
Towards a cloud‑based automated surveillance system using 
wireless technologies

                         Javier J. Salmerón‑García1 · Sjoerd van den Dries2 · Fernando Díaz‑del‑Río1  · 
                 Arturo Morgado‑Estevez3 · Jose Luis Sevillano‑Ramos1 · M. J. G. van de Molengraft2 

addition, this proof-of-concept claims that many interest-
ing opportunities and challenges arise, for example, when 
mobile watch robots and fixed cameras would act as a 
team for carrying out complex collaborative surveillance 
strategies.

Keywords  Surveillance · World modeling · Wireless 
communication · Computation offloading · RGBD 
cameras · Cloud robotics

1  Introduction

Nowadays, the development of automated surveillance sys-
tems has become more than widespread [7]. There are innu-
merable environments where their use has become critical, 
such as cities, households and corporate buildings, not only 
for security, but also for people location or customer queue 
analytic [38]. Consequently, there is a need to process, send 
and analyze the high volume of sensorial media produced 
by cameras, radars and other sensors. This task involves not 
only the communication infrastructure but also the neces-
sary multimedia computing framework. More precisely, 
in a future smart city there would be innumerable devices 
(small sensors, computers, mobile robots, amongst others) 
that working together should perfectly create an extremely 
safe environment. However, several cutting-edge surveil-
lance solutions rely on very expensive sensing technology, 
high performance dedicated hardware and wired connec-
tivity, and are therefore unaffordable for many companies 
or scenarios. Hence, the question to be addressed in this 
paper would be: until what extent can all these heterogene-
ous devices collaborate to perform a multifaceted task-like 
surveillance using current low-cost available technologies?

Abstract  Cloud Computing can bring multiple benefits 
for Smart Cities. It permits the easy creation of centralized 
knowledge bases, thus straightforwardly enabling that mul-
tiple embedded systems (such as sensor or control devices) 
can have a collaborative, shared intelligence. In addition to 
this, thanks to its vast computing power, complex tasks can 
be done over low-spec devices just by offloading compu-
tation to the cloud, with the additional advantage of sav-
ing energy. In this work, cloud’s capabilities are exploited 
to implement and test a cloud-based surveillance sys-
tem. Using a shared, 3D symbolic world model, different 
devices have a complete knowledge of all the elements, 
people and intruders in a certain open area or inside a build-
ing. The implementation of a volumetric, 3D, object-ori-
ented, cloud-based world model (including semantic infor-
mation) is novel as far as we know. Very simple devices 
(orange Pi) can send RGBD streams (using kinect cameras) 
to the cloud, where all the processing is distributed and 
done thanks to its inherent scalability. A proof-of-concept 
experiment is done in this paper in a testing lab with mul-
tiple cameras connected to the cloud with 802.11ac wire-
less technology. Our results show that this kind of surveil-
lance system is possible currently, and that trends indicate 
that it can be improved at a short term to produce high 
performance vigilance system using low-speed devices. In 

 * Fernando Díaz‑del‑Río
fdiaz@us.es

1	 Escuela Técnica Superior de Ingeniería Informática, 
Universidad de Sevilla, Sevilla, Spain

2	 Technische Universiteit Eindhoven, Eindhoven,  
The Netherlands

3	 Escuela Superior de Ingeniería, Universidad de Cádiz, Cádiz, 
Spain

http://orcid.org/0000-0001-6184-1629
http://crossmark.crossref.org/dialog/?doi=10.1007/s00530-017-0558-5&domain=pdf


A powerful tool to fulfill this challenge is the incorpora-
tion of Cloud Computing, because many of its properties 
can benefit such surveillance systems. Specifically, the fol-
lowing characteristics fit perfectly:

–– On-demand resource provision: The cloud is able to 
provide both computing and storage resources. This 
is normally done in the form of the so-called contain-
ers. For instance, should a surveillance or “watch” 
robot require computing power to perform a cer-
tain task, then it would only have to spin up as much 
instances as required to complete it. Most commercial 
cloud platforms (for example, Amazon EC2, Windows 
Azure, Google App Engine, etc.) use a pay-as-you-go 
approach. Nevertheless, this should be much cheaper 
than all the capital expenditure required for a cluster, 
not to mention all the maintenance costs.

–– Dynamic scalability: This property relates to the abil-
ity of the cloud to dynamically adapt to the user needs. 
A clear example is that of a multiple intrusion. If, sud-
denly, the number of requests dramatically increase 
due to this transgression, the service might not be able 
to process them in a reasonable time. To address this, 
the cloud could increase the number of computing 
resources devoted to this task. Moreover, once the threat 
has ceased and the number of requests decreases, the 
cloud could reduce the amount of computing resources. 
This relates to the “utility” concept behind Cloud Com-
puting.

In fact, a great interest exists in applying and developing 
Cloud Computing frameworks to the surveillance area [17, 
26]. However, many challenges still remain. For instance, 
the incorporation of the cloud paradigm forces develop-
ers to rethink their software architectures so, for instance, 
the dynamic scalability property could be exploited (see 
Sect. 4). Another major concern is that, as pointed out in 
[26], the cost for deploying a video surveillance system 
using cloud computing is not necessarily less expensive 
than implementing the hardware locally. Furthermore, legal 
and privacy issues must be addressed when using commer-
cial cloud platforms.

An interesting approach is the use of a private cloud set-
ting, so that critical surveillance data is always kept in the 
private cloud [17]. This approach also facilitates the inte-
gration of embedded devices that can successfully perform 
collaborative tasks such as localization, mapping [30], traf-
fic-light status detection [4] or healthcare [10]. As a conse-
quence, concepts such as “Internet of Robots” [13, 37] are 
now possible. Furthermore, a private cloud can be comple-
mented with commercial cloud platforms when needed to 
optimize deployment and maintenance costs, an approach 
commonly known as hybrid cloud [17]. Therefore, using 

the cloud for a collaborative surveillance system is another 
interesting application that we address and evaluate in this 
work.

In a great extent, the answer to reduce costs and deploy 
more easily a vigilance system that integrates a number of 
embedded devices comes from the use of private/hybrid 
Cloud Computing and high bandwidth wireless technolo-
gies. Moreover, the cloud is the most suitable and cost-
effective candidate for what is known as computation off-
loading. The idea is to free an embedded device from heavy 
computations, so that an external platform would do them 
and get the results back. This is especially interesting as it 
allows the devices to perform more complex tasks, over-
coming their hardware limitations and their inherent dif-
ficult upgrading. Furthermore, offloading CPU-intensive 
tasks implies less power consumption in the devices and 
robots. Following this idea, building very simple devices 
that rely on computation offloading will set a trend in 
forthcoming years [31]. On the other hand, the use of high 
bandwidth wireless technologies is especially interesting 
for two reasons. First, it permits the use of mobile robots 
or UAVs (Unmanned Aerial Vehicles), bringing innumer-
able possibilities in surveillance. Second, the new standard 
802.11ac promises bandwidths of the order of 1 Gbps [9]. 
Hence, eventually, current bottlenecks of WiFi connections 
could be overcome. Therefore, the convenient combination 
of Cloud Computing, wireless technologies and heteroge-
neous embedded devices (depending on the budget) could 
be a perfect candidate for creating a cost-effective surveil-
lance and intruder detection solutions.

Besides, there is a problem that needs to be addressed 
to detect intruders: the correct interpretation and sharing 
of information of the environment. In this sense, the lack 
of semantic information provokes problems in this kind of 
tasks, for instance [5, 11, 22]:

–– Some operations such as clearing could be done more 
efficiently if more information of the static environment 
was known.

–– Without symbolic information, it is very difficult for the 
robot to make predictions based on the environment.

The system presented here is a first prototype of a cloud-
based surveillance system using a shared, 3D symbolic 
world model; simple embedded devices that can offload 
computation to the cloud; mobile devices including 
“watch” robots; high-bandwdth wireless connections; and 
Kinect cameras as the sensing technology. The paper is 
organized as follows. First, next section presents the system 
model. In Sect. 3, a brief review of recent advances in the 
area is presented. Then, in Sect. 4 all the main elements of 
the prototype (world model, information storage, computa-
tion offloading) are described. To prove the efficacy of this 



first prototype, some preliminary experimental results are 
included (especially focused on communication and com-
putation performance) in Sect.  5. Finally, future lines of 
work and conclusions are presented in Sects. 6 and 7.

2 � System model

In this paper, we propose a framework for giving support 
to a surveillance system via an Object Oriented World 
Model that is distributed among the cloud and the rest of 
devices. We use a 3D volumetric, object-oriented world 
model, called Environment Descriptor (ED), (developed by 
the “Control Systems Technology” in TU/e University [5, 
11]) that allows the modules in the system to take the con-
text of the environment. Such a fully offloaded cloud-based 
implementation of a volumetric, 3D, object-oriented world 
model (including semantic information) has never been 
carried out as far as we know.

Figure 1 shows an application scenario of the proposed 
Cloud-based World Model platform. Surveillance tasks can 
be shared by several fixed devices with different hardware 
configurations and sensing technologies: stereo cameras, 
RGBD cameras, range finders, laser, amongst others. In 
addition, each device can be assigned to different tasks. The 
common case would be that of camera devices installed 
in different places. Meanwhile, in addition to this, there 
can be mobile “Watch robots”, which navigate the area or 
building looking for intruders. Then, as they all share the 
same world model, if a camera detected an intruder, then 
all devices would know their exact location. Consequently, 
“Watch robots” would transform their location coordinates 
to relate their own posture to that of the intruder, with the 
aim of pursuing him/her. 

Figure  2 shows a conceptual diagram of the proposed 
Cloud-based World Model platform. In our implementa-
tion, task organization is flexible enough so that, depend-
ing on the hardware specifications, some devices can per-
form all the computations on their own (Case 2) or offload 
computations to the cloud (Case 1). Non-sensing devices 
that form part of the system such as domotic controllers 
can receive an order and react accordingly, for instance, by 
locking a door if an intruder were found (Case 3). Hence, 
using the cloud paradigm as a natural central interface for 
many devices, an extremely efficient and cooperative sur-
veillance system can be developed. A detailed explana-
tion of the blocks of this Fig. 2 will be described in further 
sections.

It is worth noting that in this kind of applications, 
concerns such as response time requirements or data 
safety and privacy may lead to an alternative paradigm 
to Cloud Computing called Edge Computing [34]. This 
term refers to processing the data at the edge of the 

network, that is, closer to the “things”, in the IoT sense, 
or end devices. As mentioned before, in our experiments 
we will use a private cloud which could be considered as 
a kind of edge-computing system. The reason is that this 
way we avoid longer and more variable delays and can 
focus on implementation issues such as computation off-
loading or environment sensing and modeling. However, 
along the paper we prefer to use the more general model 
and terminology of Cloud Computing. Furthermore, the 
extension of our surveillance system to a larger Smart 
City would benefit from a more general Cloud Comput-
ing paradigm, for instance, gathering sensing data from 
different buildings.

3 � Related work

There are numerous research works in the area of auto-
mated surveillance. In relation with this work, the most 
relevant can be arranged in those works that use the cloud 
for integrating sensor information, those that deal with the 
detection algorithms, those that test several sensor devices, 
and finally, others that study network technologies.

The idea of using the cloud for integrating multiple sen-
sor information, including surveillance information, has 
also been explored in the literature. Moreover, a new term 
has been coined to define the application of Cloud Com-
puting (in terms of ubiquity, storage, computation, privacy, 
scalability, amongst others) to this area: Video Surveillance 
as a Service [20, 29]. For instance, in [27] the authors deal 
with the problem of integrating heterogeneous sensor infor-
mation by creating a database scheme able to integrate dif-
ferent types of sensor. However, most of the available solu-
tions rely on wired networks, such as [14, 15, 21, 36]. Only 
a few works have developed some aspects of cloud-based 
surveillance platform using wireless networks. Authors of 
[38] presented Vigil, where some devices with cameras
execute face recognition algorithms and send the results to
the cloud. They also introduce the concept of intra-cluster
processing, when there is a set of cameras with overlap-
ping visions. Compared with Vigil, the work presented in
this paper takes into consideration the use of very simple
devices thanks to computation offloading. In [35] a Cloud
Gateway for filtering the information from multiple sensors
in Wireless Sensor Networks was implemented. This filter-
ing is applied to a basic cloud surveillance system obtain-
ing an 83% accuracy.

Most of the cloud-based surveillance systems have the 
following architecture: multiple cameras stream to the 
cloud, which is responsible of analyzing the footage in 
search of events. Only in the case of [14] some pre-pro-
cessing is done before sending to the cloud. Compared to 
these works, this paper offers a more flexible approach, as 



the devices can decide whether to offload or not depend-
ing on their needs.

Another important element of Cloud Computing is 
Quality-of-Service (QoS) management. In this sense, 
in [3] a service QoS-adaptive configuration framework 

for optimizing this factor in surveillance systems is 
proposed.

Another study element corresponds to image analysis 
to detect intruders. Several algorithms have been devised, 
such as Latent Semantic Analysis (LSA), Kernel-based 

Fig. 1   Example of application in a building



Online Anomaly Detection (KOAD) and Kernel Estima-
tion-based Anomaly Detection (KEAD), Kernel Principal 
Component Analysis (KPCA) and One-Class Neighbor 
Machine (OCNM) [2], using machine learning techniques 
as well.

In [25], instead of regular video cameras, omnidirec-
tional cameras are used, which permit the surveillance of a 
whole room or a bigger open space with only one camera. 
In [12], the sensor used is that of Microsoft Kinect, with 
satisfactory results. In this sense, the system presented here 
also makes use of Kinect Sensors which, at a reasonable 
price, provide a depth channel, extremely important for 
object detection and tracking.

As it can be seen, most of the surveillance systems avail-
able in the literature normally use fixed cameras. In this 
sense, one of the major assets of this work is the collabo-
ration of different heterogeneous devices (such as mobile 
“watch” robots) thanks to the use of a shared world model 
and the adaptation of the cloud to each robot’s needs. 
Moreover, the use of mobile robots brings some interest-
ing opportunities and challenges for more complex surveil-
lance strategies and systems.

The approach of using an edge-computing platform and 
wireless technologies is becoming increasingly attractive 
to researchers on surveillance systems [6]. For instance, 
[16] shows that an edge node can reduce the reaction time
between edge and sensors, and can improve network sta-
bility as well by uploading only necessary data. Also, [23]
improves the optimal bandwidth distribution and allocation
in a video surveillance system using up-to-date wireless
technologies. In the present paper, we follow this approach
with the additional contributions of implementing a 3D,
object-oriented, cloud-based world model that includes

semantic information, as well as allowing the use of sim-
ple embedded devices and mobile “watch” robots through 
computation offloading.

4 � Implementation of the platform

In this section, the implementation of the Cloud World 
Model based Surveillance Platform is detailed. The imple-
mentation of the Surveillance Platform consists of the fol-
lowing parts:

–– Definition of the elements of World Model (Sect. 4.1)
–– Definition and deployment of a World Model Storage 

System (Sect. 4.2)
–– Implementation of the Sensor Integration Module, 

responsible of processing the image streams (Sect. 4.3).

4.1 � Elements of the world model

World modeling is the process of creating a model of an 
environment (with its inherent complexity), which is a 
key task for intelligent systems. The more accurate the 
representation of the environment, the more successfully 
a task will be performed. Hence, as stated in Sect. 1, add-
ing semantic information to each element of the environ-
ment implies a dramatic increase in accuracy. In the imple-
mentation shown in this paper, the main elements of the 
world model (simplifying from [5, 11]) are entities and 
transforms.

Entities: An entity is an element of the world. It has the 
following properties:

Fig. 2   Conceptual diagram of 
the cloud-based surveillance 
system



–– ID: Unique identifier for an entity. No other entity can 
have the same identifier, even if the entity was removed.

–– Type: Specifies the type of the entity. This allows to 
make classifications or create subsets of entities for dif-
ferent actions. For example, several actions can be done 
depending if the entity is a person, a furniture or a wall.

–– Pose: Establishes the position and orientation of the 
entity in the world model. These coordinates are abso-
lute.

–– Shape or convex hull: Adds volumetric information to 
the entity. This shape can either be real or virtual. An 
entity can have both.

–– Measurements: Information obtained by sensors that is 
associated to an entity in the world model. These meas-
urements hold the sensor data and the time-stamp.

Transforms: defines the spatial relationship between two 
different entities in the world model. Multiple transfor-
mations for each parent–child pair can be stored for dif-
ferent timestamps which results in a graph of entities and 
transforms.

4.2 � Cloud world model storage

As stated in previous sections, a collaboratively built world 
model offers several advantages. However, there are some 
bottlenecks that the cloud solution must address.

First, if the number of robots increases (and therefore, 
the number of Database read/write operations), the cloud 
might not be able to satisfy all queries in a reasonable time. 
To make matters worse, if the number of entities increases, 
the cloud resources assigned to the database may run out. 
Therefore, one of the main objectives of the cloud solution 
is to adapt computing resources at runtime depending on 
the needs.

To satisfy these requirements, Distributed Database 
Management Systems (DDBMS) are the perfect candi-
dates for storing all the information, thanks to their mas-
sively parallel nature, ease of use and portability. Among 
all the available options, one of the best DDBMS para-
digms is that of Bigtable. Its main advantage is that it 
uses a sparse, distributed and multidimensional sorted 
map, using the following data organization [8]:

(row:string, column:string, tag:string, time:int64) 
→ stringHence, there would only be one (or two)
big tables that can be perfectly scattered among
different containers in the cloud. Therefore, if the
aforementioned bottlenecks occur, then more con-
tainers can be spun up at runtime. On the contrary,
if the database is less loaded, then the cloud can
scale back, thus saving resources for other tasks.

Having in mind this DB model, the next schema was 
designed to fit with the needs of a surveillance system. 
The idea is not only to store the current information 
about entities, but also their history. In this sense, we use 
the concept of delta, that is, a change in a certain entity 
(following the so-called event-driven mechanism [17]). 
To clarify the concept, an example follows (depicted in 
Fig.  3): suppose two robots A, B and an entity E. Both 
robots have synchronized their local world models at an 
instant t, finding that the most recent change was done 
at t − 1 (“Last time” in Fig. 3). Therefore, they know all 
the information about E (shape, pose, type, etc.). At t + 1 , 
B registers changes in the pose of E, and therefore will 
update the world model with this new information. If 
nothing but the pose has changed, re-sending the infor-
mation about the shape would be a waste of bandwidth. 
Therefore, B will only send the change (that is, the delta) 
of the pose. This same reasoning can be applied to A, 
which is only interested in the most recent changes (del-
tas) since database’s most recent time-stamp t − 1 (to 
save resources). Thanks to the use of timestamps, a robot 
can query all the new deltas since a given time t.

Taking this into account, there will be a table of deltas 
in the database with the following columns: pose, type, 
shape, convex hull and deleted (whether the entity was 
cleared or not). The information will be stored in the 
JSON (JavaScript Object Notation) format. The row ID 
will correspond to the entity’s ID.

Among the available implementations of the Bigtable 
model, Hypertable has been chosen because it is written 
on C++ and promises higher performance results com-
pared to competitors such as HBase [1]. This is of great 
importance when working with robots, and in some cases, 
near real-time conditions. The elements of a Hypertable 
system that were configured for our system are [19]: 
range server (for handling the read and write operations 
in the table), Master node (for creating/deleting tables), 
ThriftBroker (interface between the database and the cli-
ents) and FS Broker (normalized filesystem interface).

Figure  4 on the left shows the implementation of the 
world model using Hypertable (the FS Broker is not 
shown, as it is being used in all the nodes). On the right, 
an example of adaptation when a bigger number of robots 
demands more resources has been depicted. In this case, 
more instances of Range servers and ThriftBrokers are 
spin up by the cloud to satisfy this new load.

4.3 � Sensor integration modules

The sensor integration offloading implemented here is 
a simplified version of [5, 11]. The workflow is depicted 
in Fig. 5. All modules are implemented using the Robot-
ics Operating System (ROS) Framework. ROS is an Open 



Fig. 3   Example of a delta update

Fig. 4   Implementation of 
the cloud World model using 
hypertable



Source Robotics Software Framework (using C++ and
Python) that allows the implementation of advanced dis-
tributed architectures, very similar to Multi-Agent systems 
[18]. Thanks to the use of topics, services, peer-to-peer 
communications and compression techniques, ROS makes 
the offloading process simple and scalable. Main processes 
(nodes in ROS convention) correspond to those modules of 
Fig. 5, while connecting links of these modules have been 
implemented using ROS topics and services.

–– The different operations done in the sensor integration 
are the following:RGBD Masking: This process will 
only use the D channel of the stream. It is responsible 
for detecting entities using feature extraction (produc-
ing 3D Point Clouds), association (comparing with a 
rendered world model) and segmentation (creating new 
entities from the unassociated data) [5, 11]. Figure  6 
shows an example. This module is one of the most com-
putationally demanding. In our case, as we are dealing 
with surveillance cases, this module will discard those 
entities whose size is not big enough to be a person.

–– Sensor fusion: This process receives the RGBD stream 
and the aforementioned entities with mask measures. 
The idea is to use the previously unused RGB channel 
and extract other properties from the entities. There-
fore, the module must buffer the RGBD stream until its 

related masked measurement arrives. Figure 7, using the 
mask from Fig. 6, now obtains an RGBD measurement 
(which, for example, contains color information).

–– Perception: This process receives the RGBD measure-
ments (created by the Sensor Fusion module) and per-
forms an analysis to discover the type of the entity. This 
will be the responsible module for detecting whether an 
entity is an intruder or not. As our aim is demonstrat-
ing the cloud working and feasibility, in the experiments 
presented in this paper the system only detects whether 
the entity is wearing or not an uniform. If the person 
was not wearing it, then it would not be an authorized 
personnel. On commercial surveillance systems, it is 
obvious that a knowledge base (with templates) must 
be used. For the previous example, Fig. 8 analyzes the 
RGBD measurement and concludes that the entity is an 
authorized person.

The presented platform is aimed to be as much flexible 
as possible. In this sense, a robot may not have enough 
processing power to do all the sensor integration on-board 
but sufficient to do part of this processing. Therefore, the 
robot should be able to choose which parts of the sensor 
integration are offloaded. To implement this feature, the 
system was implemented using modules. For instance, one 
instance may only have the Perception module (and thus 

Fig. 5   Workflow of the Sensor 
Integration model

Fig. 6   Example of a mask 
measurement



only perform recognition operations), whereas another 
node may have all modules. As a consequence, several off-
loading options can be taken into consideration.

5 � Preliminary results

These preliminary tests are aimed to show the efficacy and 
viability of not only having a shared world model, but also 
of using wireless technologies. The tests are divided into 
three categories:

1. Real experiment in a testing environment.
2. Queries in the world model.
3. Sensor integration offloading.

All the tests were done in a private Cloud with 5 nodes (1 
front-end node and 4 computing nodes). Each node has 
a AMD FX-8320 octa-core CPU (with virtual extensions 

enabled) and 8 GB of RAM. They are all connected inter-
nally using Gigabit Ethernet bandwidth. For the cloud 
middleware, we decided to make use of Kubernetes +
Docker (recently adopted by major cloud vendors, such 
as Google Container Engine or Amazon EC2 Container 
Engine) instead of traditional VM-based private clouds 
(such as Openstack or Eucalyptus). One of the main 
reasons behind this decision was to avoid the overheads 
derived from the virtualization of hardware and operating 
system layers [33].

5.1 � Proof‑of‑concept experiment

A few preliminary experiments were devised to check 
whether the whole system works properly. For this purpose, 
only a few set of objects were modeled for an indoor envi-
ronment; mainly rough shapes of the furniture and two peo-
ple (one intruder and one authorized person). In one of the 
offices, two camera devices were installed to detect intruders 

Fig. 7   Example of a RGBD 
measurement

Fig. 8   Example of perception



in the room. Basic experiments were based on the following 
facts:

1. Authorized personnel enter the room, move around and
leave.

2. An intruder enters the room and moves around the room.

First of all, this experiment aims to show that both intruder 
detection (perception module) and person tracking (RGBD 
masking module) work successfully. Second and the most 
importantly, this experiment will demonstrate that the collab-
oration between devices is actually working. Let us suppose 
that an entity E goes from camera A’s Field of View (FOV) 
to camera B’s FOV. If the collaboration is effective, it should 
be detected that the entity that suddenly enters in camera B’s 
area is actually E and not a new entity E’.

Prior to performing the experiment, the room was previ-
ously modeled (see Fig. 9). To avoid detection of unwanted 
items (such as the elements in a table), some overmodeling 
was done. A video of the experiment can be found in [32]. In 
terms of the desired objectives, the following can be stated 
(Fig. 10):

–– Both person tracking and intruder detection algorithms 
worked correctly with different people and outfits.

–– Thanks to the shared world model, collaborative tracking 
of people was done successfully. When the intruder left 
camera A’s FOV and entered camera B’s domain, it was 
possible to associate the entity correctly. 

While it is still a first experiment, the viability of a WiFi 
802.11ac, cloud-based, collaborative intruder detection sys-
tem using an object-oriented world model has been thor-
oughly shown. However, the number of entities and their 
modeling accuracy should be raised in future works to guar-
antee the robustness of the detection algorithms for broader 
areas. The rest of subsections are aimed to demonstrate until 
which extent a wifi ac cloud-based surveillance system is 
able to respond when it is overloaded.

5.2 � World model querying

First, I/O operations in the shared world model are performed 
with different data loads and network technologies. Our 
main interest does not reside in the capabilities of the Cloud 

Database. Instead, the wireless technology is the key factor, 
as it would demonstrate the validity of the wireless-based sur-
veillance system.

For this set of tests, watch robots will be used, assum-
ing that they have sufficient CPU power to produce delta 
update information at either 1, 5, 10 and 20 Hz rates. To 
do so, the sensor integration part is skipped here and sim-
ulated data are used instead.

5.2.1 � Communication Technology Test

In this first test, data transfer time for 802.11ac and Fast 
Ethernet will be compared for different data loads (entity 
delta updates).

Object-oriented, 3D world models present the advan-
tage that objects contain symbolic information since they 
are instances of elements in an object database [5]. Other 
object specific information such as trajectories, properties 
and affordances can also be stored in this database, which 

Fig. 9   Modeling of the testing 
environment

Fig. 10   Transition of the entity E (red circle) from one area to 
another. For the sake of simplicity, only the interested entity is shown 
(color figure online)



can be used to infer the nature of the detected objects. In 
our case, delta updates mainly consists of sending a time-
stamp, the tag of the object and its six posture coordinates 
(3 for position and 3 for orientation). Using single preci-
sion floating format, this supposes a few dozen of bytes 
(much less than the packet overhead of any message in cur-
rent network protocols).

Sample results can be seen in Table 1. In this test, Fast 
Ethernet performs an average of two times faster than 
802.11ac. Note that delta updates of a high amount of enti-
ties per second are highly unlikely for real surveillance 
environments. For instance, let us imagine that there were 
five intruders moving at speeds of around 3 m/s. If we 
wanted to approximate with an error of ± 0.5 m, we need
to send 5 ∗ (3/0.5) = 30 delta updates per second. Accord-
ing to Table  1, this would take around 9 ms using WiFi, 
which is much inferior than the times required to offload 
the sensor integration (see Sect. 5.3). In conclusion, it can 

be guaranteed that delta update transfer times are assum-
able by wireless technologies.

5.2.2 � Stability test

A watch robot will produce different data loads in the 
shared world model at different frequencies. This is 
closely related to previously explained communica-
tion test, as the data transfer speed plays a major role. 
If the communication technology is not fast enough, the 
robot would have to store in an intermediate buffer all 
the information to be written. In principle, this would 
not be a problem, unless the amount of buffered infor-
mation becomes too big and the robot’s memory runs 
out. In this case, the software would end up crashing, 
unless some buffered information is discarded. In this 
sense, a desirable robot configuration (that is, frequency 
and amount of data) would be one in which both tasks 
(information production and data transfer) remain stable. 
Because of this, in this test we will compare the stable 
configurations available when using 802.11ac and Fast 
Ethernet.Table  2a and b show the obtained results for 
802.11ac and Fast Ethernet. Results are very similar for 
both networks. The robot can cope with only two extra 
workloads (that of 256 delta updates at 10 Hz and 128 
delta updates at 20 Hz) in the case of Fast Ethernet. This 
makes sense as the previous test showed that Fast Ether-
net performs around twice as fast as WiFi AC. However, 
it must be noted that 802.11ac is stable for workloads 
sufficient enough for most surveillance cases. It would 
be highly unlikely that a single camera or watch robot 
can produce, for instance, an average of 512 person 
warnings at 5 Hz. Therefore, it has been demonstrated 
that wireless technologies are usable for cases where a 
high update frequency is required.

Table 1   Average delta transfer time

Two techonologies are compared: WiFi AC and Fast Ethernet. The 
frequency used is 1 Hz

Deltas Technology

WiFi AC Ethernet

1 0.0045 0.0014

16 0.0062 0.0029

32 0.0091 0.0048

64 0.021 0.0078

128 0.023 0.015

256 0.058 0.029

512 0.155 0.056

1024 0.167 0.156

2048 0.348 0.228

Table 2   Stability of the system 
for different frequencies and 
data loads

“Y” stands for stable and “N” stands for not stable

(a) Stability for WiFi AC (b) Stability for Fast Ethernet

WiFi AC Fast ethernet

Update frequency Update frequency

Deltas 1 5 10 20 Deltas 1 5 10 20

1 Y Y Y Y 1 Y Y Y Y

16 Y Y Y Y 16 Y Y Y Y

32 Y Y Y Y 32 Y Y Y Y

64 Y Y Y Y 64 Y Y Y Y

128 Y Y Y N 128 Y Y Y Y

256 Y Y N N 256 Y Y Y N

512 Y Y N N 512 Y Y N N

1024 Y N N N 1024 Y N N N

2048 Y N N N 2048 Y N N N



5.2.3 � Interference test

The added value of our proposal is the collaboration 
between multiple robots by sharing information about 
entities. Because of this, it is highly likely that multiple 
embedded systems share the same Access Point (AP), 
and therefore collisions and interferences can occur. If 
the impact in the transfer time were high, then the stabil-
ity of the system could be compromised (as shown in the 
previous experiment). In this test, the number of robots 
will be increased, and by measuring transfer times, the 
impact in the communications will be analyzed.

Table 3 shows sample transfer times when increasing 
the number of nodes using a fixed data load (128 delta 
updates). To detach as much as possible these results 
from possible performance issues in Hypertable, each 
robot has its own database in the cloud for two frequen-
cies: 5 and 10 Hz.

Two conclusions can be extracted from this experi-
ment. The first one is that adding more robots seems 
to add performance penalties in the communications 
(mainly for higher frequencies). As a result, the distribu-
tion of robots in multiple APs should be considered. In 
addition to this, the higher the frequency, the higher the 
number of transfers, and consequently higher penalties 
appear. As a conclusion, there is a tradeoff-between per-
formance and number of robots. For instance, in the case 
of Table 2a, it can be seen that a data load of 128 delta 
updates at 10Hz was at the frontier between stable and 
unstable. As the configuration may become potentially 
unstable when more robots are added, a practical system 
should evaluate and choose the frequency of the robots as 
a function of the number of them.

5.3 � Sensor integration offloading

The efficacy of computation offloading for embedded 
systems with low resources or legacy hardware must be 
assessed. To do so, we compare the two sensor cases of 
Fig. 2, that is, case 2, where a simple embedded system 
with a Kinect sensor sends its RGBD stream to the cloud, 

against case 1, in which the sensor integration module is 
computed on the embedded system, thus sending only the 
world delta updates inferred by the device. The embed-
ded system used for testing is an Orange Pi PC, which is 
a $15 SoC with a 4-core processor (H3 Cortex-A7) and 1 
GB of RAM.

The performance between the offloading case 1 opposed 
to executing everything on-board (case 2) are compared 
in Table  4. First of all, if we compare the results from 
Sect.  5.2.1, it can be seen that the delta update transfer 
times can be considered negligible compared to the sensor 
integration part.

On one hand, timing can be clearly divided into two 
main components for the offloading case: the transfer time 
penalties of sending the complete RGBD data stream (see 
Fig.  5), and the Frame Processing Time, which includes 
all the processing of the sensor integration module plus 
the necessary world delta updates (Fig. 3). The mean times 
per frame for a test composed of 2048 RGBD frames are 
shown on the last column of Table 4. The total mean time 
points out that the offloading case can reach up to more 
than two updates per second.

On the other hand, timing for case 2 can be divided into 
an internal transfer time penalty due to the inter-process 
communication between the Kinect driver and the sensor 
integration, and the local Frame Processing Times executed 
in the Orange Pi device. The mean times per frame for the 
same test are revealed on the middle column of Table 4. In 
this case, the embedded case can only achieve less than one 
update per second in the mean.

The relative high transfer time penalties in the Orange 
Pi arises, not only for the inter-process communication, but 
also due to the high computation loads that the system must 
support because of the complex processing taking place. In 
fact, this mean penalty is almost the same as the communi-
cation cost of sending the RGBD frame to the cloud. The 
main result is that a Cloud-Based Automated Surveillance 
System using Wireless Technologies is not only currently 
feasible, but it even overtakes the performance of simple 
standalone embedded devices.

This demonstrates that not only some simple embed-
ded devices are unable to perform complex computations 

Table 3   Communication time (in seconds) when increasing the num-
ber of robots and frequency. The data load is 128 entity deltas.

Update frequency

Nodes EFEFEF5 Hz EFEFEF10 Hz

1 0.026 0.028

2 0.028 0.048

4 0.038 0.067

6 0.057 0.173

Table 4   RGBD Processing time (in s) with and without cloud off-
loading

On-board (Case 2) Cloud offloading 
(Case 1)

Frame processing time 0.887 0.133

Transfer time 0.223 0.322

Total 1.11 0.455



on their own, but also their internal transaction times are 
of similar order to the transmission network times. Taking 
these facts, it is clear that thanks to using Cloud Offload-
ing the capabilities of embedded devices can be extended 
as theoretical studies are exposing [31].

6 � Future work

This paper sets up a promising proof-of-concept platform 
of a cloud-based intruder detection system. For future itera-
tions of the prototype, there is a set of challenges that needs 
to be analyzed and addressed.

First of all, preliminary 802.11ac performance results 
were far from its theoretical 867 Mbps. It could be seen that 
Fast Ethernet obtained around double the transfer speed, 
and therefore the latter allowed more stable configurations 
(see Table 2). More experiments are needed to evaluate the 
viability of using wireless links in this kind of applications. 
A more ambitious system may be devoted to monitor thou-
sands of people or hundreds of high speed moving entities, 
which would compromise the scalability for both wired 
LAN and wireless networks. In the case of wireless net-
works, further improvements in 802.11ac MAC layer such 
as TDMA protocols, would be suitable for reducing varia-
bility [24] and thus guaranteeing Quality of Service. More-
over, Contention Free Period in the infrastructure mode 
with fixed size packets could guarantee a minimum band-
width reservation, which may be suitable for high frequen-
cies such as 20Hz. In addition to this, scheduling mecha-
nisms such as those described in [38] could be useful.

Second, in the experiment detailed in Sect. 5.1, the cam-
eras’ field of view were completely disjointed. Special focus 
must be done when two cameras are pointing at the same 
entity, as some conflicts could occur. While having the same 
field of view may not be useful for fixed camera devices, this 
could be especially important in the case of watch robots.

One practical feature is that of fault tolerance, system 
reliability and recovery mechanisms. In such a complex 
system, many troubles can take place: failed delta updates, 
camera or robot failures, misleading delta timing, etc. 
Consequently, a satisfactory error handling, the ability of 
maintaining a sufficient level of functionality and a grace-
ful return to an older correct state should be implemented. 
There are other modules that must be added or improved to 
achieve an operational cloud surveillance system at a Smart 
City level. However, these can be smoothly integrated as 
new distributed modules. An example of a new module to 
be developed is that of a central planner. This would reside 
in the cloud and would manage the whole surveillance sys-
tem with several tasks: alarming the rest of the robots (and 
humans) of an intrusion, deciding an actuation strategy, etc. 
In addition, face recognition algorithms would improve 

substantially not only the intruder detection, but also per-
son tracking.

Another open issue is how this system would behave if 
it were implemented in a more standard cloud system such 
as Amazon Web Services (AWS) or Microsoft Azure. We 
guess that an hybrid system would be required, with some 
tasks running at the edge of the network (for instance, in 
a private cloud like the one described in this paper) and 
others being moved to a pay-as-you-go commercial cloud 
platform. In particular, the high-level tasks associated 
with complex surveillance systems for Smart Cities would 
require a pure cloud implementation.

7 � Conclusions

In this paper, a cloud-based, collaborative, world-model 
based surveillance prototype is presented. To the author’s 
knowledge, this is the first implementation of a volumet-
ric, 3D, object-oriented, cloud-based world model (includ-
ing semantic information). Furthermore, the proposal of 
using simple embedded devices and mobile “watch” robots 
that can offload computation to the cloud is also novel in 
the field of surveillance. From the experiments performed 
with our prototype, several conclusions can be extracted: 
To begin with, the use of an object-oriented world model 
allowed the easy collaboration between multiple devices. 
This allows for all of them to have a complete view of a 
room (as seen in the proof-of-concept experiment) or, even-
tually, of a complete building or neighborhood in Smart 
Cities. The cloud eases the implementation of a central 
intelligence that will allow the coordination and realization 
of more complex tasks and surveillance strategies. In addi-
tion to this, the ability of the cloud to scale up and back 
compute resources does really help to deal with innumer-
able scenarios.

Second, the use of Cloud Offloading makes the use of 
small embedded devices possible. Thanks to the vast com-
puting power that the cloud offers, it is possible to have 
very simple devices with just a camera and a wireless con-
nection. On the other side, more powerful devices can be 
smoothly integrated so that they perform all the complex 
calculations on their own. In this sense, with our flexible 
offloading approach a wide variety of heterogeneous setups 
is more than possible. A step further could be taken and, 
apart of having a centralized Cloud System for offload-
ing, alternatives such as P2P Cloud could be studied and 
combined [28]. 802.11ac could perfectly work for several 
configurations, allowing even the use of mobile “watch” 
robots, although protocols and software layers still need 
more development so as to reach the theoretical bandwidth 
and to reduce and bound latencies.



Acknowledgements  The work shown in this paper has been sup-
ported by the Spanish grant (supported by the Ministerio de 
Economía y Competitividad and the European Regional Development 
Fund) COFNET (Event-based Cognitive Visual and Auditory Sensory 
Fusion, TEC2016-77785-P) and by Andalusian Regional Excellence 
Research Project grant (with support from the European Regional 
Development Fund) MINERVA (P12-TIC-1300).

References

1. Why Hypertable? | Hypertable-Big Data. Big Performance. URL
http://hypertable.com/why_hypertable/

2. Ahmed, T., Pathan, A.S., Ahmed, S.: Adaptive algorithms for
automated intruder detection in surveillance networks. In: 2014
International Conference on Advances in Computing, Com-
munications and Informatics ICACCI, pp. 2775–2780 (2014).
doi:10.1109/ICACCI.2014.6968617

3. Alamri, A., Hossain, M.S., Almogren, A., Hassan, M.M., Alnaf-
jan, K., Zakariah, M., Seyam, L., Alghamdi, A.: QoS-adaptive
service configuration framework for cloud-assisted video sur-
veillance systems. Multimedia Tools and Applications pp. 1–16
(2015). doi:10.1007/s11042-015-3074-7. http://0-link.springer.
com.fama.us.es/article/10.1007/s11042-015-3074-7

4. Angin, P., Bhargava, B., Helal, S.: A Mobile-Cloud Collaborative
Traffic Lights Detector for Blind Navigation. In: 2010 Eleventh
International Conference on Mobile Data Management (MDM),
pp. 396–401 (2010). doi:10.1109/MDM.2010.71

5. Appeldoom, R.: A volumetric object-oriented world model
applied in robot navigation. Master Thesis, Eindhoven Univer-
sity of Technology, Eindhoven (2014)

6. Kim, B., Bhaskar, K.P.: Special section on emerging multime-
dia technology for smart surveillance system with iot environ-
ment. J. Supercomput. 73(3), 923–925 (2017). doi:10.1007/
s11227-016-1939-9

7. Ben Hamida, A., Koubaa, M., Ben Amar, C., Nicolas, H.:
Toward scalable application-oriented video surveillance sys-
tems. Sci. Inf. Conf. (SAI) 2014, 384–388 (2014). doi:10.1109/
SAI.2014.6918215

8. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wal-
lach, D.A., Burrows, M., Chandra, T., Fikes, A., Gruber,
R.E.: Bigtable: A Distributed Storage System for Structured
Data. ACM Trans. Comput. Syst. 26(2), 4:1–4:26 (2008).
doi:10.1145/1365815.1365816

9. Charfi, E., Chaari, L., Kamoun, L.: PHY/MAC enhancements
and QoS mechanisms for very high throughput WLANs: a sur-
vey. IEEE Commun. Surveys Tutor. 15(4), 1714–1735 (2013).
doi:10.1109/SURV.2013.013013.00084

	10. Dogmus, Z., Papantoniou, A., Kilinc, M., Yildirim, S., Erdem,
E., Patoglu, V.: Rehabilitation robotics ontology on the cloud. In:
2013 IEEE International Conference on Rehabilitation Robotics
(ICORR), pp. 1–6 (2013). doi:10.1109/ICORR.2013.6650415

	11. Elfring, J., van den Dries, S., van de Molengraft, M.J.G., Stein-
buch, M.: Semantic world modeling using probabilistic multiple
hypothesis anchoring. Robotics and Autonomous Systems 61(2),
95–105 (2013). doi:10.1016/j.robot.2012.11.005, http://www.
sciencedirect.com/science/article/pii/S0921889012002163

	12. Ghose, A., Chakravarty, K., Agrawal, A.K., Ahmed, N.:
Unobtrusive Indoor Surveillance of Patients at Home Using
Multiple Kinect Sensors. In: Proceedings of the 11th ACM
Conference on Embedded Networked Sensor Systems, Sen-
Sys ’13, pp. 40:1–40:2. ACM, New York, NY, USA (2013).
doi:10.1145/2517351.2517412

	13. Guizzo, E.: Robots with their heads in the clouds. IEEE Spec-
trum 48(3), 16–18 (2011). doi:10.1109/MSPEC.2011.5719709

	14. Hamida, A.B., Koubaa, M., Nicolas, H., Amar, C.B.: Video sur-
veillance system based on a scalable application-oriented archi-
tecture. Multimedia Tools and Applications pp. 1–27 (2015).
doi:10.1007/s11042-015-2987-5, http://0-link.springer.com.
fama.us.es/article/10.1007/s11042-015-2987-5

	15. Hassan, M., Hossain, M., Al-Qurishi, M.: Cloud-based mobile
IPTV terminal for video surveillance. In: 2014 16th International
Conference on Advanced Communication Technology (ICACT),
pp. 876–880 (2014). doi:10.1109/ICACT.2014.6779086

	16. Park, H.D.: Scalable architecture for an automated surveil-
lance system using edge computing. J. Supercomput. 73(3), 926
(2017). doi:10.1007/s11227-016-1750-7

	17. Hossain, M.A.: Framework for a cloud-based multimedia sur-
veillance system. International Journal of Distributed Sensor
Networks 10(5), 135,257 (2014). doi:10.1155/2014/135257

	18. Iigo-Blasco, P., Diaz-del Rio, F., Romero-Ternero, M.C., Cagi-
gas-Muiz, D., Vicente-Diaz, S.: Robotics software frameworks
for multi-agent robotic systems development. Robot. Auton.
Syst. 60(6), 803–821 (2012). doi:10.1016/j.robot.2012.02.004

	19. Khetrapal, A., Ganesh, V.: Hbase and hypertable for large scale
distributed storage systems. Dept. of Computer Science, Purdue
University (2006). Available at: urlhttp://cloud.pubs.dbs.uni-leip-
zig.de/node/46

	20. Limna, T., Tandayya, P.: A flexible and scalable component-
based system architecture for video surveillance as a service,
running on infrastructure as a service. Multimedia Tools and
Applications pp. 1–27 (2014). doi:10.1007/s11042-014-
2373-8, http://0-link.springer.com.fama.us.es/article/10.1007/
s11042-014-2373-8

	21. Liu, J., Nishimura, S., Araki, T.: Wally: A Scalable Distributed
Automated Video Surveillance System with Rich Search Func-
tionalities. In: Proceedings of the 22Nd ACM International Con-
ference on Multimedia, MM ’14, pp. 729–730. ACM, New York,
NY, USA (2014). doi:10.1145/2647868.2654872

	22. Lunenburg, J., van den Dries, S., Bento Ferreira, L., van de
Molengraft, M.J.G.: Tech United Eindhoven @Home 2015 Team
Description Paper. Eindhoven University of Technology, Eind-
hoven, Tech. rep. (2015)

	23. Alsmirat, M.A., Jararweh, Y.: Internet of surveillance: a cloud
supported large-scale wireless surveillance system. J. Supercom-
put. 73(3), 973 (2017). doi:10.1007/s11227-016-1857-x

	24. Martins, G.: Reducing Communication Delay Variability for a
Group of Robots. Ph.D. thesis, University of Denver, Denver,
CO, USA (2013)

	25. Meinel, L., Findeisen, M., Hes, M., Apitzsch, A., Hirtz, G.:
Automated real-time surveillance for ambient assisted living
using an omnidirectional camera. In: 2014 IEEE International
Conference on Consumer Electronics (ICCE), pp. 396–399
(2014). doi:10.1109/ICCE.2014.6776056

	26. Neal, D., Rahman, S.M.: Video surveillance in the cloud-com-
puting? In: 2012 7th International Conference on Electrical
and Computer Engineering, pp. 58–61 (2012). doi:10.1109/
ICECE.2012.6471484

	27. Oh, J.M., Moon, N., Hong, S.: Trajectory based database man-
agement for intelligent surveillance system with heterogeneous
sensors. Multimedia Tools and Applications pp. 1–16 (2015).
DOI 10.1007/s11042-015-2725-z. http://link.springer.com/
article/10.1007/s11042-015-2725-z

	28. Ozalp Babaoglu, Moreno Marzolla: Escape From the Data
Center: The Promise of Peer-to-Peer Cloud Computing. IEEE
Spectrum Magazine (2014)

	29. Prati, A., Vezzani, R., Fornaciari, M., Cucchiara, R.: Intel-
ligent video surveillance as a service. In: Atrey, P.K., Kan-
kanhalli, M.S., Cavallaro A. (eds.) Intelligent multimedia
surveillance, pp. 1–16. Springer Berlin Heidelberg (2013).
doi:10.1007/978-3-642-41512-8_1

https://doi.org/10.1109/ICACCI.2014.6968617
https://doi.org/10.1007/s11042-015-3074-7
http://0-link.springer.com.fama.us.es/article/10.1007/s11042-015-3074-7
http://0-link.springer.com.fama.us.es/article/10.1007/s11042-015-3074-7
https://doi.org/10.1109/MDM.20
https://doi.org/10.1007/s11227-016-1939-9
https://doi.org/10.1007/s11227-016-1939-9
https://doi.org/10.1109/SAI.2014.6918215
https://doi.org/10.1109/SAI.2014.6918215
https://doi.org/10.1145/1365815.1365816
https://doi.org/10.1109/SURV.2013.013013.00084
https://doi.org/10.1109/ICORR.2013.6650415
https://doi.org/10.1016/j.robot.2012.11.005
http://www.sciencedirect.com/science/article/pii/S0921889012002163
http://www.sciencedirect.com/science/article/pii/S0921889012002163
https://doi.org/10.1145/2517351.2517412
https://doi.org/10.1109/MSPEC.2011.5719709
https://doi.org/10.1007/s11042-015-2987-5
http://0-link.springer.com.fama.us.es/article/10.1007/s11042-015-2987-5
http://0-link.springer.com.fama.us.es/article/10.1007/s11042-015-2987-5
https://doi.org/10.1109/ICACT.2014.6779086
https://doi.org/10.1007/s11227-016-1750-7
https://doi.org/10.1155/2014/135257
https://doi.org/10.1016/j.robot.2012.02.004
https://doi.org/10.1007/s11042-014-2373-8
https://doi.org/10.1007/s11042-014-2373-8
http://0-link.springer.com.fama.us.es/article/10.1007/s11042-014-2373-8
http://0-link.springer.com.fama.us.es/article/10.1007/s11042-014-2373-8
https://doi.org/10.1145/2647868.2654872
https://doi.org/10.1007/s11227-016-1857-x
https://doi.org/10.1109/ICCE.2014.6776056
https://doi.org/10.1109/ICECE.2012.6471484
https://doi.org/10.1109/ICECE.2012.6471484
http://link.springer.com/article/10.1007/s11042-015-2725-z
http://link.springer.com/article/10.1007/s11042-015-2725-z
https://doi.org/10.1007/978-3-642-41512-8_1


	30. Riazuelo, L., Civera, J., Montiel, J.M.M.: C2tam: a cloud frame-
work for cooperative tracking and mapping. Robot. Auton. Syst.
62(4), 401–413 (2014). doi:10.1016/j.robot.2013.11.007

	31. del Rio, F.D., Salmeron-Garcia, J., Sevillano, J.L.: Extending
amdahl’s law for the cloud computing era. Computer 49(2),
14–22 (2016). doi:10.1109/MC.2016.49

	32. RTC Group: Cloud Based Surveillance System (2015). URL
https://www.youtube.com/playlist?list=PLgUj9dv84AxAVFttqu
Wg1VPaza5no5b2K

	33. Seo, K.T., Hwang, H.S., Moon, I.Y., Kwon, O.Y., Kim, B.J.:
Performance comparison analysis of linux container and virtual
machine for building cloud. Adv. Sci. Technol. Lett. 66(105–
111), 2 (2014)

	34. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing:
Vision and challenges. IEEE Internet of Things Journal pp. 637–
646 (2016). doi:10.1109/JIOT.2016.2579198. http://ieeexplore.
ieee.org/document/7488250/

	35. Shim, J., Lim, Y., Park, J.: Architectural Design of Cloud
Gateway in Smart Surveillance System. In: Proceedings of

the 2013 Research in Adaptive and Convergent Systems, 
RACS ’13, pp. 261–266. ACM, New York, NY, USA (2013). 
doi:10.1145/2513228.2513320

	36. Song, B., Tian, Y., Zhou, B.: Design and Evaluation of
Remote Video Surveillance System on Private Cloud. In:
2014 International Symposium on Biometrics and Security
Technologies (ISBAST), pp. 256–262 (2014). doi:10.1109/
ISBAST.2014.7013131

	37. Waibel, M., Beetz, M., Civera, J., D’Andrea, R., Elfring, J., Gal-
vez-Lopez, D., Haussermann, K., Janssen, R., Montiel, J.M.M.,
Perzylo, A., Schiessle, B., Tenorth, M., Zweigle, O., van de
Molengraft, R.: RoboEarth. IEEE Robot. Autom. Mag. 18(2),
69–82 (2011). doi:10.1109/MRA.2011.941632

	38. Zhang, T., Chowdhery, A., Bahl, P.V., Jamieson, K., Banerjee,
S.: The Design and Implementation of a Wireless Video Surveil-
lance System. In: Proceedings of the 21st Annual International
Conference on Mobile Computing and Networking, Mobi-
Com ’15, pp. 426–438. ACM, New York, NY, USA (2015).
doi:10.1145/2789168.2790123

https://doi.org/10.1016/j.robot.2013.11.007
https://doi.org/10.1109/MC.2016.49
https://doi.org/10.1109/JIOT.2016.2579198
http://ieeexplore.ieee.org/document/7488250/
http://ieeexplore.ieee.org/document/7488250/
https://doi.org/10.1145/2513228.2513320
https://doi.org/10.1109/ISBAST.2014.7013131
https://doi.org/10.1109/ISBAST.2014.7013131
https://doi.org/10.1109/MRA.2011.941632
https://doi.org/10.1145/2789168.2790123

	Towards a cloud-based automated surveillance system using wireless technologies
	Abstract 
	1 Introduction
	2 System model
	3 Related work
	4 Implementation of the platform
	4.1 Elements of the world model
	4.2 Cloud world model storage
	4.3 Sensor integration modules

	5 Preliminary results
	5.1 Proof-of-concept experiment
	5.2 World model querying
	5.2.1 Communication Technology Test
	5.2.2 Stability test
	5.2.3 Interference test

	5.3 Sensor integration offloading

	6 Future work
	7 Conclusions
	Acknowledgements 
	References




