers which lie in (0,1), it is not restrictive to assume that σ = ν−F33 >

0 in (H1).



98 Chapter 4. An extended Kaldor’s model with delayed fiscal policy

As the reader may promptly realize, even for a j(β ), which depends linearly on β ,
the main challenge is renaming, rearranging and noticing conveniently expressions and
hypotheses in order to guarantee the positive sign of large sums and then to fulfill the
Routh-Hurwitz conditions. The main theorem below deals with the sign of pRH(β ) =
a1a2a3 − a2

3 − a2
1a4, which is a cubic function of β and which has over 500 terms if it is

fully expanded. Although computing systems, such as Wolfram Mathematica, are very
handy for symbolic expressions, they are not able to assimilate the concept of ‘convenient
rearrangements’ and hence we must deal with some hard parts by ourselves.

We may write pRH(β ) = Q0 +Q1β +Q2β 2 +Q3β 3, where

Q0 =
a30
2 (a10a20 −2a30)+

a10
2 (a20a30 −2a10a40),

Q1 = a31 (a10a20 −2a30)

(E-1.1)

+α (a20a30 −2a10a40)

(E-1.2)

+a10 (a21a30 −a10a41)

(E-1.3)

,

Q2 = a10 (a21a31 −2αa41)

(E-2.1)

+a31 (αa20 −a31)

(E-2.2)

+α (a21a30 −αa40)

(E-2.3)

and

Q3 = α(a21a31 −αa41).

Theorem 4.5. Suppose that (E-1.1), (E-1.2), (E-1.3) and (E-2.2) are positive. Under
the assumptions of Lemma 4.3, we have

a. if a40 ⩾ 0 then u∗ is asymptotically stable for every β > 0.

b. if a40 < 0 then u∗ is asymptotically stable for every β >−a40/a41.

Proof. Note that Q0 is a linear combination of (E-1.1) and (E-1.2) with positive weights
(under the assumptions of Lemma 4.3) and that if (E-2.1) is positive then Q3 is positive
as well. Hence it is sufficient to control the sign of the expressions on Q1 and Q2 in order
to obtain pRH(β )> 0 possibly adding a restriction on β .

On the one hand, if (H1) holds then

a21a31 −2αa41 = µ2ν −α2νI2F44 +αµ(I2
2 +F2

44 − I2F44)

is a sum of positive terms and (E-2.1) is positive, which immediately implies that pRH is
positive for β > 0 large enough. Also, if (H1) holds then (E-2.3) is positive independently
of the sign of a40:

a21a30 −αa40 > (µ +αν)F13F44
(
b31 − r∗L1

)
+αI2F13F44

(
b31 − r∗L1

)
= F13F44

(
b31 − r∗L1

)
(µ +αF44 −αI2 +αI2)> 0.

On the other hand, let us deal with (E-2.2). From all possible assumptions, the
cleanest is αa20 −a31 > 0, but we could pursue others conditions. For instance, it is easy
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to see that αa20 −a31 is greater than

ασ
(

b11 −αI1 −
I2

σ
(αI1 + I2 −F44)

)
+αν

(
−I2 −F33 −

F14L1

ν
− µ

α

)
,

which is positive if each term is; note that these two conditions are slightly stronger than
(H2), since I2/σ ,µ/α ∈ (0,1). Or yet, αa20 −a31 is greater than

αν
(
−I2 −F33 −

F14L1

ν
+ I2

F44

ν
− µ

α

)
and asking this expression to be positive is again a slightly stronger condition than (H2),
since F44/ν ,µ/α ∈ (0,1). In both cases, the new conditions are considerably larger though.
Similarly one can obtain conditions for (E-1.1), (E-1.2), (E-1.3) and (E-2.2) to be pos-
itive, where (E-1.1) is the one which demands more effort since it has a longer expression
to be dealt with. However we abide by the cleanest assumptions sparing the reader the
gruesome estimates and their details; and the proof is complete.

Remark 4.6. Actually we proved that if (H1) holds then Q3 > 0 which implies that a
strong fiscal policy (that is, a scenario where β > 0 is large enough) always promotes a
long-term stable economy, as long as the government does not delay its implementation
(since we are dealing with the model without delay so far).

4.2.2 Model with delay time in fiscal policy
Invariably economic dynamics involves human behavior, which is a decisive factor

to be taken into account. It basically refers to the capacity of making decisions after
recognizing opportunities and evaluating available resources. Such an aspect can be added
appropriately to an economic model by formulating it with delay; that is, instead of
considering differential equations where the variables react instantly to external forces
independently of the past, a delay formulation does take into account the fact that the past
is important when comes to making decisions. A formulation with a nonconstant delay
function t 7→ τ(t) or considering the government expenditure as function of a weighted

average of the national income, let us say β
∫ 0

−τ(t)

(
Y ∗ −Y (s)

)
f (s)ds, provides a more

realistic modeling. We shall analyze the constant delay case.

In (4.5), delay time τ models the government capacity of recognizing, formulating
and implementing fiscal policies. To obtain such a fixed value τ , one may evaluate the
mean policy lag of a nation considering a given period of time. The associated linearized
model evaluated at u∗ is given by u′(t) = J0u(t)+ Jτu(t − τ), where

J0 =


αI1 −b11 I2 F13 F14

I1 I2 0 I4

−b31 0 F33 r∗F44

L1 0 0 −F44

 and Jτ =


−αβ 0 0 0

0 0 0 0
−p∗r∗β 0 0 0

0 0 0 0


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so that J = J0 + Jτ and its characteristic equation can be written as

Q0(λ )+ e−λτQτ(λ ) = 0, (4.8)

where

Q0(λ ) := λ 4 +a10λ 3 +a20λ 2 +a30λ +a40 and
Qτ(λ ;β )≡ Qτ(λ ) :=

(
a11λ 3 +a21λ 2 +a31λ +a41

)
β .

By Theorem 4.5, the equilibrium point u∗ is locally stable for every β > 0, whenever
τ = 0. For τ > 0, we know that u∗ is locally asymptotically stable if and only if every root
of (4.8) has negative real part, see (HALE; LUNEL, 1993; KUANG, 1993). Also instability
is equivalent to the existence of at least one root with positive real part.

Remark 4.7. Under the assumptions of Lemma 4.3, if the additional assumption

(H4) a40 > 0

holds then the real part of every root of Q0 is negative, by Routh-Hurwitz criteria.

From now on, we assume that (H1)-(H4) hold. We shall study how the local
stability of u∗ responds to fiscal policy strength, β > 0, and time lag, τ . First we apply a
stability switch result to the delayed model (4.4), namely Theorem 2.45. For convenience
though, we state it again below. For a complex number z, we write its real and imaginary
parts as ℜz and ℑz, respectively.

Theorem 4.8. Consider the equations (4.8) on λ and

F(y) := |Q0(iy)|2 −|Qτ(iy)|2 = 0, for y ∈ R. (4.9)

Suppose that λ 7→ Q0(λ ),Qτ(λ ) are analytic functions for ℜλ > 0 and that

(i) there is no common pure imaginary roots of Q0 and Qτ ;

(ii) Q0(−iy) = Q0(iy) and Qτ(−iy) = Qτ(iy), for every y ∈ R;

(iii) λ = 0 is not a root for (4.8);

(iv) limsup
|λ |→∞
ℜλ⩾0

∣∣∣∣Qτ(λ )
Q0(λ )

∣∣∣∣< 1; and

(v) the equation (4.9) admits only finitely many real roots.

Then

a. if F(y) = 0 has no positive roots then no stability switch occurs.
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b. if F(y) = 0 has at least one positive root and each of them is simple then, as τ
increases, a finite number of stability switches occurs and eventually u∗ becomes
unstable.

The assumption (i) holds by Remark 4.7 and (iii) holds because a4(β )> 0 for every
positive β . Since Q0 and Qλ are polynomials with real coefficients and degQ0 > degQτ ,
assumptions (ii), (iv) and (v) hold. Although F clearly depends on β , we shall omit such
a dependence from time to time. Thus we shall analyze the stability of u∗ by studying the
positive roots of F(y) = 0. Setting z = y2, the function F can be written as

F(z;β )≡ F(z) = z4 +b1z3 +b2z2 +b3z+b4,

where b j ≡ b j(β ), j = 1,2,3,4, are given by

b1(β ) = a2
10 −2a20 −a2

11β 2,

b2(β ) = a2
20 −2a10a30 +2a40 +(2a11a31 −a2

21)β
2,

b3(β ) = a2
30 −2a20a40 +(2a21a41 −a2

31)β
2 and

b4(β ) = a2
40 −a2

41β 2.

Clearly, F(y) = 0 has no positive roots whenever F(z) = 0 has no positive roots.
Actually, they have the same number of positive simple roots.

It is noteworthy that b4(β ) < 0 if and only if β > a40/a41, and in this case the
number of positive roots of F can be 1, 2 or 3 only. As we shall see with simulations in
Section 4.3, under a weak fiscal policy scenario - more precisely, for 0 < β < a40/a41 -, the
government efficiency on implementing it does not harm the economic stability because
z 7→ F(z) has no positive zeros. On the other hand, a more careful analysis is required if
β > a40/a41.

Now we discuss the relationship between the parameters β and τ . First note that
a pure complex number λ = iy, where y > 0, is a root of (4.8) if and only if y is a positive
root of (4.9).

We shall show only the sufficiency in order to fix some notations. Note that
|Q0(iy)/Qτ(iy)|= 1 so that there exists a unique value ϕ(y) ∈ [0,2π) such that −e−iϕ(y) =

Q0(iy)/Qτ(iy) and hence λ = iy is a root of (4.8) whenever τ is of the form (ϕ(y)+2nπ)/y,
with n ∈ Z+.

The reader should promptly see that, by hypothesis (i) of Theorem 2.45, Qτ(iy)

cannot be zero, whenever iy is a root of (4.8) or y is a root of (4.9). If we write Ql(iy) =

Ql,ℜ(y)+ iQl,ℑ(y), l = 0,τ , then after some computations we see that ϕ(y) ∈ [0,2π) is the
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angle that satisfies the equations
cos
(
ϕ(y)

)
=−

Q0,ℜ(y)Qτ,ℜ(y)+Q0,ℑ(y)Qτ,ℑ(y)
|Qτ(y)|2

=: − A(y)
|Qτ(y)|2

sin
(
ϕ(y)

)
=

−Q0,ℜ(y)Qτ,ℑ(y)+Q0,ℑ(y)Qτ,ℜ(y)
|Qτ(y)|2

=:
B(y)

|Qτ(y)|2
,

so that (0,∞) 3 y 7→ ϕ(y) ∈ (0,2π) is defined by

ϕ(y) =



arctan
(
−B(y)
A(y)

)
, if cos(ϕ),sin(ϕ)> 0

π/2, if cos(ϕ) = 0 and sin(ϕ) = 1

π + arctan
(
−B(y)
A(y)

)
, if cos(ϕ)< 0

3π/2, if cos(ϕ) = 0 and sin(ϕ) =−1

2π + arctan
(
−B(y)
A(y)

)
, if cos(ϕ)> 0 and sin(ϕ)< 0

.

We regard the root of (4.8) as a function of τ by writing τ 7→ λ (τ) = x(τ)+ iy(τ)
and then we study the sign of the derivative of ℜλ (τ) at the points where λ (τ) is purely
imaginary, which are precisely where a stability switch may occur, since λ = 0 is not a
root of (4.8). Arguing as in the proof of Theorem 2.45, we see that λ (τ) is differentiable
at τ = τ∗ whenever λ (τ∗) is a simple root. And if, in addition, λ (τ∗) = iy(τ∗) then we
explicitly obtain (

dλ (τ)
dτ

∣∣∣
τ=τ∗

)−1

=

[
−

Q′
0(λ )

λQ0(λ )
+

Q′
τ(λ )

λQτ(λ )
− τ

λ

]∣∣∣
τ=τ∗

,

so we can determine the direction of motion of x(τ) as τ passes through τ∗ according to

S := sign
dℜλ (τ)

dτ

∣∣∣
τ=τ∗

= sign
dF(y)

dy

∣∣∣
y=y(τ∗)

. (4.10)

Lemma 4.9 ((KUANG, 1993), Theorem 3.4.1). If y∗ is a simple positive root of (4.9)
then there exists a pair of simple conjugate pure imaginary roots λ (τ∗) =±iy(τ∗) of (4.8)
at τ∗ = ϕ(y∗)/y∗ which crosses the imaginary axis according to (4.10). More precisely,

a. if S > 0 then λ (τ) crosses the imaginary axis at τ = τ∗ from left to right, that is, u∗

becomes unstable; and

b. if S < 0 then λ (τ) crosses the imaginary axis at τ = τ∗ from right to left, that is, u∗

becomes stable.

If y∗1 > · · ·> y∗m > 0 are the simple positive roots of (4.9) then, by making explicit
the dependence on β , we write

Si,n(τ) := τ −
ϕ
(
y∗i (β )

)
+2nπ

y∗i (β )
,

for i = 1, . . . ,m and n ∈ Z+. It is an auxiliary function whose zero is the value τ at which
λ (τ) crosses the imaginary axis. These are the tools needed to study numerically the
stability switch.
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4.3 Numerical simulations
First, we emphasize that u∗ does not depend on β but its stability may. By running

simulations in Wolfram Mathematica 11.3, we shall analyze several aspects: how the
number of positive simple roots of F(z;β ) = 0 changes as β varies; how the convergence
of the solution responds to greater values of τ , with eventual instability; the sensitiveness
of hypotheses with respect to economic parameters; the stability region in the βτ-plane;
and so on. For u = (u1,u2,u3,u4) ∈ R4

+, set

α = 0.40 C0 = 10 p(u) = 0.4u1 +10

c1 = 0.40 T0 = 20 r(u) =
1+u1

1+u1 +5u4
c2 = 0.15 θ = 0.35 L(u) = 5u1 −u4 +50

As for the investment function, we consider two different formulations, namely,

I(u) =−0.25u2 +5r(u)u4 +100 (4.11)

and
I(u) = η Ĩ(u)+(1−η)I(u), (4.12)

where η ∈ (0,1) is fixed and

Ĩ(u1,u2) := 25exp

(
− log2

( 15
1000u1 +10−5)2

)
+

u1

100
+5

3203

(u2 +1)3 .

The first one satisfies the original assumptions of Kaldor’s paper (KALDOR, 1940)
concerning the nonlinearity of I with respect to u1 = Y but not with respect to u2 = K.
For numerical simulations and to verify the sufficient assumptions, the linear dependence
on u2 is convenient though. The second one is an adaption of the investment function
which appears in (MATSUMOTO; SZIDAROVSZKY; ASADA, 2016) and it completely
satisfies Kaldor’s assumptions over the shape of I curve with respect to u1 =Y and u2 = K.

We shall consider two subsections for the simulations accordingly to the choice of
investment function.

Remark 4.10. The delay equations demand a function ψ : [−τ,0]→ R4 as initial data.
In the simulations, we considered exponential functions with a slow increasing rate, for
instance t 7→ exp(0.02t)25 for u1(t). Not that an economy increases indefinitely exponen-
tially on time, but in short-run it is reasonable that a nation has an economic growth of
2% and that is precisely the point.

4.3.1 Investment function given by (4.11)

The economic assumptions (A1)-(A4) and the technical hypotheses (H1)-(H3)
are satisfied. If the government pursues the national income Y ∗ = 100 then it must fix
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G0 = G(u∗) = 0.51 to obtain u∗ = (100.00,776.36,1114.68,275.00) as the unique positive
equilibrium point of (4.4), which is asymptotically stable for every β > 0, by Lemma 4.3
and Theorem 4.5. In other words, in such a scenario, assuming that the government
instantly applies its fiscal policies then no matter how strong they are, the economy is
always stable.

Remark 4.11. We have not been able to establish general necessary conditions to ex-
istence of a positive equilibrium point. However, we know that a41 is positive if and
only if c2 > (1−θ)(1− c1)r∗, see Lemma 4.3; whence it is a necessary condition to fulfill
Routh-Hurwitz criteria. This very same condition was already required by (TAKEUCHI;
YAMAMURA, 2004) in Theorem 3.2 to obtain the stability of the equilibrium point.

First, we set β = 0.40, then the eigenvalues of the associated Jacobian matrix at
u∗ are

−2.2112,−0.0415 and −0.2097±0.3409i

and we obtain the graphs in Fig. 2 comparing the numerical solutions for the model with
or without delay of τ = 10, represented by the dashed and continuous lines, respectively.

20 40 60 80 100
t

50

100
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u1

(a) The national income u1 = Y .
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(b) The capital stock u2 = K.
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(c) The governments bonds u3 = B.
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t
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200
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u4

(d) The money supply u4 = M.

Figure 2 – The evolution in time with and without delay.

We have T (u∗) = 22.80, which says that in equilibrium the government revenue
represents about 20% of the national richness, a compatible idea with the capitalist philos-
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ophy about a moderate size for the state accounts. Also, it is reasonable that an interest
rate of r∗ = 6.84% in equilibrium promotes high values in the bonds market, that is,
B∗ = 1114.68. In Fig. 3, we compare the numerical solutions of u1 associated to τ = 0 (the
continuous line), τ = 10 (the dotted line) and τ = 25 (the dashed line).

50 100 150 200
t

50

100

150

u1

Figure 3 – The evolution of u1(t) under different values of τ.

As τ increases the solution associated to its delay equation becomes more erratic
but u∗1 = 100 still is asymptotically stable for τ = 25; actually even for τ = 50. The evolution
of u1 for τ = 100 is showed in Fig. 4.
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(a) Until t = 1000.
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(b) Until t = 5000.

Figure 4 – The evolution of u1 with β = 0.40 and τ = 100.

However, since a40 = 0.0048, Theorem 2.45 holds and then we shall study how
τ affects the stability of (4.4). If N(β ) denotes the number of positive simple roots of
F(y;β ) = 0 then

N(β ) =


0, if 0 < β < 0.1964
1, if 0.1964 < β < 0.6071 or β > 0.7790
3, if 0.6071 < β < 0.7790

.
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The unique positive simple root of F(y;0.40)= 0 is y∗= 0.035472 and the derivative
d
dyF(y;0.40) is always positive for y > 0, whence the crossing the imaginary axis is always
to the right half-plane, that is, stability switch occurs only toward instability. Actually,
Fig. 5a points out that the stability switch already occurs toward instability at τ = 67.28.

20 40 60 80 100 120
τ

-60

-40

-20

20

40

60

S1,0(τ)

(a) For β = 0.40, u∗ becomes unstable at τ =
67.28.

10 20 30 40 50 60
τ

-20

-10

10

20

Si,n(τ)

(b) For β = 0.70, u∗ becomes unstable as τ enters
in some shaded area and it becomes stable as
τ leaves some shaded area.

Figure 5 – The auxiliary function Si,n and the stability switch of u∗.

On the other hand, the switch stability analysis for β = 0.70 is far more involving
since now there are three positive simple roots of F(y;0.70) = 0; namely, y∗1 = 0.4010,y∗2 =
0.2146 and y∗3 = 0.0878.
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50
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Figure 6 – Stability of u∗ with respect to β and τ.
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Besides, d
dyF(y;0.70) is negative if 0.1599 < y < 0.3432 and it is positive otherwise;

whence it follows that d
dyF(y∗1;0.70) and d

dyF(y∗3;0.70) are positive but d
dyF(y∗2;0.70) < 0.

Thus the crossing at iy∗1 and iy∗3 must be to the right half-plane; and the crossing at iy∗2
must be to the left half-plane.

Recall that (4.8) admits infinitely many complex roots λ = λ (τ), which depend on
τ . Let τi,n be the zero of Si,n. In Fig. 5b, the interceptions of the lines with the τ-axis are at
τ1,0 < τ2,0 < τ1,1 < τ3,0 < τ1,2 < τ2,1 < τ1,3 < .. . and we see how the stability of u∗ changes as
τ increases. At τ = τ1,0 = 5.01, one of the roots of (4.8) crosses to the right half-plane and
then the stability switch occurs toward instability; at the second value τ = τ2,0 = 12.60,
such a root crosses back to the left half-plane and the switch occurs toward stability. As
one may note, as τ increases, passing by τ1,1,τ3,0 and τ1,2, three roots of (4.8) cross to the
right half-plane but only one of them crosses back to the left half-plane at τ2,1 = 41.88
and the instability persists thereafter because the number of roots crossing to the right
half-plane exceeds the number of those crossing back. Finally, by setting β = 0.15, we
have that b4(0.15)> 0 and all roots of F(y) = 0 are complex, consequently u∗ is (locally)
asymptotically stable for every time delay τ > 0.

All such conclusions are summarized in Fig. 6, which shows the relationship be-
tween the stability of the equilibrium point u∗ and the parameters β and τ . The boundary
of the region consists of the pairs (β ,τ) such that τ = τ(β ) is the smallest delay time at
which a stability switch occurs toward instability. In the shaded region, u∗ is asymp-
totically stable and out of it, there are three possibilities. No stability switch occurs if
β < a40/a41 = 0.1964, because N(β ) = 0. If 0.6071 < β < 0.7790 then finitely many sta-
bility switches occur as τ increases, as we discussed above, but u∗ eventually becomes
(locally) unstable. If β is greater than 0.1964 but is not in (0.6071,0.7790), we have
instability for every τ such that (β ,τ) lays outside the shaded region.

4.3.2 Investment function given by (4.12)

Let η = 0.4,α = 0.2 and consider the investment function in (4.12). In this set-
ting, the economic assumptions (A1)-(A4) and the technical hypotheses (H1)-(H4) are
satisfied. Although (E-1.1),(E-1.2) and (E-1.3) are positive, unfortunately (E-2.2) is
negative (even after several attempts with different values of parameters) and hence we
cannot apply Theorem 4.5. However we can verify numerically that the maximum value
of the real part of the eigenvalues of the Jacobian matrix at the equilibrium point is neg-
ative for every 0 < β < 1. Thus Kaldor’s model (4.4), with τ = 0, is locally asymptotically
stable even without fulfilling the conditions of our results, making explicit the fact that
they are not necessary. Furthermore, we can verify that Theorem 2.45 holds because, for
every 0 < β < 1, there is no common pure imaginary roots of Q0 and Qτ and λ = 0 is not
a root for (4.8).
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Figure 7 – Stability of u∗ with respect to β and τ.

Proceeding as before, we have that

N(β ) =


0, if 0 < β < 0.1964
1, if 0.1964 < β < 0.4523 or β > 0.5980
3, if 0.4523 < β < 0.5980

and the region of stability of u∗ in the βτ-plane is given by Fig. 7.
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τ

-100

-50

50

100

S1,0 (τ)

(a) For β = 0.30, u∗ becomes unstable at τ =
115.19.

20 40 60 80 100
τ

-20
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Si,n(τ)

(b) For β = 0.48: u∗ becomes unstable as τ passes
by some dashed (red) line and it becomes sta-
ble as τ passes by some continuous (black)
line.

Figure 8 – The stability switch of u∗.

Under a moderate fiscal policy, β = 0.30, the government inefficiency does not harm
the economic stability until τ1,0 = 115.19, see Fig.8a. On the other hand, if the fiscal policy



4.4. Conclusions 109

is slightly stronger, let us say β = 0.48, several switch stabilities occur as τ increases. More
precisely, at τ1,0 = 9.36, the stability switch occurs toward instability; at the second value
τ2,0 = 15.63, the switch occurs toward stability and so on, depending on whether τ = τ2,n

or τ = τ1,n,τ3,n. See Fig. 8b, where τ1,0 < τ2,0 < τ1,1 < τ3,0 < τ2,1 < τ1,2 < τ2,2 < τ1,3 < .. ..

4.4 Conclusions

We consider an extended version of the classical Kaldor’s economic growth model
adding the government role to the economic dynamics: monetary and fiscal policies and
the government budget constraint are taken into account, leading to a differential system
in R4, with or without a delay time on the fiscal policy. An analysis of the model stated
in (4.5) is itself an improvement over (TAKEUCHI; YAMAMURA, 2004) who turned it
into two simpler versions in R3 by imposing either B′ = 0 or M′ = 0, that is, extreme
scenarios where either the government is incapable to manage its bonds supply or it is
incapable to establish its money supply.

Firstly we have proved the existence and uniqueness of a positive equilibrium point
under reasonable economic assumptions (which represent an improvement over those tech-
nical ones required by (TAKEUCHI; YAMAMURA, 2004)). Secondly we have established
sufficient conditions under which (4.5), with τ = 0, is locally asymptotically stable with a
possible restriction over the fiscal policy strength. Under a simple additional assumption,
namely (H4), we have applied a classical stability switch result to study how the fiscal
policy delay time may lead to an unstable economic scenario.

β
Strength of

the
fiscal policy

First value τ
under which u∗

is unstable
Conclusion

0.15 weak ∞ the economy is
always stable

0.40 moderate 67.28

an inefficient
government

can lead the economy
to instability

0.70 strong 5.01
the economic stability
is very sensitive to the
government efficiency

Table 1 – The effects of the fiscal policy on the economy.

In Section 4.3 we have run simulations with two different investment functions,
splitting it into two subsections. On the one hand, all assumptions needed for the results we
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have presented are satisfied by the investment function (4.11) and by the other functions
and parameters. Table 1 summarizes the results of Subsection 4.3.1.

Here government efficiency refers to the time efficiency on recognizing opportuni-
ties to implement a fiscal policy, formulating it and then implementing it. Curiously, if
the fiscal policy is very strong, let us say β = 0.9, the conclusion are quite the same as
those for β = 0.4.

On the other hand, in Subsection 4.3.2, the investment function is a convex com-
bination of the previous one with the investment function suggested by (MATSUMOTO;
SZIDAROVSZKY; ASADA, 2016). Although we cannot apply Theorem 4.5 for α = 0.2,
we were able to verify numerically that the equilibrium point is always locally asymp-
totically stable for 0 < β < 1 and τ = 0; and that the switch stability theorem holds as
well.

The less simplifications are imposed and the more relevant aspects are considered,
the more realistic a model is. For instance, one should expect that the government capacity
of recognizing, formulating and implementing fiscal policies varies with time, that is, it is
more reasonable to assume a delay function t 7→ τ(t) instead of a fixed delay time. Also
the economy intrinsically carries a volatility which comes from the human behavior factor
and which can be appropriately added to the model by considering certain economic
parameters random. For instance, 0 < c1,c2 < 1 dictate how big is the portion of the
income that will be spent, which are associated with the (microeconomic) perception
whether or not the economy prospers and it will continue to do so. And as we have
discussed in Section 4.1, one could aggregate a delayed investment formulation of Kaldor-
Kalecki’s model suitably adapted; as in (MATSUMOTO; SZIDAROVSZKY; ASADA,
2016). Besides, a question of structural stability arises. Comparing (4.1) and (4.4), one
may wonder if the limit cycle structure of (4.1) is present in the extended model. More
precisely, is it possible to obtain the original R2 dynamics from (4.4) by deforming it
appropriately?

Our future aims concerns these subjects and other related ones.
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