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Abstract. In this paper, the concept of homogeneity is defined, from a
topological perspective, in order to analyze how uniform is the material
composition in 2D electron microscopy images. Topological multireso-
lution parameters are taken into account to obtain better results than
classical techniques.
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1 Introduction

Microscopy imaging techniques are employed by scientists and researchers to
improve their ability to view the microscopic world. The obtained 2D images
are used to get information about structure and/or composition distributions
of the studied objects and one of the parameters to be usually required is the
analysis of the homogeneity. Certainly, the two-dimensional homogeneity ques-
tion crops up in many different scientific fields. Thus, in quality assurance pro-
grams, surface smoothness may be checked in different blocks of material. In
biological investigations, the density of a biological tissue may be recorded for
purposes of detecting regions of different contrasts [1]. In material science, elec-
tron microscopy images are used to evaluate the elemental distribution or strain
fields in order to characterize its structure.

In all these situations, the same issue arises. Given a two-dimensional matrix
of measurements, it is necessary to assess the randomness [2], the apparition of
patterns or microstructure, the lack of gradients, etc. in the image. The formula-
tion of this question overlooks any concept of a formal statistical distribution [5].
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The question is not how to characterize in a probabilistically way the observa-
tions [3,4]; rather it is to characterize how observations could relate with each
other locally. In this paper, the concept of homogeneity is defined, from a topolog-
ical perspective, in order to analyze the homogeneity in 2D electron microscopy
images. Topological multiresolution parameters are taken into account to obtain
better results than classical techniques.

2 Electron Microscopy Image Data

In recent years, GaAsSbN alloys have been established as an effective material
for solar cell applications. To solve the problems that are recurrent in quaternary
alloys, a new approach has been adopted by means of the growth of superlattice
(SL) structures. These SL structures consists in very thin layers epitaxially grown
that could give supplementary advantages over bulk counterparts, such as an
extra bandgap tunability via period thickness or better crystal qualities.

In this work, two SL structures have been studied before and after an
annealing at 800 ◦C: type-I (GaAsSbN/GaAs) and type-II (GaAsSb/GaAsN)
grown over a GaAs substrate. HAADF and LAADF images were simultaneously
acquired in STEM mode in a double aberration corrected FEI Titan3 Cubed
Themis operated at 200 kV and used to obtain distribution maps of N from a
methodology through the suitable normalization and discrimination of the inten-
sity ratios of HAADF and LAADF images [12]. Figure 1 shows these calculated
N mappings where (a) and (b) belong to type-I SL images (before and after RTA
process respectively) and (c) and (d) correspond to type-II SL images.

These mappings are built to characterize the distribution of N inside these
SL and find its relationship with the photoluminescence and photocurrent prop-
erties. Ideally, N should incorporate in a square-wave profile with a constant
and homogeneous composition obtained by random distribution of N in V-sites.
However, N competes for these lattice positions with As and Sb so there are
serious difficulties in the precise control of the Sb and N contents [7,11]. In addi-
tion, the extremely low solubility of N in these alloys could favors the formation
of N-rich regions [10,13,16]. All of this suggests that the growth of high quality
III-V-N structures may be difficult to achieve [7,8,14]. Several approaches has
been proposed to overcome these issues. On one hand, it is suggested the spatial
separation of Sb and N atoms as in type-II SL could avoid the ubiquitous growth
problems during the simultaneous growth of Sb and N that happens in type-I
improving crystal quality [9]. On the other hand, it is believed that post-growth
annealing processes may also increase the homogeneity of N within the layer by
decreasing composition fluctuations. In addition, device performance is a strong
function of the quality of the interfaces. The formation of atomically flat inter-
faces by suppressing surface undulations is fundamental to enhance their optical
properties [6,15]. In each case, to check the possible improvements of the crystal
quality, it is necessary to compare and evaluate both approaches and the effect
of the thermal annealing in terms of homogeneity.

The study of homogeneity, among others, could determine this close-
ness/distance of the ideal design. Until now, to calculate the homogeneity of



Fig. 1. Mappings of the N distribution of type-I (a) and type-II (c) as grown and after
annealing (b) y (d), respectively. We used a grey scale, where white is indicative of the
highest N content and black of the lowest one.

these images, the standard deviation of the values has been used to estimate
it. The higher the standard deviation, the lower the homogeneity. However, this
procedure is too simple for 2D analyses, as they do not take into account the
possibility of regular gradients or patterns that may add a certain degree of
symmetry or order to the material, the presence or degree of clusters as well
as the abruptness or roughness of the interfaces. Considering all this, it seems
necessary to use topological techniques to define homogeneity in order to obtain
better results.

3 Related Works

Current methods dealing with the problem of measuring how far a given material
is from a constant composition, clearly fail when trying to analyze the homo-
geneity of 2D electron microscopy images.



Linear homogeneity measures have been used in some cases for some simple
images. For example, the mean and standard deviation of the gray frequency
histogram can give an approximate idea of the two-dimensional homogeneity
when the set of images are very different in gray levels. However, for the general
case these simple values are not relevant at all. Some plain examples illustrate
this issue. Let us consider two 256×256 images with very different “homogeneity
aspects”. Firstly, a chessboard-like image with interlaced values of 0 and 255,
and secondly an image with two parts: one is pure black (0) and the other pure
white (255). Neither arithmetic mean nor standard deviation provide distinction
at all among these extreme cases (they are 127.500 and 127.501 resp.). We are
conscious that the concept of “homogeneity” is being intuitively expressed by
now, but the difference between both images obvious. Another almost homoge-
neous image where mean and deviation return paradoxically high values is an
image where each row has the gray level of the precedent plus one (in our case,
256 rows with grey from 0 to 255). In this case, mean results also in 127.500
and deviation in 73.901. Hence, it is clear that simple measures are not valid to
express the homogeneity of grey level images.

Here we present a topology-based method, in which standardized topological
numbers provide a robust quantity for measuring how uniform is the material
composition.

There have been another more sophisticated attempts in using digital topol-
ogy for measuring image’s homogeneity. One of the first one was presented in [19].
However, authors there did not provide a quantity for comparing homogeneity
among images, but a multiresolution representation that can be used for texture
characterization. More recent methods dealing with texture classification can be
seen in [17,20]. These works deal with texture classification by applying machine
learning algorithms to a set of features obtained from the image. Other more
complicated functionals have also been proposed for comparing noisy experi-
mental image data with statistical models (see [18]). However, to the best of our
knowledge, there are no results satisfying that: (1) Have been successfully applied
to Electron Microscopy Image data, and (2) provide a normalized homogeneity
measure for image comparison.

4 Topological Techniques

Let us first recall basic notions in the field of digital images and digital topology.
We denote by Z the set of relative integers. A point x ∈ Z

2 is defined by (x1, x2)
with xi ∈ Z. A 2D grayscale image may be seen as a map I from Z

2 to Z. For
each point x ∈ Z

2, I(x) is the (graylevel) intensity value of x. A binary 2D image
is then seen as the map B from Z

2 to {0, 1}.
For each point (pixel) in a given 2D image, we consider two local adjacency

relations Γ4 and Γ8 defined: For each point x ∈ Z
2:

Γ4(x) = {y ∈ Z
2; |y1 − x1| + |y2 − x2| ≤ 1}

Γ8(x) = {y ∈ Z
2;max(|y1 − x1|, |y2 − x2|) ≤ 1}



In the following, we will denote by n a number such that n = 4 or n = 8.
We define Γ ∗

n(x) = Γn(x)\{x}. The point y ∈ Z
2 is n-adjacent to x ∈ Z

2 if
y ∈ Γn(x).

In this section, electron microscopy images will be analyzed from a topological
point of view, by first of all, creating their corresponding so called “crack images”.
Crack images are binary images created by considering each possible gray level
difference among adjacent pixels. That is, if the gray-scale of image I is composed
by G gray levels, we will create G − 1 binary crack images for image I (plus an
initial gray scale image denoted as ICrk

0 ). From now on, the number of possible
gray levels in a given image I will be denoted as G, and the different levels of
gray that are actually present in I will be denoted as g1, . . . gl. In the following
Figures with binary images, value zero will be represented in black color, and
value one in white color.

First of all, if I is a (Nrows × Ncols) image, a new gray-scale image ICrk
0

with ((2∗Nrows+1)× (2∗Ncols+1)) pixels is created by adding a black frame
of width 1 surrounding the original image, and adding a new pixel between each
pair of 4-adjacent pixels in I. All these added pixels are set to the following
values: Pixels belonging to the frame surrounding the original image are set to
zero, and will be denoted as F . Pixels added between each pixel in I are set to
one. These pixels in ICrk

0 will be denoted as A. All the other pixels (the ones
corresponding to the original image) are set to their corresponding value in I
and will be denoted as O. Figure 2(a) shows a synthetic image whose gray-scale
contains 6 levels that are all of them present in the image (G = 6, l = 6, g1 = 0
and g6 = 5). An example of its corresponding ICrk

0 image is depicted in Fig. 2(b),
where F are set to zero, A are set to one and O are set to their original values.
Then, for the construction of the corresponding crack images, the gray level will
be used as a threshold for checking intensity differences among each 4-adjacent
pixel in the original image.

Fig. 2. (a) Synthetic image I showing different gray intensities and (b) its correspond-
ing ICrk

0



Algorithm 1 shows the process of crack images generation. The main idea
here, is that for each possible gray-value difference d, the corresponding crack
image ICrk

d represents fissures separating image regions whose gray-level differ-
ence is above (or equal to) this quantity d.

Algorithm 1. [Creating crack images]
Input: A digital 2D Image I in a gray-scale of G values

Generate ICrk
0 , and define pixels in A and pixels in O

for d = 1 to G do
for each point x ∈ A do

if ∃ y, z ∈ Γ ∗
4 (x) : y, z ∈ O and |ICrk

0 (y) − ICrk
0 (z)| >= d then

IC
d (x) = 0

for each point x ∈ A do
if ∃ y, z ∈ Γ ∗

4 (x) : y, z ∈ A, ICrk
d (y) = 0 and ICrk

d (z) = 0 then
ICrk
d (x) = 0

for each point x ∈ O do
n0 = #{y ∈ Γ ∗

8 (x) : ICrk
d (y) = 0}

n1 = #{y ∈ Γ ∗
8 (x) : ICrk

d (y) = 1}
if n0 > n1 then

IC
d (x) = 1

else
IC
d (x) = 0

Output:A set of G crack images ICrk
d

The corresponding crack images for the synthetic image in Fig. 2(a) are shown
in Fig. 3(a) to (e) for d = 1, d = 2, d = 3, d = 4 and d = 5 respectively. Note
that at the beginning of the algorithm, all the pixels inserted between two pixels
of the original image (denoted as A) are set to one in ICrk

0 . Taking for instance
d = 1, and following Algorithm1 the intensity difference among pixels is almost
always greater or equal to one, so most of the added pixels will change their
value to zero, giving as a result the image shown in Fig. 3(e) in which only six
of these added pixels remain unchanged (value equal to one, colored in white).

Once a crack image is created for each gray-level difference, the number of
connected black and connected white components are computed for each one
of them. These numbers, corresponding to the well known Betti numbers of
dimension 0 and 1 respectively, will be used a signature of the original image
homogeneity. More exactly, the normalized sum of these Betti numbers along
the gray spectrum is going to be demonstrated as a very robust measure of real
image homogeneity. From now on, these sums will be referred here as B0 (for
the black components) and B1 (for the white components).

The computation of a normalized sum of the well-known Euler number along
the gray spectrum, i.e. B1 − B0 in our notation, is shown in Algorithm2.
The resulting value will be the homogeneity index for the analyzed images.
Figure 3(f), shows the evolution of β0 and β1 with the progress of Algorithm 2



Fig. 3. Crack images corresponding to image in Fig. 2(a) and the evolution of homo-
geneity measures along all the possible gray differences. The line with crosses represents
the β0 whereas line with circles the β1

(with d going from 1 to 5) for Image in Fig. 2(a). The evolution of β0 is repre-
sented with crosses, and the evolution of β1 with circles in the image.

According to previous construction of the crack images and homogeneity
measures, it is interesting to observe the behavior of extremal (homogeneous
vs. heterogeneous) images. Those images have the biggest and smallest B1 − B0

values respectively. These values, will be used for normalizing our B0 and B1

measures, so at the end, −1 ≤ B1 − B0 ≤ 1. On one hand, given a pure
homogeneous image (of any gray constant level), all its crack images are the
same (differing in size) as the one shown in Fig. 4(a). Analyzing β0 and β1 in
these crack images, we will obtain the maximum number of connected black



Algorithm 2. [Computing the homogeneity measure]
Input: A set of ICrk

d Crack Images

B0 = 0, B1 = 0
for d = 1 to G do

β0 = Betti number of dimension 0 of ICrk
d

β1 = Betti number of dimension 1 of ICrk
d

B0 = B0 + β0

B1 = B1 + β1

B0 = Normalize(B0)
B1 = Normalize(B1)
Output:B1 − B0

components β0 and only one connected white component β1. Note that the sur-
rounding black frame inserts a black component that “touches” all the compo-
nents in the four image borders, thus the number of maximum connected black
components in the crack images is 1+(Nrows−2)∗(Ncols−2), and the number
of maximum connected white components is (Nrows) ∗ (Ncols), where Nrows
and Ncols are the number of rows and columns of the original image. In the same
way, the minimum number of connected black components and connected white
components is one. Therefore, the crack image shown in Fig. 4(a) corresponding
to a 5 × 5 homogeneous image, has β0 = 10 and β1 = 1.

On the other hand, Fig. 4(b) depicts the crack image for the maximum pos-
sible heterogeneous 5 × 5 image: a chessboard-like image with interlaced gray
values of g1 and gl. All the possible crack images for gray-level differences in
the range [1, (gl − g1)] result in the same form (that of Fig. 4(b)), thus having
the maximum number of white components (5 × 5 in this case) but only one
black component. Therefore, the crack image shown in Fig. 4(b) has β0 = 1 and
β1 = 25.

Fig. 4. (a) Crack image corresponding a homogeneous image. (b) Crack image corre-
sponding to a heterogeneous chess-like image.



Thus, summing up β0 and β1 for any possible gray difference, in the case of an
homogeneous image, B1 has the minimum value (G − 1) (the result of summing
up G − 1 times the value one for β1 = 1), and B0 has the maximum value
(G∗(1+(Nrows−2)∗(Ncols−2))) where G is the number of possible gray-levels
in the original image. Therefore, the normalization of our homogeneity measure
B1−B0 will be commputed by dividing B0 by (G∗(1+(Nrows−2)∗(Ncols−2)))
and B1 by (G ∗ ((Nrows) ∗ (Ncols))). Doing that, we obtain B1 − B0 = 1 for
a purely heterogeneous image (a chessboard-like image with interlaced extreme
gray values) and B1 − B0 = −1 for a purely homogeneous image.

5 Experimentation

The relation between parameter B1 −B0 and homogeneity can be demonstrated
by analyzing random synthetic images with different maximum and minimum
gray levels. It is expected that those images with bigger gray contrasts between
their pixels will be more heterogeneous, whereas the images with similar gray
levels will present a high degree of homogeneity. Besides it is also required for a
good homogeneity parameter that the size of the image has no influence on its
value.

Table 1 shows the homogeneity results for different random gray-scale 28×28
images in which the maximum grey level has been modified. Figure 5 shows the
evolution of the number of holes and connected components when the contrast
is increased for the crack images of two synthetic random images. As stated in
previous section, the more contrast the crack image has, the more connected
components appear (that is, bigger β0) and the less holes are found (i.e., smaller
β1). It is worth to mention that the size of the image has a negligible influence
on the homogeneity values (slight variations because of the random generation
of the images). Therefore, we can conclude that the bigger B1 − B0 is, the more
heterogeneous the image is. No doubt that this analysis is far obvious for simple
images like those presented in Sect. 3 (chessboard-like image, an image with a
half part of pure black color and other in pure white, etc.).

Table 1. Homogeneity results for random 28 × 28 images varying the maximum gray
difference

Maximum grey level B1 − B0

10 −0.9735

50 −0.8645

100 −0.7257

150 −0.5883

200 −0.4655

255 −0.2908



Fig. 5. (a) Representation of the number of holes and connected components vs. grey
level for the crack images of two synthetic random images with maximum gray inten-
sities of 100 (Left) and 255 (Right). The line with crosses represents the β0 whereas
line with circles the β1

Experimentation has been carried out using images described in Sect. 2. Four
of these images are shown in Fig. 1. Three samples of 100× 100 pixels belonging
to the white bands have been taken for each image (see Fig. 6 where samples (a)
correspond to Fig. 1(a), samples (b) to Fig. 1(b), etc.).

Fig. 6. Electron microscopy samples corresponding to images in Fig. 1

The resulting homogeneity measure B1 − B0 is shown in Table 2. As we can
see, B1−B0 values are very similar for any fragment extracted for the same image
(around −0.960 for image (a), around −0.950 for image (b), around −0.976 for
image (c) and around −0.972 for image d). More exactly, means for the three
segments of images (a), (b), (c) and (d) are −0.9600, −0.9497, −0.9762, −0.9719,
whereas standard deviation results to be 0.0007, 0.0006, 0.0006, 0.0010. This
clearly points out the robustness of the proposed homogeneity measure B1 −B0.

Besides, the resemblance of all B1 − B0 values and their proximity to −1.0
indicate that the white bands are very homogeneous for all the tested electronic
microscopy images. In fact, image histograms reveal that more than 95% of the



pixels have less than 100 different gray levels. In order to distinguish more clearly
and with divergent measures these specific microscopy images, one can extend
the normalized sum of the Euler numbers to a narrower range. The range [1, 50]
is discovered to represent more than 99% of all the possible contrasts (that is, β0

reaches a value bigger than the 99% of its maximum). Computing the B1 − B0

for this reduced range we obtain Table 3.
As discussed in Sect. 3, we find also for these 4 images that the parameter

B1 − B0 has any relation neither with the standard deviation nor with the
mean. In Table 4 these linear values are presented for these images in order to
corroborate that they would arrange the images in a completely different order
than B1 − B0 would.

Finally, we can conclude for the microscopy images that they can be arranged
with respect to their homogeneity in this order (from smaller to bigger): b, a, d, c.
This parameter is currently helping microscopy imaging experts to analyze how
thermal processes affect the structure and/or composition of different material.

In future works we expect that the homogeneity parameter described here,
being a well defined and robust measure, would serve to analyze other images
where texture and regularity play an important role, like those of skin cancer,
granulometry, porosity materials, etc.

Table 2. Homogeneity results for samples in Fig. 6

Image (a)
B1 −B0

Image (b)
B1 −B0

Image (c)
B1 −B0

Image (d)
B1 −B0

Sample 1 −0.9603 −0.9504 −0.9769 −0.9708

Sample 2 −0.9592 −0.9495 −0.9759 −0.9723

Sample 3 −0.9605 −0.9492 −0.9758 −0.9727

Table 3. Homogeneity results for samples in Fig. 6 in the range [1, 50]

Image (a)
B1 −B0

Image (b)
B1 −B0

Image (c)
B1 −B0

Image (d)
B1 −B0

Sample 1 −0.7651 −0.7172 −0.8467 −0.8166

Sample 2 −0.7598 −0.7128 −0.8416 −0.8242

Sample 3 −0.7665 −0.7113 −0.8413 −0.8261

Table 4. Standard deviation and mean for samples in Fig. 6

Image (a) Image (b) Image (c) Image (d)

Standard deviation 45.0804 45.1256 37.4100 27.7506

Mean 194.4156 189.1598 159.2374 92.0668



6 Conclusions

In this paper, the concept of homogeneity is defined, from a topological perspec-
tive, in order to analyze the homogeneity in 2D electron microscopy images. A
standardized topological number is provided as a robust quantity for measuring
how uniform is the material composition.

The proposed topological number has been applied to numerically analyze
the homogeneity of nitrogen distribution in composition maps obtained from
ADF STEM images in type I (GaAsSbN/GaAs) and type II (GaAsSb/GaAsN)
superlattice structures before and after RTA. A range of homogeneity between
the samples has been established. First, it is shown that the SL-I image gives a
parameter B1 − B0 higher than the SL-II. Secondly, our calculations show that
annealing treatment results in a significant increase in uniformity in both types of
SLs, i.e. better diffusion leads to a homogenization of the distribution of N within
the layer. Our analysis has revealed that this increase during RTA is higher in
SL-II than in SL-I and this result is in agreement with the photoluminescence
results.

Further work extending this measure to higher dimensions and considering
other more sophisticated topological relations will be performed in the future.
Extensions to other possible applications in which homogeneity measures might
be useful will be assessed as well (biomedical, astronomical images, etc.).
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