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Abstract

Min-Max MPC (MMMPC) controllers suffer from a great computational burden that is often circumvented by using approximate solutions

or upper bounds of the worst possible case of a performance index. These upper bounds are usually computed by means of linear matrix

inequalities (LMI) techniques. In this paper a more efficient approach is shown. This paper proposes a computationally efficient MMMPC

control strategy in which a close approximation of the solution of the min-max problem is computed using a quadratic programming problem.

The overall computational burden is much lower than that of the min-max problem and the resulting control is shown to have guaranteed

stability. A Simulation example is given in the paper.
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1 Introduction

Min-max model predictive controllers (MMMPC) have been limited to a narrow field of applications due to its great computa-

tional burden. The computation of the control signal to be applied implies the minimization of the worst case of a performance

index. Solving this problem can be very time consuming as it is of the NP-hard kind (Veres and Norton (1993); Lee and Yu

(1997); Scokaert and Mayne (1998)). This computational burden has led to a lack of experimental results. For moderate fast

dynamics the min-max problem can be solved numerically only when the number of extreme realizations of the uncertainty is

relatively low, i.e., when the prediction horizon is small. Also a complexity reduction strategy like that of Alamo et al. (2005b)

can be used, but, when fast dynamics are to be controlled the only choice is to use approximate solutions (Ramı́rez et al. (2004);

Alamo et al. (2005a)).

MMMPC controllers can be divided into two types: open-loop and closed-loop min-max predictive controllers. In the first

type, predictions are computed in an open-loop manner (although the resulting controller is a feedback controller). Closed-loop

min-max predictive controllers (see Lee and Yu (1997); Scokaert and Mayne (1998); Bemporad et al. (2003); Kerrigan and
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Maciejowski (2004) and references in Ramirez and Camacho (2006)) take into account that the control law is actually applied

in a feedback manner when computing the predictions. Open-loop MMMPC is known to be very conservative whereas closed-

loop MMMPC is known to suffer from a much greater computational burden. The results presented in the paper can be applied

to open-loop prediction MMMPC or to MMMPC using a semi-feedback strategy (Rossiter et al. (1998)). In this, some kind of

feedback is introduced into the predictions because the system is pre-controlled using an inner feedback gain. This technique

is known to reduce the conservatism of open-loop predictive controllers (Bemporad (1998); Löfberg (2003)) without having to

increase the computational burden.

Multi-parametric programming has been applied to show that the MMMPC control law is piecewise affine when a quadratic

(Ramirez and Camacho (2006)) or 1-norm based criterion (Bemporad et al. (2003); Kerrigan and Maciejowski (2004)) is used

as the cost function. Thus, explicit forms of the control law can be built. Such explicit forms can be evaluated very fast provided

that the complexity of the state space partition is moderate, which it is the case for many applications. If the process model or

the controller tuning parameters change, however, the computation of the explicit form of the control law has to be done again.

A common solution to the computational burden issue is to use an upper bound of the worst case cost instead of computing it

explicitly. This upper bound can be efficiently computed by using linear matrix inequalities (LMI) techniques such as in Kothare

et al. (1996); Casavola et al. (2000); Lu and Arkun (2000); Wan and Kothare (2003). The LMI problems have a computational

burden that cannot be neglected in certain applications. In Ramirez et al. (2006) is presented a different approach based on a

computationally cheap upper-bound of the worst case cost. It proved to be very close to the original MMMPC but it requires

nonlinear optimization of a non convex cost function. Moreover, the cost function, although computationally efficient, still

requires more computations that in the case of a conventional constrained MPC. As a result, the computational burden is much

lower than that of the exact MMMPC but it is still much higher than that of a conventional constrained MPC. Moreover,

stability results were not provided.

This paper proposes a different strategy in which the min-max problem is replaced by a quadratic programming (QP) problem

that provides a close approximation to the solution of the original min-max problem. The computational burden is much lower

than that of the min-max problem and also lower than that of Ramirez et al. (2006). Moreover it is comparable to that of a

standard constrained MPC based on a quadratic cost. Thus, it can be easily implemented in almost any platform capable to run

a constrained MPC. Stability of the proposed approach is guaranteed as it is shown in the paper.

The paper is organized as follows: section 2 presents the MMMPC controller and some of its properties. Section 3 presents

the efficient approximation of the solution of the min-max problem based on a QP problem. Robust stability of the proposed

controller is shown in section 4. The strategy is illustrated by means of a simulation example in section 5. Finally, section 6

presents some conclusions.

2 Min-Max MPC with bounded additive uncertainties

Consider the following state space model with bounded additive uncertainties (Camacho and Bordóns (2004)):

x(t +1) = Ax(t)+Bu(t)+Dθ(t +1) (1)
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with x(t) ∈ R
dimx the state vector, u(t) ∈ R

dimu the input vector and θ(t) ∈ {θ ∈ R
dimθ : ‖θ‖∞ ≤ ε} the uncertainty, that is

supposed to be bounded. The system is subject to p state and input time invariant constraints.

Fuu(t)+Fxx(t) ≤ g.

where Fu ∈ R
p×dimu and Fx ∈ R

p×dimx.

Although the results presented in this paper are not valid in general for closed-loop MMMPC with a quadratic cost (see Mayne

et al. (2000) and references therein), they are valid when using a semi-feedback approach in which the control input is given

by

u(t) = −Kx(t)+ v(t), (2)

where the feedback matrix K is chosen to achieve some desired property such as nominal stability or LQR optimality without

constraints. The MMMPC controller will compute the optimal sequence of correction control inputs v(t). The state equation of

system (1) can be rewritten as

x(t +1) = ACLx(t)+Bv(t)+Dθ(t +1), (3)

with ACL = (A−BK). In the following it will be assumed that the semi-feedback approach is used.

The cost function is a quadratic performance index of the form:

V (x,v,θθθ) =
N−1

∑
j=0

x(t + j|t)T Qx(t + j|t)+
N−1

∑
j=0

u(t + j|t)T Ru(t + j|t)+ x(t +N|t)T Px(t +N|t) (4)

where x(t + j|t) is the prediction of the state for t + j made at t and u(t + j|t) =−Kx(t + j|t)+v(t + j|t). Note that these values

depend on the future values of the uncertainty. Matrices Q,P ∈ R
dimx×dimx and R ∈ R

dimu×dimu are symmetric positive definite

matrices used as weighting parameters.

Min-Max MPC (Campo and Morari (1987)) is based on finding the control correction sequence v =
[

v(t|t)T , · · · ,v(t +N −1|t)T
]T

that minimizes the cost function for the worst possible case of the predicted future evolution of the process state or output sig-

nal, while guaranteeing robust constraint satisfaction. This is accomplished through the solution of the following min-max

problem:

v∗(x) = argmin
v

max
θθθ∈Θ

V (x,v,θθθ)

s.t. Fuu(t + j|t)+Fxx(t + j|t) ≤ g, j = 0, . . . ,N, ∀θθθ ∈ Θ,

x(t +N|t) ∈ Ω, ∀θθθ ∈ Θ,

(5)

with x(t|t) = x, where θθθ =
[

θ(t +1)T , · · · ,θ(t +N)T
]T is a sequence of future values of θ(t) over a prediction horizon N, and

ΘΘΘ = {θθθ ∈R
N·dimθ : ‖θθθ‖∞ ≤ ε} is the set of possible uncertainty trajectories. A terminal region constraint x(t +N|t)∈ Ω, where
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Ω is a polyhedron, is included to assure stability of the control law (Mayne et al. (2000)) 1 . As usual in all predictive control

schemes, the solution of problem (5) is applied in a feedback manner using a receding horizon strategy.

The predictions x(t + j|t) and u(t + j|t) depend linearly on x, v and θθθ . This means that it is possible to find a vector d ∈ R
p and

matrices Gx, Gv and Gθ such that all the robust linear constraints of problem (5) can be rewritten as (Camacho and Bordóns

(2004)):

Gi
xx+Gi

vv+Gi
θ θθθ ≤ di, i = 1 . . . , p, ∀θθθ ∈ Θ,

where Gi
x, Gi

v, Gi
θ denote the i-th rows of Gx, Gv and Gθ respectively and di is the i-th component of d ∈ R

p. Denote now

‖Gi
θ‖1 the sum of the absolute values of row Gi

θ . Taking into account that maxθθθ∈Θ Gi
θ θθθ = max‖θθθ‖∞≤ε Gi

θ θθθ = ε‖Gi
θ‖1, the

robust fulfillment of the constraints is satisfied if and only if: Gi
xx+Gi

vv+ ε‖Gi
θ‖1 ≤ di, i = 1, . . . , p. Therefore, to guarantee

robust constraint satisfaction, the following set of linear constraint must be satisfied:

Gxx+Gvv ≤ dε .

where the i-th component of dε is equal to di − ε‖Gi
θ‖1. Note that this is a necessary and sufficient condition.

Taking into account (3),(2) and the quadratic nature of the performance index, the cost function can be evaluated as a quadratic

function on the initial state, the control correction vector and the uncertain trajectory.

V (x,v,θθθ) = vT Mvvv+θθθ T Mθθ θθθ +2θθθ T Mθvv+2xT MT
v f v+2xT MT

θ f θθθ + xT M f f x (6)

where the matrices can be obtained from the system and the control parameters (Camacho and Bordóns (2004)).

It can be seen that Mθθ is a Gram matrix and therefore at least positive semidefinite. On the other hand, Mvv is positive definite

because R > 0. Note that as Mθθ ≥ 0, V (x,v,θθθ) is convex on θθθ , and because Mvv > 0 strictly convex on v. Therefore the

solution of (5) will be unique Camacho and Bordóns (2004). Moreover, due to the convexity on θθθ the maximum is attained at

least at one of the vertices of the hypercube described by ΘΘΘ. Taking this into account, problem (5) is equivalent to

v∗(x) = arg min
v

max
θθθ∈vert(ΘΘΘ)

V (x,v,θθθ)

s.t. Gxx+Gvv ≤ dε

(7)

where vert(ΘΘΘ) is the set of vertices of ΘΘΘ.

The terminal region Ω is assumed to satisfy the following conditions:

• C1: If x ∈ Ω then ACLx+Dθ ∈ Ω, for every θ ∈ {θ ∈ R
dimθ : ‖θ‖∞ ≤ ε}.

1 In this paper we have used standard assumptions in order to prove stability. There are other frameworks to ensure stability such as the

recent works El-Farra et al. (2004b,a); Mhaskar et al. (2005), that use a hybrid predictive control structure which brings together MPC and

Lyapunov-based bounded control techniques and allows for an explicit characterization of the stability region in which any MPC formulation

can be embedded with guaranteed closed-loop stability.
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• C2: If x ∈ Ω then u(x) = −Kx ∈U , where U , {u : Fuu+Fxx ≤ g}.

Moreover, matrix P that characterizes the terminal cost is assumed to satisfy

• C3: P−AT
CLPACL > Q+KT RK.

The stability of ACL guarantees the existence of a positive definite matrix P satisfying C3.

The maximum cost for a given x and v is denoted as

V ∗(x,v) = max
θθθ∈vert(ΘΘΘ)

V (x,v,θθθ) = V (x,v,0)+ max
θθθ∈vert(Θ)

θθθ T Hθθθ +2θθθ T q(x,v) (8)

where H = Mθθ , q(x,v) = Mθvv + Mθ f x and V (x,v,0) = vT Mvvv + 2xT MT
v f v + xT M f f x is the part of the cost that does not

depend on the uncertainty. With this definition, problem (7) can be rewritten as

v∗(x) = argmin
v

V ∗(x,v)

s.t. Gxx+Gvv ≤ dε ,

(9)

and the system is controlled by KMPC(x(t)) = −Kx(t)+ v∗(t|t), where v∗(x(t)) =
[

v∗(t|t)T , · · · ,v∗(t +N −1|t)T
]T .

In order to evaluate V ∗(x,v) it is necessary to evaluate the function for all the vertices of Θ. Taking into account that the number

of vertices is 2N∗dimθ it is clear that the problem cannot be solved in real time beyond a certain dimension of θθθ (because this is

a well known NP-hard problem).

3 A QP approach to Min-Max MPC

In this section it is shown how the min-max problem (9) can be replaced by a tractable QP problem which provides a close

approximation of the solution of the original problem. The strategy can be summarized in the following steps:

(1) Obtain an initial guess of the solution of (9), denoted by ṽ∗. As seen later, this can be achieved solving a QP problem.

(2) Using ṽ∗, obtain a quadratic function of v that bounds the worst case cost.

(3) Compute the control law. This involves the solution of a QP problem.

In the following all these steps will be detailed.
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3.1 Computing ṽ∗

Given H defined as in equation (8), denote Ti = ∑N·dimθ
j=1 |Hi j|, where Hi j denotes the (i, j)-th component of matrix H. Then,

define the diagonal matrix T as

T =

















T1

. . .

Tn

















(10)

Because of how matrix T is defined, T −H is a symmetric diagonally dominant real matrix with nonnegative diagonal entries,

thus T −H ≥ 0 which implies that T ≥ H. Let Ṽ (x,v,θθθ) be:

Ṽ (x,v,θθθ) = V (x,v,0)+θθθ T T θθθ +2qT (x,v)θθθ (11)

From the inequality T ≥ H it is inferred that Ṽ (x,v,θθθ) ≥V (x,v,θθθ). The maximum of Ṽ (x,v,θθθ) can be computed as

Ṽ ∗(x,v) = max
θθθ∈ΘΘΘ

Ṽ (x,v,θθθ)

= V (x,v,0)+ trace(T )ε2 +2ε ‖q(x,v)‖1 = V (x,v,0)+‖H‖s ε2 +2ε ‖q(x,v)‖1 (12)

where ‖H‖s denotes the sum of the absolute values of the elements of H. Then an initial guess of the solution of (9) can be

obtained as

ṽ∗(x) = argmin
ṽ

Ṽ ∗(x, ṽ)

s.t. Gxx+Gvṽ ≤ dε ,

(13)

It is clear that this problem can be casted as a QP problem.

3.2 Obtaining an upper bound of the worst case cost

The upper-bound of the maximum will be obtained in two steps. In the first one we compute a set of parameters from ṽ∗

that allows us later, in the second step, to compute the bound as a quadratic function of v. The first step is based on the

diagonalization procedure of Ramirez et al. (2006).

3.2.1 Computing the parameter vector α(v)

Note that:

V ∗(x,v) = max
θθθ∈vert(ΘΘΘ)









θθθ

1









T

M(v)









θθθ

1









= max
‖z‖∞≤1

zT M(v)z (14)
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with z =

[

θθθ T

ε 1

]T

and M(v) =









ε2H εq(x,v)

εqT (x,v) V (x,v,0)









∈ R
n×n, where n = N ·dimθ +1.

The following procedure, which is based on that presented in Ramirez et al. (2006), provides an upper bound of the worst case

cost for a given v. It computes α(v) = [α1(v), . . . ,αn−1(v)]T and a diagonal matrix Γ(v) ≥ M(v) such that its trace is an upper

bound of the worst case cost for v (see property 1).

Procedure 1 Computation of α(v) = [α1(v), . . . ,αn−1(v)]T and Γ(v).

(1) Let S(0 = M(v) ∈ R
n×n.

(2) For k = 1 to n−1

(3) Let M(k
sub = [S(k−1

i j ] for i, j = k · · ·n.

(4) Obtain the partition M(k
sub =









a bT

b Mr









, where a ∈ R, b ∈ R
n−k and Mr ∈ R

(n−k)×(n−k) .

(5) Make αk(v) =
√

‖b‖1.

(6) If αk(v) = 0 then S(k = S(k−1, else S(k = S(k−1 +

















0k−1,1

αk(v)

−b
αk(v)

































0k−1,1

αk(v)

−b
αk(v)

















T

.

(7) end for

(8) Make Γ(v) = S(n−1.

Note that in previous procedure, 0m,n denotes a (m× n) matrix of zeros. The following property shows that the trace of Γ(v)

constitutes an improved upper bound of V ∗(x,v). That is, V ∗(x,v) ≤ trace(Γ(v)) ≤ Ṽ ∗(x,v).

Property 1 Matrices S(0, S(1, . . ., S(n−1, obtained by means of procedure 1 satisfy:

(i) S(k is a partially diagonalized matrix. That is, there is a diagonal matrix T (k ∈ R
k×k such that S(k =









T (k 0

0 M(k
sub









.

(ii) S(n−1 = Γ(v) is a diagonal matrix.

(iii) V ∗(x,v) ≤ trace(Γ(v)).

(iv) ‖S(k‖s ≤ ‖S(k−1‖s.

(v) trace(Γ(v)) ≤ Ṽ ∗(x,v), ∀v.

PROOF: SEE APPENDIX A

Remark 1 This procedure is the base to obtain a QP problem that provides a solution with a worst case cost that it is close to

the optimal worst case cost but with the advantage of the lower computational burden of a QP problem (see section 3.2.2).
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3.2.2 Obtaining the bound as a quadratic function on v

The diagonalization process shown in 3.2.1 can be used to obtain a matrix denoted by Γ̂(v), which allows to obtain a bound of

the maximum that can be computed as a quadratic function of v. This is achieved by means of the following procedure:

Procedure 2 Obtaining the matrix Γ̂(v).

(1) Obtain ṽ∗ from the QP problem defined in equation (13).

(2) Compute α(ṽ∗) by procedure 1.

(3) Let Ŝ(0(v) = M(v) ∈ R
n×n.

(4) For k = 1 to n−1

(5) Let M̂sub(v) = [Ŝ(k−1
i j (v)] for i, j = k · · ·n.

(6) Obtain the partition M̂sub(v) =









a(v) bT (v)

b(v) Mr(v)









, where a(v) ∈ R.

(7) If αk(ṽ∗) = 0 then Ŝ(k(v) = Ŝ(k−1(v), else Ŝ(k(v) = Ŝ(k−1(v)+

















0k−1,1

αk(ṽ∗)

−b(v)
αk(ṽ∗)

































0k−1,1

αk(ṽ∗)

−b(v)
αk(ṽ∗)

















T

.

(8) end for

(9) Make Γ̂(v) = Ŝ(n−1(v).

Theorem 1 Denote V̂ ∗(x,v) = trace (Γ̂(v)). Then

(1) Γ̂(ṽ∗) = Γ(ṽ∗).

(2) V̂ ∗(x,v) is a quadratic function on v.

(3) V ∗(x,v) ≤ V̂ ∗(x,v).

PROOF: SEE APPENDIX A

3.3 Computing the control law

The value of the control signal is obtained solving the following QP optimization problem

v̂∗(x) = argmin
v̂

V̂ ∗(x, v̂)

s.t. Gxx+Gvv̂ ≤ dε ,

(15)

and the system is controlled by K̂MPC(x(t)) = −Kx(t)+ v̂∗(t|t), where v̂∗(t|t) is the first element of v̂∗(x).

Remark 1 Note that, in order to reduce the difference between the solution of the exact min-max problem and v̂∗(x) the whole

procedure can be applied twice or more times using at each subsequent step the solution obtained in the previous step as the
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dimx 6 10 14 18

4 5.37×103 1.94×104 4.62×104 1.31×105

8 2.67×104 1.03×105 2.74×105 5.3×105

Table 1

Average computational burden (measured in flops) required to compute the control law for different values of the controller horizons and

dimension of x. For each entry, 10 simulations (each of 100 samples) with random systems have been computed. The prediction and control

horizons are equal.

initial guess used at procedure 1. Thus for the first time two QP problems must be solved but for each subsequent step only one

QP is necessary.

The computational burden of the proposed strategy is clearly much lower than that of the exact MMMPC. It is mostly due to

the QP problems that must be solved to obtain the initial guess and the proposed solution itself. Note that in both cases, the

complexity of each problem is the same as that of a standard constrained MPC using a quadratic cost function. The complexity

is strongly related to the size of v, that is, the number of control moves that must be computed. The dimension of the state

vector also affects, but less than in the exact MMMPC in which the number of vertices to be considered in the maximization

problem is 2dimx×N . To illustrate this, consider table 1, in which it is presented the computational burden as a function of the

horizons and the size of x of a set of random systems.

4 Stability of the proposed control law

In this section the stability properties of the control K̂MPC(x(t)) are shown. First some properties are presented and then

stability is proved. Recall that v∗, ṽ∗ and v̂∗ are the solutions of (9), (13) and (15) respectively. Denote also J(x) = V ∗(x,v∗),

J̃(x) = Ṽ ∗(x, ṽ∗) and Ĵ(x) = V̂ ∗(x, v̂∗). Note that problems (9), (13) and (15) have the same feasibility region as the constraints

are the same. The following property will be used to proof the stability of the control law.

Property 2

Ĵ(x) ≤ J̃(x)

Proof:

As v̂∗ is the minimizer of V̂ ∗(x,v) it follows that:

Ĵ(x) = V̂ ∗(x, v̂∗) ≤ V̂ ∗(x, ṽ∗) (16)

Thus, in order to prove that Ĵ(x) ≤ J̃(x) it suffices to show that V̂ ∗(x, ṽ∗) ≤ Ṽ ∗(x, ṽ∗) = J̃(x). As it was shown in theorem 1,

V̂ ∗(x, ṽ∗) = trace(Γ̂(ṽ∗)) = trace(Γ(ṽ∗)). Moreover, from property 1, trace(Γ(ṽ∗)) ≤ Ṽ ∗(x, ṽ∗). Thus,

V̂ ∗(x, ṽ∗) = trace(Γ̂(ṽ∗)) = trace(Γ(ṽ∗)) ≤ Ṽ ∗(x, ṽ∗) = J̃(x)

It is then proved that V̂ ∗(x, ṽ∗) ≤ J̃(x) and this completes the proof. �
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It is clear that the optimal solution v̂∗ of problem (15) is a suboptimal feasible solution of the original min-max problem (9).

As it is claimed in the following property, the difference between the optimal value of the original objective function and the

value obtained with v̂∗ is bounded by ‖H‖s ε2 (see (8) for the definition of H). Note that this result gives an implicit measure

of how well v̂∗ approximates the solution of the original min-max problem (9).

Property 3 It holds that:

V ∗(x, v̂∗)−σε2 ≤ J(x),

where σ = ‖H‖s.

PROOF: SEE APPENDIX A

The following property, which is proved in Alamo et al. (2005a) will be used in the proof of the stability of the proposed

approach (see theorem 2 below).

Property 4 Consider that assumptions C1, C2 and C3 are satisfied. Let v =
[

v(t|t)T , · · · , v(t +N −1|t)T
]T and vs a shifted

version of v computed as vs =
[

v(t +1|t)T , v(t +2|t)T , · · · , v(t +N −1|t)T , 0
]T . If v is feasible for problem (9) at x(t) then vs

is also feasible at x(t +1) and there is γ > 0 such that:

V ∗(x(t +1),vs) ≤V ∗(x(t),v)− x(t)T Qx(t)+ γε2

The following theorem states the stabilizing properties of the proposed control law.

Theorem 2 Under assumptions C1, C2 and C3, the control law given by u(x(t)) = −Kx(t)+ v̂∗(t|t) stabilizes system (1).

Proof: Let v̂∗s be the shifted version (as in property 4) of v̂∗. Due to the non optimality of v̂∗s for problem (9) it holds that

J(x(t +1)) ≤V ∗(x(t +1), v̂∗s ) (17)

Note that v̂∗s is feasible for both (15) and (9), thus by property 4

V ∗(x(t +1), v̂∗s ) ≤V ∗(x(t), v̂∗)− x(t)T Qx(t)+ γε2 (18)

Furthermore, by property (3)

V ∗(x(t), v̂∗) ≤ J(x(t))+σε2

Substituting this inequality in (18) and using (17):

J(x(t +1)) ≤ J(x(t))− x(t)T Qx(t)+(γ +σ)ε2

which can be rewritten

J(x(t +1))− J(x(t)) ≤−x(t)T Qx(t)+(γ +σ)ε2 (19)
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Note that (γ + σ)ε2 > 0 and that −x(t)T Qx(t) ≤ 0, thus it is ensured that the optimal worst case cost will decrease, i.e.

J(x(t +1))− J(x(t)) < 0, as long as x(t)T Qx(t) > (γ +σ)ε2. Define

Φε =
{

x ∈ R
dimx : (9) is feasible and xT Qx ≤ (γ +σ)ε2

}

It is clear that the system state is steered into the set Φε (which contains the origin) from any arbitrary x(t), but whenever it

enters into Φε it may evolve out of it or remain inside, because it is not ensured that the optimal worst case cost decrease.

Taking into account that −x(t)T Qx(t) ≤ 0 it follows that

J(x(t +1))− J(x(t)) ≤−x(t)T Qx(t)+(γ +σ)ε2 ≤ (γ +σ)ε2

which yields:

J(x(t +1)) ≤ J(x(t))+(γ +σ)ε2 (20)

Suppose that x(t) ∈ Φε , then

J(x(t))+(γ +σ)ε2 ≤ max
x∈Φε

J(x)+(γ +σ)ε2

thus, taking into account (20) it follows that ∀x(t) ∈ Φε it holds that

J(x(t +1)) ≤ β

where β = max
x∈Φε

J(x)+(γ +σ)ε2. Thus whenever the system state enters into Φε it evolves into the set

Ωβ =
{

x ∈ R
dimx : J(x) ≤ β

}

.

Once the state is in Φε it can evolve outside of Φε , but it will remain inside Ωβ . From Ωβ it will be steered again into Φε and so

on. Then the system state is always confined into Ωβ from the moment it enters for the first time in Φε . Thus the state system

is ultimately bounded which means that the system is stabilized by the control law K̂MPC(x(t)) = −Kx(t)+ v̂∗(t|t). �

5 Example

To illustrate the results presented in this paper, consider the two-tank network example given in chapter 20 of Ogunnaike

and Ray (1994). Using the parameters given in Alamo et al. (2005b) the following continuous time state-space model can be

obtained:

ẋ =









− 0.5
3

0.2
3

0.5
2 − 0.5

2









x+









1
3 0

0 1
2









u (21)

y =









1 0

0 1









x
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Fig. 1. Liquid levels (system state), inlet flows (con-

trol signal values) and absolute deviation (from the exact

MMMPC) of the solution obtained by the proposed strat-

egy (tank 1 solid plot, tank 2 dotted plot).

Table 2. Mean flops for the original Min-Max MPC and the

proposed strategy for different values of the prediction and

control horizon (N) in the simulation example of section 5.

N Avg. flops (min-max) Avg. flops (proposed)

4 4.77×106 4.28×104

5 3.73×107 7.6×104

6 3.43×108 1.28×105

7 1.84×109 1.42×105

Constraints are imposed on both states and control actions such that ‖x(k)‖∞ ≤ 1.5 and ‖u(k)‖∞ ≤ 0.4. A discrete time model

has been obtained from (21) sampling at 0.2 minutes using a zero-order holder. Figure 1 shows the results of the proposed

controller applied to the two-tank model. The set-point for the liquid level of each tank was 1 m and 0.7 m respectively. The

prediction horizon was N = 7. Identity matrices were chosen as Q and R. An uncertainty of ±0.025 meters is considered to

affect both liquid levels. In the simulation a random noise of ±0.01 meters has been added to both levels and an unexpected

loss of liquid in tank 1 is introduced at sampling time t = 60.

The absolute deviation of the solution of (15) from that of (9) (computed as v̂∗(x)−v∗(x)) is also shown in figure 1. It can be

seen that it is very small throughout the simulation.

Finally, the lower computational burden of the proposed strategy is illustrated in table 2 in which are listed the average flops

that problem (9) took to be solved as well as the flops needed to compute v̂∗(x) (including those needed to compute ṽ∗(x),

α(ṽ∗(x)) and Γ̂(v)). The computational burden is much lower in the proposed strategy and the gap broadens exponentially as

prediction horizon grows.

6 Conclusions

An MMMPC based on an tractable QP problem has been presented in this paper. The solution of this QP problem is close to

that of the min-max problem whereas it has a much lower computational burden. As it is based on a QP problem, it can be

implemented almost in any industrial hardware capable to run a constrained MPC controller. Thus it extends very much the

fields of application of MMMPC controllers. Low computational burden is not the only advantage of this control strategy over

other proposed MMMPC. The proposed controller is shown to be stable, which together with the explicit consideration of the

uncertainty in the computation of the control law guarantees performance.
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Löfberg, J., Apr 2003. Minimax approaches to robust model predictive control. Ph.D. thesis.

Lu, Y., Arkun, Y., 2000. Quasi-Min-Max MPC algorithms for LPV systems. Automatica 36 (4), 527–540.

Mayne, D., Rawlings, J., Rao, C., Scokaert, P., 2000. Constrained model predictive control: Stability and optimality. Automatica 36, 789–814.

Mhaskar, P., El-Farra, N. H., Christofides, P. D., 2005. Robust hybrid predictive control of nonlinear systems. Automatica 41, 209–217.

Ogunnaike, B., Ray, W., 1994. Process dynamics, modeling, and control. Oxford University Press.

Ramirez, D., Alamo, T., Camacho, E., de la Peña, D. M., 2006. Min-Max MPC based on a computationally efficient upper-bound of the worst case cost.

Journal of Process Control 16, 511–519.

Ramı́rez, D., Arahal, M., Camacho, E., 2004. Min-Max Predictive Control of a Heat Exchanger using a Neural Network Solver. IEEE Trans. on Control

Systems Technology 12 (5), 776–786.

Ramirez, D., Camacho, E., 2006. Piecewise affinity of min-Max MPC with bounded additive uncertainties and a quadratic criterion. Automatica 42, 295–302.

Rossiter, J., Kouvaritakis, B., Rice, M., 1998. A numerically robust state-space approach to stable-predictive control strategies. Automatica 34, 65–73.

Scokaert, P., Mayne, D., 1998. Min-max feedback model predictive control for constrained linear systems. IEEE Transactions on Automatic Control 43 (8),

1136–1142.

Veres, S., Norton, J., 1993. Predictive Self-Tuning Control by Parameter Bounding and Worst Case Design. Automatica 29 (4), 911–928.

Wan, Z., Kothare, M., 2003. An efficient off-line formulation of robust model predictive control using linear matrix inequalities. Automatica 39, 837–846.

A Complex o auxiliary proofs

A.1 Proof of property 1:

(i) S(k is a partially diagonalized matrix:
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Let us suppose that S(k−1 is a partially diagonalized matrix. That is,

S(k−1 =









T (k−1 0

0 M(k−1
sub









=

















T (k−1 0 0

0 a bT

0 b Mr

















. (A.1)

where T (k−1 ∈ R
(k−1)×(k−1) is a diagonal matrix. Two cases must be taken into account: if αk(v) is equal to zero then

b = 0n−k,1 and trivially, S(k = S(k−1 is a partially diagonalized matrix. If αk(v) 6= 0 then:

S(k = S(k−1 +

















0k−1,1

αk(v)

−b
αk(v)

































0k−1,1

αk(v)

−b
αk(v)

















T

=









T (k 0

0 M(k
sub









(A.2)

where T (k =









T (k−1 0

0 a+α2
k (v)









and M(k
sub = Mr + bbT

α2
k (v)

.

(ii) Γ(v) is a diagonal matrix:

Note that Γ(v) = S(n−1. From the previous claim, S(n−1 =









T (n−1 0

0 M(n−1
sub









∈R
n×n, where T (n−1 ∈R

(n−1)×(n−1). Thus,

M(n−1
sub ∈ R. It follows that Γ(v) is a diagonal matrix.

(iii) V ∗(x,v) ≤ trace(Γ(v)): By construction, M(v) = S(0 ≤ S(1 ≤ S(2 ≤ . . . ≤ S(n−1 = Γ(v). Thus, Γ(v) is a diagonal matrix

that satisfies Γ(v) ≥ M(v). From this and equation (14):

V ∗(x,v) = max
‖z‖∞≤1

zT M(v)z ≤ max
‖z‖∞≤1

zT Γ(v)z = trace(Γ(v))

(iv) ‖S(k‖s ≤ ‖S(k−1‖s:

If αk(v) =
√

‖b‖1 = 0 then S(k = S(k−1 and the claim is trivially satisfied. Suppose now that αk(v) 6= 0 then, using

equations (A.1,A.2):

‖S(k‖s = ‖T (k−1‖s +a+α2
k (v)+‖Mr +

bbT

α2
k (v)

‖s = ‖T (k−1‖s +a+‖b‖1 +‖Mr +
bbT

‖b‖1
‖s

≤ ‖T (k−1‖s +a+‖b‖1 +‖Mr‖s +‖
bbT

‖b‖1
‖s = ‖T (k−1‖s +a+‖b‖1 +‖Mr‖s +‖b‖1 = ‖S(k−1‖s

Note that in order to obtain the inequality ‖S(k‖s ≤ ‖S(k−1‖s, the equality ‖bbT‖s = ‖b‖2
1 has been used. Also note that in

the previous equation a must be nonnegative as it is one of the entries of the diagonal of a positive semidefinite matrix.

(v) trace(Γ(v)) ≤ Ṽ ∗(x,v), ∀v:
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Note that V (x,v,0) ≥ 0, thus, it results that (see equation 12):

Ṽ ∗(x,v) = ‖M(v)‖s =

∥

∥

∥

∥

∥

∥

∥

∥









ε2H εq(x,v)

εqT (x,v) V (x,v,0)









∥

∥

∥

∥

∥

∥

∥

∥

s

= ‖S(0‖s

Moreover, Γ(v)) = S(n−1 is a diagonal matrix positive semidefinite, thus trace(Γ(v)) = ‖S(n−1‖s. On the other hand, as it

has been shown, ‖S(k‖s ≤ ‖S(k−1‖s. This implies that ‖S(n−1‖s ≤ ‖S(0‖s, that is, trace(Γ(v)) ≤ Ṽ ∗(x,v), ∀v. �

A.2 Proof of theorem 1:

(i) Γ̂(ṽ∗) = Γ(ṽ∗).

Note that the computation of Γ̂(ṽ∗) relies on α(ṽ∗). It is clear from procedures 1 and 2 that if v = ṽ∗ then Ŝ(k(ṽ∗) =

S(k(ṽ∗). This implies that Ŝ(n−1(ṽ∗) = S(n−1(ṽ∗), thus Γ̂(ṽ∗) = Γ(ṽ∗).

(ii) V̂ ∗(x,v) is a quadratic function on v.

Consider matrix Ŝ(0(v) = M(v) defined in (14), which can be partitioned as

Ŝ(0(v) =

















ε2H11 ε2HT
1r εq1(x,v)

ε2H1r ε2Hrr εqr(x,v)

εq1(x,v) εqT
r (x,v) V (x,v,0)

















where H11, q1(x,v) and V (x,v,0) ∈R, H1r, qr(x,v)∈R
(N·dimθ)−1 and Hrr ∈R

{(N·dimθ)−1}×{(N·dimθ)−1}. Note that q1(x,v)

and qr(x,v) have an affine dependence on v whereas V (x,v,0) is a quadratic function on v. Suppose that α1(ṽ∗) 6= 0 (the

case of α1(ṽ∗) = 0 is trivial). Using α1 = α1(ṽ∗), matrix Ŝ(0(v) is partially diagonalized by adding the term c1(v)cT
1 (v)

where

c1(v) =

















α1

− ε2H1r
α1

− εq1(x,v)
α1

















which yields

Ŝ(1(v) =

















ε2H11 +α2
1 0 0

0 ε2Hrr +
ε4H1rHT

1r
α2

1
εqr(x,v)+ ε3H1rq1(x,v)

α2
1

0 εqT
r (x,v)+

ε3HT
1rq1(x,v)

α2
1

V (x,v,0)+
ε2q2

1(x,v)

α2
1

















Note that the sub-matrix

Mr(x,v) =









ε2Hrr +
ε4H1rHT

1r
α2

1
εqr(x,v)+ ε3H1rq1(x,v)

α2
1

εqT
r (x,v)+

ε3HT
1rq1(x,v)

α2
1

V (x,v,0)+
ε2q2

1(x,v)

α2
1









has the same structure as M(v), that is, the last element is a quadratic function of v, the remaining elements of the last row

and column are affine functions of v and all the other elements are constants. That is, as the structure is preserved, a new
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iteration of procedure 2 supposes a further diagonalization in which only the last element has a quadratic dependence on

v. At the end of procedure 2 the diagonal matrix Ŝ(n−1(v) = Γ̂(v) is obtained with all its elements constant (i.e., they do

not depend on v) except the last one which has the form

Γ̂nn(v) = V (x,v,0)+
ε2q2

1(x,v)

α2
1

+ · · · (A.3)

Once Γ̂(v) has been obtained, the bound of the maximum can be computed as

V̂ ∗(x,v) = trace(Γ̂(v)) (A.4)

which is a quadratic function of v.

(iii) V ∗(x,v) ≤ V̂ ∗(x,v).

This follows from the fact that by construction Γ̂(v) = M(v)+ c1(v)cT
1 (v)+ · · ·+ cn−1(v)cT

n−1(v). Thus, M(v) ≤ Γ̂(v)

and, together with the fact that by construction Γ̂(v) is diagonal, implies that

V ∗(x,v) = max
‖z‖∞≤1

zT M(v)z ≤ max
‖z‖∞≤1

zT Γ̂(v)z = trace(Γ̂(v)) = V̂ ∗(x,v)

�

A.3 Proof of property 3:

Note that J(x) = V ∗(x,v∗). From equations (8) and (11) it results that:

Ṽ (x,v,θθθ) = V (x,v,θθθ)+θθθ T (T −H)θθθ .

where T is a diagonal matrix defined as in (10). Taking into account that T ≥ H ≥ 0, ‖θθθ‖∞ ≤ ε and that T is diagonal:

Ṽ (x,v,θθθ) ≤V (x,v,θθθ)+θθθ T T θθθ ≤V (x,v,θθθ)+ trace(T )ε2 = V (x,v,θθθ)+‖H‖s ε2

thus it can be inferred that

V ∗(x,v∗) ≥ Ṽ ∗(x,v∗)−σε2

with σ = ‖H‖s. As ṽ∗ is the minimizer of Ṽ ∗(x, ṽ):

V ∗(x,v∗) ≥ Ṽ ∗(x, ṽ∗)−σε2

which in turn can be rewritten as

J(x) ≥ J̃(x)−σε2

Recall that from property 2: Ĵ(x) ≤ J̃(x); thus:

J(x) ≥ Ĵ(x)−σε2 = V̂ ∗(x, v̂∗)−σε2

From theorem 1 V̂ ∗(x,v) ≥V ∗(x,v) thus

J(x) ≥V ∗(x, v̂∗)−σε2
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and this completes the proof. �
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