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An excess electron at polyethylene/vacuum interfaces
using a reaction-field technique†

Yang Wanga, Kai Wua and David Cubero∗b

We study the surface states of an excess electron at polyethylene/vacuum interfaces using an
accurate reaction-field method, specifically designed to take into account the long range inter-
action of the excess electron and the dielectric surface. The method is shown to validate the
energy levels recently reported with a simple perturbation theory scheme, while providing a better
description of the wave function at the vacuum. The use of a single particle pseudopotential al-
lows the simulation of large interface samples, showing distinct differences between the electron
surface states at amorphous and crystalline interfaces due to their different atomic density.

1 Introduction
The nature of the dynamics and trapping of excess electrons in
condensed matter is of considerable interest due to its appear-
ance in numerous applications, from photovoltaics1 to electrical
insulation2 and the design of new nanocomposite dielectrics3, to
name a few.

The study of a single excess electron in an atomic environment
also serves as a paradigm for mapping complex many-body prob-
lems, where electron correlation effects are important, into sim-
pler one-electron models.

Our focus here is polyethylene (PE), the polymeric organic in-
sulator with the simplest chemical structure (a polymer with a re-
peated monomer —CH2—), with uncountable industrial applica-
tions, from kitchen boards to high-tension cables. Excess-electron
trapping in polyethylene has been linked to aging and dielectric
breakdown2.

One-electron pseudopotential methods, using mixed quantum-
classical simulations, have been shown to be the state of the
art for the excess electron in simple fluids such as water4–6,
methane7,8 or ethane7,9, with current Density-Functional-Theory
(DFT) calculations still exhibiting somehow large, uncontrolled
inaccuracies of about 1 eV in the excess-electron ground-state en-
ergies. In addition, one-electron methods permits the simulation
of much larger systems than DFT, allowing for a better description
of strongly inhomogeneous systems such as interfaces.

In the context of organic alkane insulators, DFT calculations
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7, 41011 Sevilla, Spain; E-mail: dcubero@us.es
† Electronic Supplementary Information (ESI) available: [with further details of the
pseudopotential describing the interaction of the atoms with the excess electron].
See DOI: 10.1039/b000000x/

has been recently8 benchmarked against experimental results of
excess electrons in fluid methane. DFT methods, even using the
hybrid B3LYP functional, were not able8 to provide an accurate
prediction for the excess electron ground-state energy, with large
discrepancies with respect the experimental values, up to 2 or 3
eV. On the other hand, one-electron pseudopotential methods7,
based on fully ab initio calculations, have been shown to pro-
vide accurate predictions, with energy discrepancies smaller than
0.1 eV. A similar agreement is found in larger-chain alkane in-
sulators such as ethane or propane7,9. While the success of the
one-electron method can be physically justified in the strong Pauli
repulsion between the excess electron and the electrons at the
atoms in these insulators—with a fundamental band gap of about
9 eV— , the ultimate justification lies in the observed unrivaled
agreement with experimental data.

In a recent work10, the lowest excess-electron states on PE-
vacuum interfaces were studied using DFT and the same one-
electron pseudopotential considered here—also called a Lanczos
method in Refs.8,10. Here we extend that study by considering
larger samples of PE, which reveals previously unnoticed differ-
ences in the excess electron states at the amorphous and crys-
talline surfaces. Furthermore, the one-electron method used in
Ref.10 to account for the long-range interaction with the excess
electron was based on a perturbation theory technique which, al-
though providing a good estimation of the excess-electron ener-
gies, does not describe precisely the long-range interaction of the
excess electron with the surface of the dielectric.

It is well known that an excess electron feels an attraction to
the surface of a dielectric, forming surface states. From purely
electrostatic considerations, using for example the method of mir-
ror charges11, a point charge near the surface of a dielectric (at,
say z = z0) feels a Coulomb, attractive interaction with the mirror
charge at the dielectric (z =−z0). This Coulomb electrostatic po-
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tential goes to minus infinity as the point charge approaches the
dielectric surface (z = 0). However, a real excess electron would
not feel a continuum medium at such a short distance, but a fi-
nite interaction with the nearest atoms at the dielectric. In this
paper, we implement a reaction-field method that takes into ac-
count the discrete atomistic interaction at short distances, as well
as the Coulomb long-range interaction with the dielectric inter-
face at larger distances.

The paper is organized as follows. First, we present in Sec. 2
the reaction-field method we have developed to account for the
long-range interaction with the interface, the simple perturbation
theory method used in Ref.10, and the simulation technique used
to generate large samples of polyethylene/vacuum interfaces. In
Sec. 3 we discuss the excess-electron surface states found in amor-
phous and crystalline interfaces of polyethylene, in addition to a
comparison with the results reported in Ref.10 for smaller slabs
using the perturbation theory method. Finally, Sec. 4 ends with
the main conclusions.

2 Methodology

2.1 A reaction-field method for the interface

The main idea behind the reaction-field method is that the atomic
landscape surrounding the excess electron can be divided into
two parts: i) inside a cutoff sphere, of radius Rc, centered at
the point charge, in which the atoms are treated explicitly in a
discrete manner; and ii) the region outside the cutoff sphere, in
which the dielectric is regarded as a continuum medium, with a
uniform and isotropic permitivity ε. The assumption is that the
cutoff radius is large enough, so that the atoms are far away from
the electron and their interaction can be described with a con-
tinuum model. The excess electron creates a polarization on the
truncated dielectric medium —i.e. the whole dielectric without
the cutoff sphere—, which in turn produces an electric field ERF

that is felt by the excess electron and every atom inside the cutoff
sphere.

The permitivity ε can be determined from experiment, or,
more consistently, from a bulk simulation using the own force-
field9,12,13, which may use ab initio data for the atomic polariz-
abilities9 —see more details in Sec. 2.2.

The reaction-field method is frequently used to describe dipole-
dipole interactions12 in homogeneous systems as a simple, fast
alternative to Ewald sums. Even in highly inhomogeneous sys-
tems, like in vapor-liquid or solid-liquid interfaces, the applica-
tion of a reaction-field method specifically designed for homoge-
neous systems can provide reasonable results14. However, the
semi-continuum ideas behind the reaction-field technique are not
limited to homogeneous systems. In this section we present a
reaction-field method specifically designed for flat interfaces be-
tween two mediums with different permitivities.

Let us assume that at z < 0 there is a dielectric of permitivity
ε, whereas at z > 0 the permitivity is ε0. The system is infinite in
the x and y directions. Thus, without loss of generality, we can
assume the excess electron, with charge q, is located along the
z-axis at r0 = (0,0,z0).

The electrostatic potential V0 created by the point charge and

Rc

z

Fig. 1 Calculation of the reaction field. The dielectric, with permitivity ε,
is at z < 0, the excess electron, with charge q, is at z = z0, and the cutoff
sphere, with radius Rc is centered at the point charge. The atoms inside
the cutoff sphere are explicitly taken into account in the simulations, while
the region in the dielectric, after subtracting the cutoff sphere part, is
considered as a continuum dielectric, creating a reaction field ERF inside
the sphere. This field is computed by subtracting the contribution created
by the dielectric region inside the cutoff sphere, which is generated by
the surface polarization densities σS and σF .

the full continuum dielectric can be easily computed at any point
in space by using the method of mirror charges11. We are here
interested in the (reaction-field) potential VRF created by the re-
maining part of the dielectric after subtracting the dielectric re-
gion inside the cutoff sphere centered at the excess electron, i.e.

VRF =V0−
q

4πε0|r− r0|
−VS−VF , (1)

where r = (x,y,z), VS is the potential created by the polarization
surface charge density σS at the part of the cutoff sphere’s surface
inside the dielectric, and VF the potential created by the polariza-
tion surface charge density σF at the dielectric’s surface inside the
cutoff sphere, see Fig. 1. As reported below, these surface densi-
ties can be computed from the analytical expression of V0. In turn,
given the expresions of V0, σS and σF , the electric reaction field,
ERF = −∇VRF, can be easily computed at every atom inside the
cutoff sphere, at each timestep of the simulation, by direct nu-
merical integration. This is a necessary step in the self-consistent
algorithm used in the simulations to compute the local field at
each atom9. Furthermore, the simulation also requires the inter-
action energy URF between the excess electron and the remaining
part of the dielectric (dielectric without the cutoff sphere part),
i.e.

URF =
q
2

VRF(r0). (2)

2.1.1 Point charge at the vacuum.

For z0 > 0, the full potential is given by11

V0(r) =


1

4πε2

(
q+q′
|r−r0|

)
z < 0

1
4πε0

(
q

|r−r0| +
q′
|r+r0|

)
z > 0

(3)

where

q′ =−q
(

ε− ε0

ε + ε0

)
. (4)

The charge density at the dielectric surface, at a distance ρ =√
x2 + y2, is then given by (E0 =−∇V0)

σF (ρ) = (ε− ε0)E0 · ez =
q′

2π

d
(ρ2 + z2

0)
3/2

, (5)
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and at the cutoff sphere surface

σS = (ε− ε0)E0 · (r− r0)/|r− r0|=−
q′

2πR2
c
, (6)

which yields, after a somehow lengthy, but straightforward calcu-
lation,

URF =

{
qq′

8πε0Rc

(
1− z0

2Rc

)
0≤ z0 ≤ Rc

qq′
16πε0z0

Rc ≤ z0
(7)

Note that for z0 > Rc the reaction-field energy (7) explicitly ac-
counts for the expected Coulomb interaction between the point
charge and the dielectric surface.

2.1.2 Point charge at the dielectric.

For z0 < 0, the full potential is11

V0(r) =


1

4πε2

(
q

|r−r0| +
−q′
|r+r0|

)
z < 0

1
4πε0

(
q+q′
|r−r0|

)
z > 0

(8)

which implies

σF (ρ) =
−q′ε0

2πε

d
(ρ2 + z2

0)
3/2

, (9)

and, with θ being the azimuth (cosθ = (z− z0)/R),

σS(θ) =
ε− ε0

4πε

[
q

R2
c
+

−q′(Rc +2z0 cosθ)

(R2
c +4z2

0 +4z0Rc cosθ)3/2

]
, (10)

yielding

URF =

{
qq′

8πε0Rc

(
1− z0

2Rc

ε0
ε

)
0≤ |z0| ≤ Rc

qq′
16πε z0

+ ε+ε0
ε

qq′
8πε0Rc

Rc ≤ |z0|
(11)

2.2 The simple perturbation theory method

2.2.1 Homogeneous systems.

We can use the result (11) to obtain the reaction-field energy for
the homogeneous case, i.e. for a simulation at the bulk of the
dielectric. By taking the limit z0 → −∞ in (11), the interface is
sent away, yielding

URF =− ε− ε0

ε

q2

8πε0Rc
. (12)

This energy can be interpreted as the long-range correction that
has to be added to a bulk simulation in which only the interaction
with the atoms inside the cutoff sphere is considered. In Ref.9, by
using a mean field approach15, the following expression was used

URF =− fLα0n
2ε0

q2

4πε0Rc
, (13)

where α0 is the molecular polarizability∗, n is the correspond-
ing atomic number density, and fL = [1+ (2/3)α0n/ε0]

−1 is the
Lorentz local-field factor15,16.

∗Note that the molecular polarizability α0 is related to the molecular polarizability
volume α reported in Ref. 9 by the formula α0 = α4πε0, due to the change between
SI and cgs units.

Combining (12) and (13) yields the well-known Clausius-
Mossetti equation

ε/ε0−1
ε/ε0 +2

=
α0n
3ε0

, (14)

which relates the dielectric constant to the atomic polarizabilities.
Alternatively, the fact that the cutoff sphere must be sufficiently

large to offer a good microscopic description suggests the use of
1/Rc as a small parameter in a perturbation theory approach. This
leads to a dependency in the energy correction of the form

URF =− A
Rc

, (15)

where A is a constant that can be obtained from the simulation
by linear fitting the data obtained at different cutoffs. In fact,
this method has been shown to provide corrections in excellent
agreement with the above result (13) in homogeneous, isotropic
setups such as fluid and amorphous phases9.

2.2.2 Inhomogeneous systems.

The perturbation theory method of Eq. (15) is not limited to ho-
mogeneous or isotropic systems, thus providing a simple simu-
lation technique useful for more complex setups. In Ref.10 this
method was applied to study PE-vacuum interfaces using small
slabs.

Note that this technique provides a simple constant correc-
tion to the excess-electron energies, without otherwise modifying
the electron interaction potential. As a consequence, the excess-
electron wavefunctions are the same as those returned by a sim-
ulation with interactions truncated by the cutoff sphere, and thus
less accurate than those obtained with the reaction-field method
described above—which, for example, does not neglect the long-
range Coulomb interaction with the dielectric interface. We com-
pare the results of both methods in Sec. 3.2.

2.3 Generation of the PE-vacuum interface

The generation of atomic configurations in the simulation rep-
resenting a PE-vacuum interface can be a tricky task for amor-
phous PE due to the polymeric character of the material: The
atomic chains must fold back at the interface in a reasonable way,
without the unnatural chain-breaking that would result by sim-
ply truncating a simulation cell used for the bulk—with periodic
boundary conditions.

The new amorphous-vacuum interfaces reported in this paper
were generated following a procedure similar to the one used in
Ref.13 for amorphous-lamellae interfaces. A single lamellae block
with a thickness of about 50 Å, made up of 10 PE chains with 552
CH2 units, was replicated one time in the z direction. The atom
coordinates in the first lamellae block was kept fixed at all times,
while the second block was melted by being in contact with a
thermostat that increased its temperature from 300 K to 500 K in
a time interval of 3 ns, being kept at 500 K for another 3 ns in or-
der to insure the melting of the second block, and then quenched
by cooling to 300 K over 3 ns. Periodic boundary conditions in
all directions and a barostat, holding the pressure at 1 atm, was
used in the simulations. Finally, the first lamellae block is re-
moved, leaving an amorphous slab with a measured density that
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-0.27 eV -0.22 eV -0.19 eV

-0.10 eV-0.11 eV-0.21 eV

Fig. 2 Surface states at amorphous (top) and crystalline (bottom) polyethylene/vacuum interfaces. For each setup, the first three excess electron
states are shown, with the numbers indicating the corresponding energies. The probability density of the excess electron at each point is represented
as a source of light, the lighter the region the higher the probability density. The units CH2 in the polymer chains are represented by a sphere.

Fig. 3 Marginal probability density in the z-direction for the same states
shown in Fig. 2. The numbers in brackets indicate the kinetic energy of
each state (in eV).

is in good agreement with the experimental value17 0.86 g/cm3.
The crystalline phases of PE were simulated with parallel all-

trans PE chains which have their both ends connected through
periodic boundary conditions along a direction perpendicular to
the z-axis. The system was equilibrated at 300 K at constant pres-
sure (1 atm), producing an atomic of density of 1.03 g/cm3, also
in agreement with the experimental measure17 1.01 g/cm3.

Each slab provides two PE-vacuum interfaces, which were used
in the simulation with the reaction-field method after transform-
ing the z-coordinates in order to locate the interface of interest at
z = 0. In these latter simulations, periodic boundary conditions
were applied only in the x and y directions.

The force field and the rest of the technical details are like in
Ref.13, with a standard cutoff radius of Rc = 9Å.

The rest of the details of the excess-electron pseudopotential
are the same as in Ref.9, which have been summarized for conve-
nience in the Supplemental Material†.

The pseudopotential is computed on a 3D grid, with a fixed grid
spacing of 0.7 Å, and the kinetic energy operator evaluated using
a fast Fourier transform (FFT)—thus with a maximum energy of
76.7 eV from the grid spacing. The quantum states of the excess

electron are then found by solving the Schrödinger equation using
a standard Lanczos method18.

3 Results and discussion

3.1 Amorphous and crystalline surface states

The application of the reaction-field method to the PE-vacuum in-
terfaces produces the expected surface states, as shown in Fig. 2.
Though all states are delocalized through a direction parallel
to the interface, only the ground state is observed to extend
somehow uniformly through the dielectric surface. The excited
states show some points at the surface where the probability den-
sity is negligible, in analogy with the well-known nodes of one-
dimensional eigenstates19—which exhibit an increasing number
of nodes .

The shown excited levels also are observed to be quasidegener-
ated, an indication that they can be grouped9 to form states with
a finite momentum, moving along the dielectric surface.

Though the excess electron states at the amorphous and crys-
talline surfaces appear similar, they have some distinctive fea-
tures. The amorphous surface exhibit deeper electron levels
than the crystalline ones, about 0.06 eV deeper for the ground
state and 0.1 eV for the following levels. Since averaging over
10 independently-generated configurations produces uncertain-
ties in the observed levels of less than ±0.01 eV, this distinct en-
ergy difference between both phases is not subject to thermosta-
tistical fluctuations.

But the wave function exhibit larger discrepancies. Figure 3
shows the accumulated probability density in the direction per-
pendicular to the interface, clearly indicating that the excess elec-
tron sits at a distance from the crystalline surface, with a peak at
about 3 Å from the dielectric—note the coordinate origin z = 0 is
chosen to match the rightmost carbon in the PE slab. In contrast,
the excess electron prefers to be nearer the amorphous surface,
with the peak just inside the dielectric. These features are not
particular of the ground state, as in each dielectric surface all lev-
els are observed in Fig. 3 to collapse to almost the same marginal
density—despite being distinctly different in the other directions,
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as shown in Fig. 2.

The disparity between the surface states in the amorphous and
crystalline interfaces can be rationalized by recalling the atomic
density in each morphology and their effect on the excess elec-
tron. Inside the crystalline regions of PE the atomic density is
known13,20 to be very large for the excess electron, being the re-
pulsion from the atomic centers the dominant interaction, and
effectively expelling the electron out of the material. In Ref.20 it
was shown that this is mechanism was responsible for important
differences in the excess-electron properties between the crys-
talline phases of PE and long-chain alkanes —which had been
used as experimental models of PE—, with the excess electron re-
siding at the empty gap separating the layers of long-chain alka-
nes.

In contrast, the atomic density in the amorphous region is much
smaller, permitting the excess electron to lie closer to the atoms,
and thus lowering its energy due to an increased polarization en-
ergy. This relationship between the electron energy values and
atomic density has also been confirmed by the successful corre-
spondence13 between localized states and natural cavities—due
to atomic density fluctuations—found in the bulk phases of PE.

The lowest energy levels in the PE-vacuum surfaces are inside
the range of the localized states found13 in the bulk of amor-
phous PE, which varies from −0.4 eV to −0.1 eV, though with the
important difference that the surface states studied here are not
localized, but extended throughout the dielectric surface. Their
energies are also smaller than the energies of the conducting, ex-
tended states inside the amorphous and crystalline bulk regions,
which are13 larger than −0.1 eV and 0.46 eV, respectively.

3.2 Comparison with the perturbation theory method

Figure 4 shows the excess electron density for the first two surface
levels, obtained with the perturbation theory method described in
Sec. 2.2 for a typical PE-vacuum system studied in Ref.10. The PE
slab is formed by 4 chains with 20 CH2 units between a vacuum
gap of almost 55 Å, with periodic boundary conditions being in
place in all directions. The results obtained with the reaction-field
method of Sec. 2.1, for this same configuration, are also plotted
for comparison—two reaction-field simulations were run, one for
each interface at each side of the slab.

First, note that the two shown levels of the perturbation theory
method exhibit similar probability in both PE-vacuum interfaces.
This feature is absent in the reaction-field method by construc-
tion, because in the latter case periodic boundary conditions are
not considered in the direction perpendicular to the surface, and
the reaction-field correction depends explicitly on the interface
location and orientation. Since the surface states are intrinsically
localized around a single interface, each level is doubled in the
perturbation theory method—one state for each interface. This
is confirmed by the quasi-degeneration shown in Fig. 4—a linear
combination of both states can result in probability mainly in one
interface.

However, note that, despite the large width (55 Å) of the vac-
uum region, finite size effects are still present in the perturbation
theory calculation, as evidenced by the probability density of the

Fig. 4 Marginal probability density in the z-direction for a PE slab studied
in Ref. 10 using the perturbation theory (black solid and red dashed line).
The densities obtained with the reaction-field method are also shown
(blue and green dotted lines), though they have been divided by 2 for
the sake of the comparison. The numbers in brackets indicate the kinetic
energy of each state. The top panel shows the atomic configuration in
the simulation cell.

lowest level in Fig. 4, which clearly does not decay to zero at the
center of the vacuum gap—unlike the other states shown in the
figure.

In fact, the comparison with the reaction-field method results
indicates that the energy values obtained with the perturbation
method are in reasonable agreement, but there are somehow
larger discrepancies in the wave function—which, as discussed in
Sec. 2.2.2, is expected given the nature of the perturbation the-
ory method. While a reasonable agreement in the position of the
distribution’s peak can be seen in Fig. 4, and also in the tail that
falls into the dielectric, the wave function’s tail into the vacuum
is not properly described by the perturbation theory method, dis-
tinctly showing a slower decay than the reaction-field method—
both the ground and first excited state exhibit a slower decay, and
thus also a linear combination of them. This is expected, since the
perturbation theory method does not account for the Coulomb in-
teraction of the excess electron with the dielectric surface—note,
for example, that at a distance z0 from the interface, with z0 > Rc,
there are no atoms inside the cutoff sphere and the simulation
method consider no interaction with the excess electron. The
reaction-field method, being specifically designed to include that
interaction, is expected to provide a much better description of
the wave function at the vacuum.

Let us notice that the surface states shown in Fig. 4 are more
similar to the excess electron states at crystalline interfaces than
amorphous interfaces, with the probability density peaking at the
vacuum regions, at about 3 Å from the dielectric. This distance,
together with the energy value, are in good agreement with the
crystalline values shown in Fig. 3 These are also the same values
that are obtained with the perturbation theory method in a lamel-
lar PE-vacuum interface10 in which the chains are perpendicular
to the interface surface—ie. a crystalline slab with chain folds13

at the interface. The fact that the same energies are obtained in
crystalline surfaces, regardless of the orientation of the PE chains,
validates the use of an isotropic permittivity in the reaction field
method for crystalline setups.
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The atomic configuration, shown at the top panel of Fig. 4,
is not exactly crystalline, it does contains random chain folding
and some degree of disorder. However, the real carbon-to-carbon
density—defined from the leftmost carbon to the rightmost one—
of that simulated slab is 1.1 g/cm3, an atomic density actually
larger than the accepted crystalline value 1.0 g/cm3. As a refer-
ence, the carbon-to-carbon density of the amorphous slabs con-
sidered here is 0.86 g/cm3—in good agreement with the exper-
imental value. The high atomic density of the small slab shown
in Fig. 4 causes the excess electron to locate itself well into the
vacuum.

Therefore, the PE-vacuum interface studied in Fig. 4, despite
being called amorphous in Ref.10, produce surface states that are
typical of crystalline, or highly packed regions. The same applies
to the largest system considered in Ref.10, a (supposedly amor-
phous) slab formed by 4 chains with 40 CH2 units, which has a
carbon-to-carbon density of 0.97 g/cm3, also near the crystalline
value, and thus producing equivalent results. This issue illustrates
the perils of using slabs of limited size, a limitation that was in
place in Ref.10 due to the use of DFT methods on the same atomic
configurations.

The energies predicted by DFT calculations10 are off by about
1 eV when the hybrid functional B3LYP is used in a localized basis
set, which was extended to include a lattice of ghost atoms. Since
the excess electron is known to sit not near the atoms, but in
the empty space between them, this extended basis set is needed
to improve the predictions. However, a better description in the
inter-atomic space is offered by a plane-wave basis set, and the
best agreement in the excess-electron wave function is found10

with the simpler functional LDA+BP using plane waves, showing
a peak at about the same distance from the dielectric than the one
predicted in this work. Unfortunately, the energy values obtained
with this latter DFT method are off by several eV’s in the bulk10.

4 Conclusions
We have studied the excess electron states at polyethy-
lene/vacuum interfaces using a one-electron pseudopotential
method, which involves mixed quantum-classical simulations,
with an accurate reaction-field method specifically designed to
account for the Coulomb interaction of the excess electron with
the dielectric surface. The reaction-field method is based on a
partition of the region surrounding the electron into two zones:
one inner region treated with atomistic detail, the further one re-
garded as a continuum dielectric. Explicit expressions are given
in Sec. 2.1 for the interaction energy and for the calculation of
the electric field created by the continuum region.

The use of a one-electron pseudopotential method permitted
the simulation of large interfaces, showing distinct differences be-
tween amorphous and crystalline interfaces. Due to the smaller
atomic density in amorphous surfaces, the excess electron is able
to penetrate the dielectric more than in the crystalline ones, being
the probability maximum just inside the dielectric in the former,
and sitting at a distance of about 3 Å in the latter.

The comparison with recent results10 using a perturbation the-
ory method shows reasonable agreement with the excess electron
energies, and with some features of the wave function, but not

with the tail in the vacuum region, showing a much smaller decay
than with the more accurate reaction-field method. This disagree-
ment is expected, given than the perturbation theory method does
not account for the long range, Coulomb interaction of the excess
electron with the dielectric surface.

The simulation of large interfaces has allowed us to provide ac-
curate results to amorphous PE surfaces, and, in consequence, to
identify the disordered, small slabs studied in Ref.10 as crystalline
or lamellar-like, given the obtained energy values and wave func-
tion features. This identification is confirmed by the real atomic
density of the simulated slabs in Ref.10, which was typical of the
crystal or lamellar phase.

The method described here can be easily extended to more
complex situations, involving (planar) interfaces between differ-
ent dielectrics, such as PE-water, or other materials.
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