
National Technical University of Athens
School of Applied Mathematical and Physical Sciences
Postgraduate Master's Programme in Applied Mathematical
Sciences

University of Seville
Department of Statistics and Operational Research

Classical and Modern Approaches to

Classi�cation and Dimensionality Reduction

Techniques

Dorothea Barmpakou

Master Thesis

Supervisors:

Professor C. Caroni (National Technical University of Athens, Greece)
Professor I. Barranco�Chamorro (University of Seville, Spain)

Examinor:

Jose María Fernández Ponce (Profesor Titular de Universidad de Sevilla)

This work was carried out with the support of the Erasmus Programme under an
Inter�Institutional Agreement of Higher Education Student and Sta� Mobility between the

University of Seville and the National Technical University of Athens.

June 2019

Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Εφαρμορμένων Μαθηματικών και Φυσικών Επιστημών

Δ.Π.Μ.Σ στις Εφαρμοσμένες Μαθηματικές Επιστήμες

Πανεπιστήμιο Σεβίλλης

Τμήμα Στατιστικής και Επιχειρησιακής ΄Ερευνας

Κλασικές και Σύγχρονες Μέθοδοι για την

Κατηγοριοποίηση και Μείωση Διαστάσεων

Δωροθέα Μπαρμπάκου

Διπλωματική εργασία

Επιβλέπουσες Καθηγήτριες:

Χ. Καρώνη (Εθνικό Μετσόβιο Πολυτεχνείο, Ελλάδα)
I. Barranco�Chamorro (Πανεπιστήμιο Σεβίλλης, Ισπανία)

Εξεταστής:

Jose María Fernández Ponce (Καθηγητής Πανεπιστημίου Σεβίλλης)

Η εργασία αυτή πραγματοποιήθηκε με την υποστήριξη του προγράμματος Erasmus στο πλαίσιο
Κινητικότητας Φοιτητών και Προσωπικού μέσω της Διμερούς Συμφωνίας μεταξύ του

Πανεπιστημίου της Σεβίλλης και του Εθνικού Μετσόβιου Πολυτεχνείου.

Ιούνιος 2019

1

Acknowledgements

Throughout the accomplishment of this master thesis I have received a great deal of support.
First of all, I would like to express my very great appreciation to my supervisors Professor C. Caroni
of the School of Applied Mathematical and Physical Sciences at the National Technical University of
Athens and Professor I. Barranco�Chamorro of the Department of Statistics and Operational Research
at the University of Seville. Their valuable contribution encouraged our mutual and harmonious
cooperation.
Then, I would like to acknowledge all of my professors from the Postgraduate Master's Programme, as
well as those from my Undergraduate Degree that played an important role in my education.
Finally, I would like to thank my family for their support all of these years, �nancial and moral, and
my friends for their help and encouragement.

2

Abstract

In this thesis, we focus on techniques for dimensionality reduction and classi�cation problems, which
facilitate the statistical analysis and interpretation of complex data.

In Chapter 1, we present Principal Components Analysis (PCA): a dimensionality reduction technique.
We introduce its aim and the theoretical basis, we de�ne the properties of Principal Components and
their correlation structure. The loadings, component scores and correlation circle are analysed. Meth-
ods for extracting the appropriate number of Principal Components are included. Furthermore, we
carry out a classical and a modern application of PCA to two di�erent datasets. Speci�cally, we de-
scribe and inspect the Irish dataset, in which the number of variables is lower than the number of the
individuals (classical application), and the Chicken dataset which includes far fewer individuals than
variables (modern application).

In Chapter 2, Classi�cation is introduced and some of the most important parametric classi�ers are
analysed. Firstly, we introduce Logistic Regression Analysis, the interpretation and estimation of its
coe�cients and the ROC Curve and we apply it to the Irish dataset. Then, Linear Discriminant
Analysis is introduced, its method and application to the Irish data. Lastly, the theoretical basis of
Quadratic Discriminant Analysis is presented and its application to the Irish dataset as well.

In Chapter 3, we introduce K�Nearest Neighbors non�parametric method for classi�cation, its method
and application to the Irish dataset and to a more complex one: Khan dataset. We extract important
insights.

Chapter 4 is devoted to methods based on Trees. More precisely, Classi�cation Trees and Regression
Trees methods are analysed. Regarding the Classi�cation Trees, we introduce the method, present
the building procedure of a classi�cation tree, the tree pruning and some advantages of Classi�cation
Trees method, and we apply it to the Irish dataset. Regarding the Regression Trees, we introduce the
method and the pruning procedure, and we apply it to the Boston dataset.

Finally, Chapter 5 includes important remarks and conclusions, taking into account all of the methods
applied to the Irish data.

3

Resumen

En este Trabajo Fin de Máster, nos centramos en técnicas para reducción de la dimensionalidad y
clasi�cación, que facilitan el análisis estadístico e interpretación de datos más complejos.

En el primer capítulo del trabajo, se presenta el Análisis de Componentes Principales (ACP o PCA),
una técnica útil para reducción de dimensionalidad. Introducimos sus objetivos y su base teórica,
de�nimos las propiedades de las Componentes Principales y su estructura de correlaciones. Se anal-
izan las cargas (loadings), scores y el círculo de correlación. Así mismo se incluyen métodos para
escoger las Componentes Principales signi�cativas. Además, realizamos una aplicación de ACP clásica
y una moderna, a dos diferentes conjuntos de datos. Más concretamente, estudiamos el conjunto Irish
data, en el que el número de variables es menor que el número de individuos (aplicación clásica), y el
conjunto Chicken data, que incluye mucho menos individuos que variables (aplicación moderna). Se
obtienen conclusiones para estos conjuntos de datos.

En el segundo capítulo, se introduce la clasi�cación y se analizan algunos de los clasi�cadores más
importantes. Tratamos en primer lugar, el Análisis de Regresión Logística, la interpretación y esti-
mación de sus coe�cientes, la Curva ROC, y aplicamos este método al conjunto Irish data. En segundo
lugar, se introduce el Análisis Discriminante Lineal (ADL o LDA), el método y aplicación al conjunto
de datos Irish data. Finalmente, se analiza la base teórica del Análisis Discriminante Quadrático (ADQ
o QDA) y su aplicación a Irish dataset también.

En el tercer capítulo, vemos el método de K vecinos más cercanos o K-Nearest Neighbors (KNN),
un clasi�cador no paramétrico. Se detallan su método, su aplicación al conjunto de datos Irish data y
además a un conjunto de datos más complejo: Khan dataset. Extraemos conclusiones importantes.

El cuarto capítulo trata sobre métodos basadas en Árboles. Más precisamente, se explican los Ár-
boles de Clasi�cación y Regresión. En cuanto a los Árboles de Clasi�cación, introducimos el método,
presentamos el proceso de construir un Árbol de Clasi�cación y de podarlo, citamos algunas ventajas
de este clasi�cador y lo aplicamos al Irish dataset. En cuanto a los Árboles de Regresión, también
introducimos el método, la poda y aplicamos un Árbol de Regresión al conjunto de datos Boston data.

Para �nalizar, el quinto capítulo incluye algunas conclusiones y observaciones, teniendo en cuenta
todos los métodos aplicados al conjunto de datos Irish dataset.

4

Περίληψη

Στο πλαίσιο της παρούσας διπλωματικής εργασίας, εστιάζουμε σε τεχνικές μείωσης διαστάσεων και σε
προβλήματα κατηγοριοποίησης/ταξινόμησης (classi�cation), που διευκολύνουν την στατιστική ανάλυση
και τη γνώση και κατανόηση σύνθετων δεδομένων.

Στο Κεφάλαιο 1 παρουσιάζουμε τη Μέθοδο Κύριων Συνιστωσών (PCA), μια τεχνική μείωσης διαστάσεων.
Εισάγουμε τον σκοπό της μεθόδου και το θεωρητικό της υπόβαθρο, ορίζουμε τις ιδιότητες των Κύριων
Συνιστωσών και τη δομή συσχέτισης τους. Τα φορτία (loadings), οι τιμές (scores) των Κύριων Συνιστ-
ωσών και ο κύκλος συσχέτισης αναλύονται. Μέθοδοι για επιλογή του κατάλληλου αριθμού Κύριων
Συνιστωσών που πρέπει να χρησιμοποιηθούν στην ανάλυση περιέχονται. Ακολούθως, πραγματοποιούμε
μια κλασική και μια σύγχρονη εφαρμογή της Μεθόδου Κύριων Συνιστωσών σε δύο διαφορετικά σετ δε-

δομένων. Πιο συγκεκριμένα, εξετάζουμε το Irish dataset, κατά το οποίο το πλήθος των μεταβλητών είναι
μικρότερο από αυτό των παρατηρήσεων (κλασική εφαρμογή) και το Chicken data, το οποίο περιέχει πολύ
λιγότερες παρατηρήσεις σε σχέση με τις μεταβλητές (σύγχρονη εφαρμογή).

Στο δεύτερο κεφάλαιο, εισάγεται ο όρος της κατηγοριοποίησης/ταξινόμησης και κάποιοι από τους πιο
σημαντικούς παραμετρικούς ταξινομητές αναλύονται. Πρώτα, εισάγουμε την Ανάλυση Λογιστικής Παλιν-
δρόμησης (Logistic Regression), την ερμηνεία και εκτίμηση των παραμέτρων της, την Καμπύλη ROC και
εφαρμόζουμε την τεχνική αυτή στο σύνολο δεδομένων Irish data. ΄Επειτα, εισάγεται η Γραμμική Δι-
ακριτική Ανάλυση (LDA), η μέθοδος της και η εφαρμογή της στο Irish dataset. Τέλος, αναλύεται το
θεωρητικό/μαθηματικό υπόβαθρο της Τετραγωνικής Διακριτικής Ανάλυσης (QDA) και η εφαρμογή της
στο Irish dataset, επίσης.

Στο τρίτο κεφάλαιο, εισάγουμε τη μέθοδο των Κ Κοντινότερων Γειτόνων (K Nearest Neighbors, KNN):
έναν μη παραμετρικό ταξινομητή. Παραθέτουμε τη μέθοδο του ΚΝΝ και την εφαρμογή αυτού στο Irish
dataset, καθώς και σε ένα πιο σύνθετο: το σύνολο δεδομένων Khan. Aντλούμε σημαντικά συμπεράσματα.

Το Κεφάλαιο 4 εξειδικεύεται σε μεθόδους βασισμένες σε Δέντρα Αποφάσεων. Ειδικότερα, αναλύονται τα
Δέντρα Κατηγοριοποίησης/Ταξινόμησης (Classi�cation Trees) και τα Δέντρα Παλινδρόμησης (Regres-
sion Trees). ΄Οσον αφορά τα Δέντρα Ταξινόμησης, εισάγουμε τη μέθοδο, παρουσιάζουμε τη διαδικασία
κατασκευής ενός Δέντρου Ταξινόμησης, καθώς κι ενός Κλαδεμένου Δέντρου (Tree Pruning), παραθέ-
τουμε κάποια βασικά πλεονεκτήματα της τεχνικής αυτής και την εφαρμόζουμε στο Irish dataset. ΄Οσον
αφορά τα Δέντρα Παλινδρόμησης, εισάγουμε τη μέθοδο, τη διαδικασία Κλαδέματος του Δέντρου και την
εφαρμόζουμε στο σύνολο δεδομένων Boston data.

Κλείνοντας, το πέμπτο κεφάλαιο περιέχει σημαντικά συμπεράσματα και επισημάνσεις, λαμβάνοντας υπ-
όψιν όλες τις εφαρμογές των μεθόδων που χρησιμοποιήθηκαν πάνω στο σύνολο δεδομένων Irish data.

5

Contents

1 Principal Component Analysis 8

1.1 Introduction . 8
1.2 De�nition and Properties of Principal Components . 9
1.3 Analytical approach of PCA . 11
1.4 Irish Dataset . 14

1.4.1 Presentation . 14
1.4.2 Statistical Analysis . 17

1.5 Chicken Dataset . 46
1.5.1 Presentation . 46
1.5.2 Statistical Analysis . 47

2 Classi�cation: Parametric Techniques 53

2.1 Introduction to Classi�cation . 53
2.2 Logistic Regression . 57

2.2.1 Introduction . 57
2.2.2 Interpretation and Estimation of the Coe�cients 58
2.2.3 ROC Curve . 59
2.2.4 Application to Irish data . 61

2.3 Linear Discriminant Analysis . 75
2.3.1 Introduction . 75
2.3.2 Method . 76
2.3.3 Application to Irish data . 78

2.4 Quadratic Discriminant Analysis . 82
2.4.1 Method . 82
2.4.2 Application to Irish data . 83

3 K-Nearest Neighbors: A Non�Parametric Classi�er 86

3.1 Introduction . 86
3.2 Method . 86
3.3 Application to Irish data . 88
3.4 Application to Khan data . 93

3.4.1 Description of the Khan data . 93
3.4.2 Statistical Analysis of the Khan data . 93

4 Methods Based on Trees 98

4.1 Classi�cation Trees . 98
4.1.1 Introduction . 98
4.1.2 Building Classi�cation Trees . 99
4.1.3 Tree Pruning . 101
4.1.4 Advantages of the Classi�cation Trees Method 102
4.1.5 Application to Irish data . 103

6

4.2 Regression Trees . 109
4.2.1 Introduction . 109
4.2.2 Method . 109
4.2.3 Pruning the Regression Tree . 110
4.2.4 Application to Boston Data . 111

5 A Discussion of the Results of the Irish Data 115

7

Chapter 1

Principal Component Analysis

1.1 Introduction

PCA: An Unsupervised Learning Method

Principal Components Analysis (PCA) is a technique of unsupervised learning, which refers to a set of
statistical tools intended for the setting in which we have only a set of features x1, x2, . . . , xp measured
on n observations. We are not interested in prediction, because we do not have an associated response
variable y. Rather, the goal is to discover interesting things about the measurements on x1, x2, . . . , xp.
In unsupervised learning the exercise tends to be more subjective, and there is no simple goal for
the analysis, such as prediction of a response. Unsupervised learning is often performed as part of an
exploratory data analysis. Furthermore, it can be hard to assess the results obtained from unsupervised
learning methods, since there is no universally accepted mechanism for performing cross validation or
computing validating results on an independent data set. The reason for this di�erence is simple. If
we �t a predictive model using a supervised learning technique, then it is possible to check our work
by seeing how well our model predicts the response y on observations not used in �tting the model.
However, in unsupervised learning, there is no way to check our work because we do not know the true
answer�the problem is unsupervised. [14, 11]

Aim of PCA

Principal components analysis, which was developed by Hotelling in 1933 [12] after its origin by Karl
Pearson in 1901 [31], is a technique for forming new variables which are linear composites of the original
variables. If there are n observations with p variables, where n > p, then the maximum number of
new variables that can be formed is equal to the number of original variables and the new variables
are uncorrelated among themselves. In the case where n < p, this number is equal to n− 1. These few
linear combinations can be used to summarize the data, losing in the process as little information as
possible. This attempt to reduce dimensionality can be described as parsimonious summarization of
the data. This greatly simpli�es the task of understanding the structure of the data since it is much
easier to interpret two or three uncorrelated variables than 20 or 30 that have a complicated pattern of
interrelationships. The central idea is based on the concept of the proportion of the total variance (the
sum of the variances of the p original variables) that is accounted for by each of the new variables. PCA
transforms the set of correlated variables x1, x2, . . . , xp to a set of uncorrelated variables y1, y2, . . . , yp
called principal components, in such a way that y1 explains the maximum possible of the total variance,
y2 the maximum possible of the remaining variance, and so on. The full set of p principal components
fully explains the total variance:

p∑
i=1

var(yi) =

p∑
i=1

var(xi).

8

However, if it turns out that the �rst few principal components account for a large enough part
of the total variance, most of the variation in the xs being explained by the �rst few ys, then the
remaining principal components can be discarded without too great a loss of information. It is usual
to standardize the xs to unit variance before carrying out PCA so that each x-variable makes the same
contribution to the total variance, and thus:

p∑
i=1

var(xi) = p.

It is clear that there have to be some constraints on the coe�cients/weights of each component.
Otherwise, we could make the variance of any y as large as we pleased simply by making the compo-
nents large enough. Hence, the PCs are de�ned in such a way that each succeeding principal component
has the highest variance possible under the constraint that it must be orthogonal to all the preceding
components. In this way, the resulting PCs form an uncorrelated orthogonal basis.

Additionally, another use of Principal Components Analysis is that it also serves as a tool for data
visualization (visualization of the observations or visualization of the variables) and data preprocessing
before supervised techniques are applied. [3, 35, 24, 14]

1.2 De�nition and Properties of Principal Components

De�nition 1.2.1. If x is a random vector with mean µ and covariance matrix Σ, then the principal
component transformation is the transformation

x→ y = Γ′(x− µ),

where Γ is orthogonal, Γ′ΣΓ = Λ is diagonal and λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0. The strict positivity of
the eigenvalues λi is guaranteed if Σ is positive de�nite. This representation of Σ follows from the
Spectral Decomposition Theorem (Theorem 1.2.1). The ith principal component of x may be de�ned
as the ith element of the vector y, namely as:

yi = γ
i
′(x− µ)

Here, γ
(i)

is the ith column of Γ, and may be called the ith vector of principal component loadings.

The function yp may be called the last principal component of x.

Theorem 1.2.1 (Spectral Decomposition Theorem). Any symmetric matrix A(p× p) can be written
as:

A = ΓΛΓ′ =
∑

λiγ(i)γ(i)
′,

where Λ is a diagonal matrix of eigenvalues of A, and Γ an orthogonal matrix whose columns are
standardized eigenvectors of A.

In our case, Σ is the symmetric matrix A.

Theorem 1.2.2. If x ∼ (µ,Σ) and y is as de�ned in De�nition 1.2.1 then:

(a) E(yi) = 0

9

(b) V(yi) = λi

(c) Cov(yi, yj) = 0 , i 6= j.

(d) V(y1) ≥ V(y2) ≥ . . . ≥ V(yp) ≥ 0

(e)
∑p

i=1V(yi) = trΣ

(f)
∏p
i=1V(yi) = |Σ|

In practice, the PC technique should be applied by replacing the population features, described
above, by the sample�based counterparts of them. That is, µ should be replaced by the vector of the
sample means, Σ by S, which is the sample covariance matrix of x, and so on.

Further Properties

I From part (e) of Theorem 1.2.2 we make the following remarks:

i The proportion of the variability in the data, explained by the kth principal component is:

λk∑p
i=1 λi

ii The proportion of the total variation in the data, explained by the �rst k principal components
is: ∑k

i=1 λi∑p
i=1 λi

iii The proportion of the variability in the data, not explained by the �rst k principal components
is: ∑p

i=k+1 λi∑p
i=1 λi

II The principal components of a random vector are not scale�invariant. Algebraically, the lack
of scale invariance can be explained as follows. Let S be the sample covariance matrix. Then
if the ith variable is divided by di, the covariance matrix of the new variables is DSD, where
D = diag(di

−1). However, if x is an eigenvector of S, then D−1x is not an eigenvector of DSD.
In other words, the eigenvectors are not scale invariant. The lack of scale�invariance illustrated
above implies a certain sensitivity to the way scales are chosen. Two ways out of this dilemma
are possible. First, one may seek so-called �natural units�, by ensuring that all variables measured
are of the same type (for instance, all heights or all weights). Alternatively, one can standardize
all variables so that they have unit variance, and �nd the principal components of the correlation
matrix rather than the covariance matrix. The second option is the one most commonly employed.
Thus, we choose to work with the standardized data, where the matrix containing them, given a
random sample of size n of x on p variables is the n× p matrix:

Xs =


x11−x1
s1

. . .
x1p−xp
sp

...
...

xn1−x1
s1

. . .
xnp−xp
sp

 .

Correlation Structure

We now examine the correlations between x and its vector of principal components, y. For simplicity
we assume that x (and therefore y) has mean zero. The covariance between x and y is then:

10

E(xy′) = E(xx′Γ) = ΣΓ = ΓΛΓ′Γ = ΓΛ

Therefore the covariance between xi and yj is γijλj . Now xi and yj , have variances σii and λj
respectively, so if their correlation is ρij , then:

ρij =
γijλj

(σiiλj)
1
2

= γij

√
λj√
σii

When Σ is a correlation matrix σii = 1, so:

ρij = γij
√
λj

The proportion of variation of xi �explained� by yj is ρ2ij . Then, since the elements of y are
uncorrelated, any set G of components explains a proportion:

ρ2iG =
∑
i∈G

ρ2ij =
1

σii

∑
i∈G

λjγ
2
ij

of the variation of xi.
If all the components are included, then:

p∑
j=1

ρ2ij =

∑p
j=1 λjγ

2
ij

σii
=
σii
σii

= 1

This is rational, as in the case where all the components are taken, the whole variability of the
data is �explained�. [24, 27, 3]

1.3 Analytical approach of PCA

Now that we presented the mathematical base of principal components, we can formally state the ob-
jective of principal components analysis. We highlight, here, that the solution to principal components
analysis is obtained by computing the eigenvalues and eigenvectors of the covariance (or correlation)
matrix. The eigenvectors give the weights/coe�cients that can be used to form the new variables and
the eigenvalues give the variances of the new variables. Thus, assuming that there are p variables, we
are interested in forming the following p linear combinations:

y1 = w11x1 + w12x2 + . . .+ w1pxp
y2 = w21x1 + w22x2 + · · ·+ w2pxp
...
yp = wp1x1 + wp2x2 + . . .+ wppxp

where y1, y2, . . . , yp are the p principal components and wij is the weight of the jth variable for the
ith principal component. Here, instead of γij , which was used before, we use wij . The weights wij are
estimated such that:

1. The �rst principal component, y1, accounts for the maximum variance in the data, the second
principal component, y2, accounts for the maximum variance that has not been accounted for by
the �rst principal component and so on.

2. w2
i1 + w2

i2 + . . .+ w2
ip = 1, i = 1, 2, . . . , p.

3. wi1wj1 + wi2wj2 + . . .+ wipwjp = 0, for all i 6= j.

11

Loadings

The simple correlations between the original and the new variables are called loadings. They give an
indication of the extent to which the original variables are in�uential or important in forming new
variables. That is, the higher the loading the more in�uential the variable is in forming the principal
components score and vice versa. Furthermore, the loadings can be used to interpret the meaning of
the principal components or the new variables. So, above, we had seen that the correlation between
xi and yj is:

ρij = γij

√
λj√
σii

As we de�ned the loading as the correlation between the two variables, where lij is the loading of the
jth variable (xj) for the ith principal component (yi), we get:

lij = wij

√
λi
sj

Here, sj is the standard deviation of the jth variable.

Component scores

An individual's score on a particular component from the PCA of the data is the value of the new
variable yi and it is called principal components score.

Correlation circle

This plot is useful to visualize relationships between the original variables and the PCs. Since, if PCs
are based on the correlation matrix, then the sample linear correlation coe�cient between the jth
original variable, xj and the ith PC, yi, rij is

rij = γij
√
λi

This is the basis of the correlation circle, useful to identify the original variables more correlated
to �rst and second PCs. The correlation circle is a plot of r1j versus r2j . This plot shows which of
the original variables are most strongly correlated with the PCs, namely those that are close to the
perimeter of the circle of radius 1. (It can be applied to any pair of PCs, not necessarily y1 and y2).

Number of PCs to extract

Once it has been decided that performing principal components analysis is appropriate the next obvious
issue is determining the number of principal components that should be retained. Following are some
of the suggested rules:

1. In the case of standardized data, retain only those components whose eigenvalues are greater
than one. This is referred to as the eigenvalue�greater�than�one rule. The logic behind this rule
of thumb is that a component with an eigenvalue of 1 explains the same amount of variation as
one of the original xs. However, Jolli�e in 1972 [15], suggests that retaining components with
eigenvalues greater than 0.7 is better than the cut�o� at 1. In the case of unstardardized data,
exclude those principal components whose eigenvalues are less than the average. (Kaiser)

2. Examine a scree plot. This is a plot of the eigenvalues versus the component number, or similarly
a plot of the percent of variance accounted for by each principal component. The idea is to look
for the �elbow� which corresponds to the point after which the eigenvalues decrease more slowly.
Adding components after this point explains relatively little more of the variance.

3. Retain the �rst k components which explain a �large� proportion of the total variation, say
70− 80%. [35, 24, 3]

12

Interpretation

The weight given to variable i on component j is wij . The relative sizes of the wijs re�ect the relative
contributions made by each variable to the component. To interpret a component, we examine the
pattern in the wij values for that component. Since the principal components are linear combinations of
the original variables, it is often necessary to interpret or provide a meaning to the linear combination.
As mentioned earlier, one can use the loadings for interpreting the principal components. The higher
the loading of a variable, the more in�uence it has in the formation of the principal component score
and vice versa. Therefore, one can use the loadings to determine which variables are in�uential in
the formation of principal components, and one can then assign a meaning or label to the principal
component. But what do we mean by in�uential? How high should the loading be before we can say
that a given variable is in�uential in the formation of a principal component score? Unfortunately,
there are no guidelines to help us in establishing how high is high. Traditionally, researchers have used
a loading of 0.5 or above as the cuto� point. In many instances the retained principal components
cannot be meaningfully interpreted. In such cases researchers have typically resorted to a rotation of
the principal components. [35, 17]

Rotation is one of the main ideas of factor analysis, �borrowed� for PCA, without any implication
that a factor model is being assumed. Once PCA has been used to �nd an m�dimensional subspace
which contains most of the variation in the original p variables, it is possible to rede�ne, by rotation,
the axes (or variables) which form a basis for this subspace. The rotated variables will together account
for the same amount of variation as the �rst few PCs, but will no longer successively account for the
maximum possible variation. Furthermore, the rotated PCs, when expressed in terms of the original
variables, may be easier to interpret than the PCs, because their coe�cients will typically have a
simpler structure. In addition, rotated PCs o�er advantages compared to unrotated PCs in some types
of analysis based on PC. Lastly, rotation can provide additional insight into the in�uence of individual
(outlying) observations. [16, 18, 17]

The scores resulting from the principal components can also be used as input variables for further
analyzing the data using other multivariate techniques such as cluster analysis, regression and discrim-
inant analysis. The advantage of using principal components scores is that the new variables are not
correlated and the problem of multicollinearity is avoided. It should be noted, however, that although
we may have �solved� the multicollinearity problem, a new problem can arise due to the inability to
meaningfully interpret the principal components.[35]

13

1.4 Irish Dataset

The problem with which we will deal in this section, has �rstly been approached by a team from the
University of Ireland [19], and the conducted survey was realized on Irish population. The Irish dataset
is presented as detailed below.

1.4.1 Presentation

The Business Model Canvas (BMC)

Firstly, we have to de�ne the widely known, among entrepreneurs, method BMC. The business model
canvas (BMC) is a �rm�level concept of business model [28, 30, 29]. It involves nine related elements
of knowledge, which represent the content (�what�) of doing business. These elements are represented
in Table 1.1.

ELEMENTS DESCRIPTIONS
Customer segments A �rm serves its value proposition(s) to

one or more customer segments
Value propositions A �rm o�ers a mix of products/services to

create value for each customer segment
Channels A �rm communicates and delivers its value

proposition to each customer segment via
various channels

Customer relationships A �rm establishes and maintains relation-
ships with each customer segment

Revenue streams A �rm generates revenue streams from the
delivery of value to each customer segment

Key resources A �rm requires resources (e.g., people) to
create and deliver the business model ele-
ments

Key activities A �rm performs a set of activities to create
and deliver the business model elements

Key partners A �rm may outsource some activities to
its network of suppliers/partners

Cost structure Each element of a �rm's business model
has a cost component

Table 1.1: The BMC elements and their descriptions

Two�dimensional tabular framework

In the sense described above, Bandura's guidelines [1] suggest that each of the nine BMC elements
should be operationalised by a set of activities representing a range of di�culty. An interpretation
of Krathwohl's approach [21] to describing objectives/activities implies that each element could be
represented as a function of a number of cognitive processes, which could be ordered on a scale from
simple (e.g., identify) to complex (e.g., create). Krathwohl notes that such a scale is a hierarchy of
judged complexity. Notwithstanding this empirical question, the idea of adding a cognitive process
dimension to the BMC is consistent with Bandura's assertion that self�e�cacy is a mechanism by
which knowledge and skills are turned into action, and is consistent with Zott et al.[40] in that business
model research requires concurrent consideration of the content (know�what) and process (know�how)
of doing business.

14

Thus, consistent with the idea that self�e�cacy builds on a dual system of knowledge and cognitive
skills (e.g., Bandura [1]), each of the nine BMC elements was represented as a function of six cognitive
processes, and this two�dimensional tabular framework (see Figure 1.1) was used to generate a set of
activities for each element.

Figure 1.1: Two-dimensional tabular framework.

Scale Construction

A self�e�cacy scale was constructed [19] to measure the 54 activities de�ned by Figure 1.1. Following
Bandura's guidelines, each item was phrased as a judgement of capability. All items were scored on a
7�point Likert scale (1 = strongly disagree, 7 = strongly agree). As a consequence, the nine subscale
scores were created by calculating a total score from the six respective 7�point items. Each of these
interval variables has a value from 6 to 42, and one can thus treat them as quantitative for data analysis
purposes.

Data Description

Based on the above analysis, 108 entrepreneurs and 63 managers completed a survey. So, their scores
according to the aforementioned scale construction on the nine variables of BMC are gathered on
a data�frame, which consists of 171 rows and 10 columns. Additionally, apart from the 9 columns,
which correspond to the 9 factors of BMC, one more column, indicating the status of the observations
(entrepreneurs or managers), is included. More speci�cally, value 2 represents an entrepreneur and
value 1 a manager.

Aim of our analysis

Our goal regarding the data is to �nd out whether the nine variables of BMC could be represented
by a much smaller number of dimensions without much loss of information and also to examine if the
content of these mental representations di�er between entrepreneurs and managers.
By using self�e�cacy to investigate how entrepreneurs and managers represent the nine business model
elements, this study provides an empirical foundation for extending the reach of the BMC to the indi-
vidual level, and it also extends the empirical evidence on self�e�cacy di�erences between entrepreneurs
and managers.
The dimensionality of the BMC is a key issue for both entrepreneurship and management research

15

on the business model [39, 23, 26, 36]. This is because while there is no one best business model
for everyone, some type of business model is surfacing as a mechanism used by entrepreneurs and by
managers [8, 38]. So when attempting to model the role of the BMC in either entrepreneurial or man-
agerial processes, a researcher would generally like to replace the nine elements by a smaller number of
independent variables. Indeed, researchers would typically prefer to work in lower dimensions for ease
of interpretability, visualisation, understanding of the main underlying features, removing extraneous
information, and so on.
The structure underlying the BMC is an important issue for those interested in the study of cognition,
as it relates to how people represent nine content aspects of doing business � how they �connect the
dots� so to speak [2, 9, 22, 37]. In entrepreneurial cognition research, it is usually assumed that such
mental representations not only underlie thought (e.g., self�e�cacy) and action (e.g., �rm creation),
but they also distinguish entrepreneurs from managers. For example, Brannback and Carsrud in 2009
posit that sense�making tools such as the BMC are a valid way of examining entrepreneurs' mental
models and also of understanding di�erences in mental representations between entrepreneurs and
managers [4]. However, they concluded that this area of research has yet to be fully explored. While
it creates a cognitive map of nine elements of �rm activities, the BMC has hitherto not been used to
either study how entrepreneurs think or to compare how they di�er from managers in their thinking.

16

1.4.2 Statistical Analysis

Exploratory Analysis First of all, we carry out an exploratory analysis in which:

• �Status� column from the data�frame is excluded.

• The data is divided into two groups: entrepreneurs and managers.

• Calculate the descriptives statistics.

• Inspect correlation between the variables.

• Detect the outliers according to Rosner' s Test and replace them with the median.

The R�packages �dplyr�, �Hmisc�, �corrplot�, �grDevices�, �EnvStats�, �naniar� and �imputeTS� are used
for the above procedures, as it is next illustrated.

Firstly, we take a view of the data.

> class(keane)

[1] "data.frame"

> dim(keane)

[1] 171 10

> head(keane)

Status C_Seg V_Prop Chan C_Rel Rev_Str Key_Res Key_Act Key_Part Cost_Str

1 2 33 34 33 34 35 34 34 34 32

2 2 30 33 35 35 30 30 30 30 32

3 2 30 31 30 32 33 31 33 32 36

4 2 31 35 37 40 29 33 39 39 35

5 2 31 29 30 36 35 35 36 36 33

6 2 37 27 33 35 33 33 33 32 36

As we see, our data are structured in a data�frame, which consists of 171 observations and 10
variables. As we said in Section 1.4.1, we want to examine separately the two groups: entrepreneurs
and managers. Furthermore, we do not need the �Status� column in our analysis. For this reason,
using the following command in R:

> entrepreneurs <- keane %>% filter(Status==2)%>% select(C_Seg:Cost_Str)

we extract only the entrepreneurs from the whole of our data, with the nine variables of BMC (For
this, �dplyr� R�package was loaded, which facilitates the data manipulation). To check this out:

> dim(entrepreneurs)

[1] 108 9

Likewise, for the managers we get:

> managers<- keane %>% filter(Status==1)%>% select(C_Seg:Cost_Str)

> dim(managers)

[1] 63 9

17

Now that we have our data, we present some descriptive statistics for these two groups. In Table
1.2, the mean and the standard deviation of each of the nine variables on the two groups are provided.

Entrepreneurs Managers

Variable Mean St.Dev Mean St.Dev
Customer Segments 35.27 3. 81 30.62 4. 45
Value Propositions 35. 9 3. 56 31.75 4. 17

Channels 34.04 4. 5 31.32 5. 22
Customer Relationships 36.89 3. 15 34.75 4. 23

Revenue Streams 34.05 4. 71 28.54 5. 86
Key Resources 33.55 4. 92 29.98 5. 05
Key activities 34.18 4. 27 30.41 5. 58
Key Partners 35.31 4. 98 32.22 5. 47
Cost Structure 35.05 5. 15 28.79 7. 36

Table 1.2: Descriptive statistics for the variables.

As a �rst notice, we observe from the Table 1.2 that entrepreneurs' scale scores are higher than
these of managers. That means that a di�erent mental representation between the two groups is quite
reasonable.

Let us, now, inspect the correlation coe�cients and the p�value of the correlation for all possi-
ble pairs of columns in each of the datasets: both entrepreneurs and managers, entrepreneurs and
managers, separately. For this purpose, the R�package �Hmisc� is needed.

Figure 1.2: Correlation Matrix for both entrepreneurs and managers.

18

Figure 1.3: Correlation Matrix for entrepreneurs.

Figure 1.4: Correlation Matrix for managers.

Then, using the �corrplot� package in R, we visualize the correlation matrix between the variables
on both entrepreneurs and managers (Figure 1.5).

19

Figure 1.5: Correlation between the variables for the whole of the data.

A similar image is taken, if we look separately for the correlations between the variables in the two
groups. Figure 1.6 visualizes the correlations regarding the entrepreneurs' scores, whereas Figure 1.7
visualizes the correlations regarding the managers' scores.

Figure 1.6: Correlation between the variables for the entrepreneurs.

20

Figure 1.7: Correlation between the variables for the managers.

From all of the three �gures (Figure 1.5, Figure 1.6, Figure 1.7), what we understand is that there
is a strong correlation between the 9 variables. For this reason, Principal Components Analysis seems
indispensable, so that uncorrelated variables would be created.

Continuing, we look for outliers. Firstly, let us explain how we de�ne the outliers: Suppose we have
a sample of observations. We �rst determine the �rst quartile (Q1) and the third quartile (Q3) and
the inter�quartile range (IQR = Q3 − Q1) based on the values of the sample observations. Now the
values outside the [(Q1 − 1.5 ∗ IQR), (Q3 + 1.5 ∗ IQR)] are considered as outliers. The values outside
the range [(Q1 − 3 ∗ IQR), (Q3 + 3 ∗ IQR)] are known as extreme outliers and the values outside the
range [(Q1 − 1.5 ∗ IQR), (Q3 + 1.5 ∗ IQR)] but inside the range [(Q1 − 3 ∗ IQR), (Q3 + 3 ∗ IQR)] are
called mild outliers. This procedure is equivalent to the boxplot construction. In order to detect the
outliers, we use the R�packages �grDevices� and the �EnvStats�, where the latter enables us to do a
Rosner's Test. Via the boxplot.stats(x)$out function of the �grDevices� package we get the outliers
from the boxplot. Moving on, we examine which of these possible outliers are truly outliers, according
to Rosner's Test. So, following the above procedure in R for each of the 9 variables separately on the
entrepreneurs and managers, we get that:

In the entrepreneurs' dataset there are 4 outliers.

• For the variable �Channels�, there is one outlier in the 102 position with value 18.

• For the variable �Revenue Streams�, there is one outlier in the 95 position with value 17.

• For the variable �Key Partners�, there are two outliers: one in the 87 position with value 16 and
another one in the 97 position with value 17.

In the managers' dataset there are 4 outliers, too:

• For the variable �Customer Relationships�, there is one outlier in the 12 position with value 21.

21

• For the variable �Revenue Streams�, there is one outlier in the 54 position with value 6.

• For the variable �Key Resources�, there is one outlier in the 17 position with value 12.

• For the variable �Key Activities�, there is one outlier in the 17 position with value 12.

We cite the R code for the case where we examine the outliers for the entrepreneurs on the �Chan-
nel� variable. The procedure is exactly the same for the rest of them.

> entrepreneurs$Chan[which(entrepreneurs$Chan %in% boxplot.stats(entrepreneurs$Chan)$out)]

[1] 23 18

> rosnerTest(entrepreneurs$Chan, k = 4, warn = F)

Results of Outlier Test

Test Method: Rosner's Test for Outliers

Hypothesized Distribution: Normal

Data: entrepreneurs$Chan

Sample Size: 108

Test Statistics: R.1 = 3.566172

R.2 = 2.639368

R.3 = 2.501242

R.4 = 2.592180

Test Statistic Parameter: k = 4

Alternative Hypothesis: Up to 4 observations are not

from the same Distribution.

Type I Error: 5%

Number of Outliers Detected: 1

i Mean.i SD.i Value Obs.Num R.i+1 lambda.i+1 Outlier

1 0 34.03704 4.496989 18 102 3.566172 3.410133 TRUE

2 1 34.18692 4.238482 23 62 2.639368 3.407006 FALSE

3 2 34.29245 4.114937 24 44 2.501242 3.403844 FALSE

4 3 34.39048 4.008393 24 81 2.592180 3.400645 FALSE

Then, dealing with the outliers, we chose not to omit these observations, but replace them with
the median in each case. This is because median is robust to outliers, contrary to mean and in this
way we do not risk to lose information. (At this point, we needed �naniar� and �imputeTS� packages
from R). The R code is as follows:

• For entrepreneurs:

> entrepreneurs[102, 3] <- NA

> entrepreneurs[95, 5] <- NA

> entrepreneurs[c(87, 97), 8] <- NA

> sum(is.na(entrepreneurs))

22

[1] 4

> entrepreneurs <- na.mean(entrepreneurs,option = "median")

• For managers:

> managers[12, 4] <- NA

> managers[54, 5] <- NA

> managers[17,6] <- NA

> managers[17, 7] <- NA

> sum(is.na(managers))

[1] 4

> managers <- na.mean(managers,option = "median")

PCA Application After this procedure, we go on applying Principal Components Analysis with
the contribution of the R�package �FactoMineR� for our analysis and �factoextra� package for the in-
terpretation of PCA and visualization. Furthermore, the �psych� R�package was used.

Applying PCA to entrepreneurs dataset

[13, 6]

The code is as follows:

> pca1 <- PCA(entrepreneurs, scale.unit = T, graph = F)

After applying PCA, we can extract information for the data.

• Variances of the principal components
As we mentioned in Section 1.3, eigenvalues of the correlation matrix correspond to variances of
the principal components. So, computing the eigenvalues in R as it is shown below,

> eig1 <- get_eigenvalue(pca1)

we get the results:

> eig1

eigenvalue variance.percent cumulative.variance.percent

Dim.1 4.6168831 51.298701 51.29870

Dim.2 1.1683793 12.981992 64.28069

Dim.3 0.6694271 7.438079 71.71877

Dim.4 0.6383342 7.092602 78.81137

Dim.5 0.5464243 6.071381 84.88275

Dim.6 0.5059367 5.621519 90.50427

Dim.7 0.3384333 3.760370 94.26464

Dim.8 0.2649976 2.944417 97.20906

Dim.9 0.2511846 2.790940 100.00000

23

What we see from these results is that the �rst principal component explains approximately
51.3% of the variance in the data, the second one explains almost 13% and so on. Together, the
�rst two principal components explain nearly the 64.3% of the data, which is an acceptably large
percentage of the variation. We note here that after the third principal component, a signi�cant
improvement in this proportion is not achieved. This, will be discussed better when we will
present the scree plot.

Another criterion for choosing which principal components to retain, is to check which PCs have
an eigenvalue greater than 1. Such a thing indicates that this PC accounts for more variance
than accounted by one of the original variables in standardized data. Thus, in our case we see
that only the �rst two principal components are greater than one, whereas the rest ones are
quite smaller than one, so it is probable that keeping the �rst two principal components is an
appropriate choice.

An alternative method to determine the number of principal components is to look at the scree
plot. We get the scree plot (Figure 1.8), which is the plot of the percent of variance accounted
for by each principal component, through the command:

> fviz_eig(pca1, addlabels = TRUE, ylim = c(0, 60), ggtheme = theme_bw())

Eyeballing the scree plot, and looking for a point at which the proportion of variance explained by
each subsequent principal component drops o�, make us choose the smallest number of principal
components that are required in order to explain a sizable amount of the variation in the data.
This is often referred to as an elbow in the scree plot. Inspecting Figure 1.8 we conclude that a
fair amount of variance is explained by the �rst two principal components, and that there is an
elbow after the second component. After all, the third principal component explains less than
7.5% of the variance in the data and so is essentially worthless, and also beyond the second
eigenvalue, the remaining eigenvalues are all relatively small and of comparable size.

Figure 1.8: Scree plot: entrepreneurs data.

24

• Variables
Using the following commands, we get the coordinates/loadings of the variables:

> variable<- get_pca_var(pca1)

> variable$coord

Dim.1 Dim.2 Dim.3 Dim.4 Dim.5

C_Seg 0.7773302 0.25127380 -0.24748822 0.25823439 -0.10234605

V_Prop 0.6516228 0.49599232 0.14076101 0.03509079 -0.49450972

Chan 0.6301532 0.49294574 -0.27779827 0.16826052 0.33363642

C_Rel 0.7209100 0.26158534 0.18473314 -0.25899954 0.31287556

Rev_Str 0.7628346 -0.35378872 -0.19599877 -0.28723757 0.06635240

Key_Res 0.7850108 -0.37822316 -0.06557736 -0.10890732 -0.24022851

Key_Act 0.7991856 -0.07526561 -0.03077001 -0.33669279 -0.02246202

Key_Part 0.6685162 -0.10766647 0.64968455 0.20076168 0.12639445

Cost_Str 0.6224581 -0.51218534 -0.10635839 0.47643669 0.06010682

As we are interested in keeping only the �rst two principal components, we look at Dim.1 and
Dim.2. Because of the di�culty we encountered to interpret the two components, varimax rota-
tion is a usual method in order to improve interpretability.

Let us move on, then, by applying varimax rotation in our data. For this, we needed �psych�
package from R. The code follows:

> pca_rotated <- principal(entrepreneurs, rotate="varimax", nfactors=2, scores=TRUE)

> pca_rotated

Principal Components Analysis

Call: principal(r = entrepreneurs, nfactors = 2, rotate = "varimax",

scores = TRUE)

Standardized loadings (pattern matrix) based upon correlation matrix

RC1 RC2 h2 u2 com

C_Seg 0.40 0.71 0.67 0.33 1.6

V_Prop 0.14 0.81 0.67 0.33 1.1

Chan 0.12 0.79 0.64 0.36 1.0

C_Rel 0.35 0.68 0.59 0.41 1.5

Rev_Str 0.80 0.26 0.71 0.29 1.2

Key_Res 0.83 0.26 0.76 0.24 1.2

Key_Act 0.64 0.49 0.64 0.36 1.9

Key_Part 0.56 0.38 0.46 0.54 1.8

Cost_Str 0.80 0.05 0.65 0.35 1.0

RC1 RC2

SS loadings 3.01 2.78

Proportion Var 0.33 0.31

Cumulative Var 0.33 0.64

Proportion Explained 0.52 0.48

Cumulative Proportion 0.52 1.00

Mean item complexity = 1.4

Test of the hypothesis that 2 components are sufficient.

The root mean square of the residuals (RMSR) is 0.08

with the empirical chi square 47.18 with prob < 0.00034

Fit based upon off diagonal values = 0.97

25

In Table 1.3 the coordinates of the unrotated and rotated principal components 1 and 2 are
presented. It is obvious that in the rotated case, we can come to some conclusions much easier
than in the unrotated case.

Unrotated Rotated

Variable PC1 PC2 PC1 PC2
Customer Segments 0.77733 0 .25127 0. 4 0.71
Value Propositions 0.65162 0 .49599 0.14 0.81

Channels 0.63015 0 .49295 0.12 0.79
Customer Relationships 0.72091 0 .26159 0.35 0.68

Revenue Streams 0.76283 -0. 3538 0. 8 0.26
Key Resources 0.78501 -0. 3782 0.83 0.26
Key activities 0.79919 -0. 0753 0.64 0.49
Key Partners 0.66852 -0. 1077 0.56 0.38
Cost Structure 0.62246 -0. 5122 0. 8 0.05

Table 1.3: Coe�cients of components 1 and 2: entrepreneurs data

More speci�cally, rotated PC1 gave relatively high weights to the variables Revenue streams,
Key resources, Key Activities, Key Partners and Cost Structure. On the other hand, PC2 had
some high weights associated with Customer Segments, Value Propositions, Channels, Customer
Relationships and relatively high weight to Key Activities.

It is noticeable that all of the 9 variables seem to play an important role to our analysis, and
each of them is signi�cant to one and only one of the two Principal Components, except for the
variable Key Activities, which is highly�weighted in both PCs.
Inspecting the content of these variables, we note that the �rst Principal Component has to do
with the company's �nances and operations, while the second Principal Component is related to
serving products to new and existing customers.

In other words, through the rotation method, we managed to make some inference about our
data, which was impossible if we looked our initial results on PCs.

Now, we will carry on examining our data via some graphs. During this procedure, we will
compare our conclusions with the ones described above, through the rotation method.

First of all, let us plot the variables. The variable plot (Figure 1.9) shows the relationships
between the variables. Since positively correlated variables are grouped together, it seems that
Channels, Value Propositions, Customer Segments and Customer Relationships consist one group
and Cost Structure, Key Resources, Revenue Streams, Key Partners and Key Activities consist
another one.

26

Figure 1.9: Variable Plot: entrepreneurs data.

The distance between variables and the origin measures the quality of the variables on the
factor map (var.cos2 = var.coord ∗ var.coord). Variables that are away from the origin are well
represented on the factor map. Hence, Channels, Value Propositions, Customer Segments, Cost
Structure, Key Resources and Revenue Streams seem to be well represented, contrary to the rest
of them.

Next, we will examine the quality of representation of the variables (cos2) on the factor map. In
Figure 1.10, we visualize the cos2 of the variables in the �rst �ve dimensions. In Figure 1.11, an
alternative way is applied, creating a bar plot of variables cos2.
Generally, high cos2 indicates a good representation of the variable on the principal component.
In this case the variable is positioned close to the circumference of the correlation circle (Figure
1.9). On the other hand, a low cos2 indicates that the variable is not perfectly represented by
the PCs. In this case the variable is close to the center of the circle.
Observing Figure 1.10 and Figure 1.11, our conclusions coincide with those which we came to,
in Figure 1.9.

27

Figure 1.10: Cos2 of the variables: entrepreneurs data

Figure 1.11: Barplot of the cos2 of the variables: entrepreneurs data

For a more clear view, Figure 1.12 helps us understand better all the above. For example, Key
Resources and Revenue Streams are high, so are important to be included in the representation of
the components, whereas Key Partners' cos2 is low, which means that its quality of representation
on the factor map is less important.

28

Figure 1.12: Variable Plot over the cos2: entrepreneurs data

Then, we analyse the variables based on their contribution in each dimension. Figure 1.13
presents these contributions.

Figure 1.13: Contribution of the variables: entrepreneurs data

Unfortunately this �gure does not help us understand the importancy of the variables. For this
reason, Figure 1.14 , Figure 1.15 and Figure 1.16 are made, which help us in our inference.

29

Figure 1.14: Barplot of the contribution of the variables on the �rst dimension: entrepreneurs data

Figure 1.15: Barplot of the contribution of the variables on the second dimension: entrepreneurs data

30

Figure 1.16: Barplot of the contribution of the variables on the �rst 2 dimensions: entrepreneurs data

The red dashed line on Figure 1.14, Figure 1.15 and Figure 1.16 indicates the expected average
contribution. If the contribution of the variables were uniform, the expected value would be 10%.
For a given component, a variable with a contribution larger than this cuto� could be considered
as important in contributing to the component.
In other words, from Figure 1.14, we can see that the variables contributing most to the �rst com-
ponent are: Key Resources, Key Activities, Customer Segments, Revenue Streams and Customer
Relationships. Figure 1.15 shows us that the variables contributing most in the second princi-
pal component are: Cost Structure, Channels, Value Propositions, Key Resources and Revenue
Streams. Summing up, we conclude that all the variables except for Key Activities, Customer
Relationships and Key Partners contribute to both Principal Components.

Now, highlighting the variables contributing most on the correlation plot we get Figure 1.17,
which gives the same results as described above. Namely, Key Resources and Revenue Streams
are contributing highly, so they are important in explaining the variability in the data, while Key
Partners is not contributing, which means that we may remove it, so that the overall analysis
would get simpler. We have to notice here that the same variables were signi�cant regarding the
cos2.

31

Figure 1.17: Variable Plot over the contribution: entrepreneurs data

• Individuals

Using the following commands, we get the coordinates of the �rst individuals, just to take a look
of their structure:

> ind <- get_pca_ind(pca1)

> head(ind$coord)

Dim.1 Dim.2 Dim.3 Dim.4 Dim.5

1 -0.9318841 -0.4754595 -0.36163089 -0.43637967 -0.3682712

2 -2.3371652 0.2614375 -0.41844837 0.06540382 0.3640769

3 -2.2506998 -1.4633712 -0.39664180 0.06734092 -0.3083011

4 0.2610744 0.3810159 0.89492205 -0.67707924 0.5147132

5 -1.1131951 -1.6667657 0.02663858 -1.02062965 0.6028385

6 -1.2583783 -1.1671340 -1.03782881 0.71719053 1.0624936

Plotting the individuals in the two �rst Principal Components, we get Figure 1.18.

32

Figure 1.18: Individuals Plot: entrepreneurs data

In a similar way with this of the variables, we can plot the individuals with respect to their
quality of representation, cos2 (see Figure 1.19).

Figure 1.19: Individuals Plot: entrepreneurs data

In Figure 1.19, the individuals, are depicted according to their cos2. The higher the cos2, the

33

bigger is the point and its color ranges from red (when we have a high cos2) to yellow (when we
have low cos2), as is shown it Figure 1.19.

Lastly, we represent both the principal component scores and the loading vectors in a single
biplot display (Figure 1.20). This �gure shows us the �behaviour� of each of the entrepreneurs
regarding the �rst Principal Component, which has to do with the company's �nances and
operations, and the second Principal Component, which is related to serving products to new
and existing customers.

Figure 1.20: Biplot: entrepreneurs data

Applying PCA to managers dataset

The code is as follows:

> pca2 <- PCA(managers,scale.unit = T, graph = F)

After applying PCA to managers dataset, we keep on with the same procedure that we followed in
entrepreneurs dataset.

• Variances of the principal components

The eigenvalues are given in R as it is shown below,

> eig2 <- get_eigenvalue(pca2)

34

And we get the results:

eigenvalue variance.percent cumulative.variance.percent

Dim.1 4.4353217 49.281352 49.28135

Dim.2 1.3667369 15.185965 64.46732

Dim.3 0.9059678 10.066309 74.53363

Dim.4 0.7113650 7.904055 82.43768

Dim.5 0.5167366 5.741518 88.17920

Dim.6 0.4107330 4.563700 92.74290

Dim.7 0.2984126 3.315695 96.05859

Dim.8 0.1904989 2.116655 98.17525

Dim.9 0.1642275 1.824751 100.00000

Here, we see that the �rst principal component explains about 49.3% of the variance in the data,
the second one explains 15.2% and so on. Together, the �rst two principal components explain
nearly 64.5% of the data, which is an acceptably large percentage of the variation.
Now looking at the eigenvalues, we see that, indeed, the eigenvalues which correspond to the
�rst two principal components are the only ones that are greater than 1. However, we need to
mention that the third eigenvalue is very close to 1 (0.91), which raises doubts about the number
of components that is appropriate to be used. For reasons of interpretability and in order to
compare the results of entrepreneurs and managers, we choose to keep the �rst two Principal
Components.

Finally, the scree plot (Figure 1.21) veri�es the uncertainty about the number of components
to be retained, which was commented previously. In this scree plot, it is not so clear which is
the point in which we determine an elbow. Additionally, we see that the third principal com-
ponent explains more than 10% of the variation in the data, not so trivial percentage to omit.
Nevertheless, as we analysed above, we will keep the �rst two Principal Components in further
investigation of the data.

Figure 1.21: Scree plot: managers data

35

• Variables
The coordinates of the variables are given below:

Dim.1 Dim.2 Dim.3 Dim.4 Dim.5

C_Seg 0.6115452 0.3723525 0.532820749 -0.04772280 0.26713258

V_Prop 0.6245799 -0.4173899 0.368690809 0.39357559 0.15934628

Chan 0.7788908 -0.3821339 0.002031817 0.21071742 -0.08640856

C_Rel 0.6667110 0.2264419 0.302099065 -0.47581380 -0.31476516

Rev_Str 0.6851754 0.4956123 -0.048918481 0.32416090 -0.30863213

Key_Res 0.9034951 -0.1283870 -0.054360635 -0.06435301 -0.06422116

Key_Act 0.7336309 -0.3622181 -0.402388262 -0.06511751 -0.14646275

Key_Part 0.7640635 -0.1143080 -0.256413545 -0.35821682 0.38528938

Cost_Str 0.4607424 0.6709626 -0.402314167 0.20397049 0.21015382

Now, we will apply varimax rotation, for the same reasons we discussed in enterpreneurs' case.

Principal Components Analysis

Call: principal(r = managers, nfactors = 2, rotate = "varimax", scores = TRUE)

Standardized loadings (pattern matrix) based upon correlation matrix

RC1 RC2 h2 u2 com

C_Seg 0.26 0.67 0.51 0.49 1.3

V_Prop 0.75 0.05 0.56 0.44 1.0

Chan 0.85 0.17 0.75 0.25 1.1

C_Rel 0.39 0.58 0.50 0.50 1.8

Rev_Str 0.25 0.81 0.72 0.28 1.2

Key_Res 0.80 0.44 0.83 0.17 1.6

Key_Act 0.80 0.16 0.67 0.33 1.1

Key_Part 0.68 0.37 0.60 0.40 1.6

Cost_Str -0.04 0.81 0.66 0.34 1.0

RC1 RC2

SS loadings 3.31 2.49

Proportion Var 0.37 0.28

Cumulative Var 0.37 0.64

Proportion Explained 0.57 0.43

Cumulative Proportion 0.57 1.00

Mean item complexity = 1.3

Test of the hypothesis that 2 components are sufficient.

The root mean square of the residuals (RMSR) is 0.1

with the empirical chi square 42.67 with prob < 0.0014

Fit based upon off diagonal values = 0.95

In Table 1.4 the coordinates of the unrotated and rotated �rst Principal Components are pre-
sented.

36

Unrotated Rotated

Variable PC1 PC2 PC1 PC2
Customer Segments 0.6115452 0 .3723525 0 .26 0.67
Value Propositions 0.6245799 -0.4173899 0 .75 0.05

Channels 0.7788908 -0.3821339 0 .85 0.17
Customer Relationships 0.6667110 0 .2264419 0 .39 0.58

Revenue Streams 0.6851754 0 .4956123 0 .25 0.81
Key Resources 0.9034951 -0.1283870 0 .80 0.44
Key activities 0.7336309 -0.3622181 0 .80 0.16
Key Partners 0.7640635 -0.1143080 0 .68 0.37
Cost Structure 0.4607424 0 .6709626 -0.04 0.81

Table 1.4: Coe�cients of components 1 and 2: managers data

As we know, the higher the loading of a variable, the more in�uence it has in the formation of the
principal component score and vice versa. Thus, inspecting the Table 1.4, we understand that
in the formation of PC1, in�uential are the following variables: Value Propositions, Channels,
Key Resources, Key Activities and Key Partners. For PC2, in�uential variables are: Customer
Segments, Revenue Streams and Cost Structure. Therefore, we observe that PC1 is associated
with making products and serving them to existing customers, where on the other hand, PC2
seems to be associated with a �rm's �nances. In the managers' case, we see that Customer
Relationships does not play an in�uential role.

Continuing with the graphical examination of our data we will check if this coincide with the
above conclusions.

Firstly, we plot the variables. The variable plot (Figure 1.22) shows that Customer Segments,
Revenue Streams, Cost Structure and Customer Relationships form one group and Value Propo-
sitions, Channels, Key Resources, Key Activities and Key Partners constitute another one.
Furthermore, it is observed that Channels, Value Propositions, Cost Structure, Key Resources
and Revenue Streams seem to be well represented, in contrast to the rest of them.

37

Figure 1.22: Variable Plot: managers data

Next, examining the quality of representation of the variables (cos2) on the factor map (Figure
1.23), we visualize the cos2 of the variables in all the dimensions. In Figure 1.24, an alternative
way is applied, creating a bar plot of variables cos2.
Observing the Figure 1.23 and Figure 1.24, we come to the same conclusions as in variable plot
(Figure 1.22).

Figure 1.23: Cos2 of the variables: managers data

38

Figure 1.24: Barplot of the cos2 of the variables: managers data

Next, Figure 1.25, visualises in an alternative way all we just discussed. For example, Key
Resources, Channels and Revenue Streams have a high quality of representation, so are important
to be included in it, whereas Customer Relationships' cos2 is low, which means that it is not so
important for the representation of the components in the factor map.

Figure 1.25: Variable Plot over cos2: managers data

We carry on, analysing the variables based on their contribution in each dimension.

39

Figure 1.26 presents these contributions, but it is not so informative contrary to Figure 1.27,
Figure 1.28 and Figure 1.29, which are quite helpful for our analysis.

Figure 1.26: Contribution of the variables: managers data

Figure 1.27: Barplot of the contribution of the variables on the �rst dimension: managers data

40

Figure 1.28: Barplot of the contribution of the variables on the second dimension: managers data

Figure 1.29: Barplot of the contribution of the variables on the �rst 2 dimensions: managers data

From Figure 1.27, we can see that the variables contributing most to the �rst component are: Key
Resources, Channels, Key Partners and Key Activities. Figure 1.28 shows us that the variables
contributing most in the second principal component are: Cost Structure, Revenue Streams and
Value Propositions. For both Principal Components, we conclude that Key Resources, Channels,
Revenue Streams, Key Activities and Cost Structure are contributing the most.

Alternatively, we graph the variables contributing most on the correlation plot (Figure 1.30).
In the same way, we get that Key Resources, Channels and Revenue Streams are highly con-

41

tributing, so they are important in explaining the variability in the data, whereas Customer
Relationships and Customer Segments are not contributing, which means that we may remove
them.

Figure 1.30: Variable Plot over contribution: managers data

• Individuals

Plotting the individuals in the �rst two Principal Components, we get Figure 1.31.

42

Figure 1.31: Individuals Plot: managers data

In a similar way with this of the variables, we can plot the individuals with respect to their
quality of representation, cos2 (see Figure 1.32).

Figure 1.32: Individuals Plot over cos2: managers data

Lastly, Figure 1.33 shows the biplot, in which both scores and loadings are represented. More
speci�cally, each of the managers appears in the graph according to his attitude towards making

43

products and serving them to existing customers (�rst Principal Component), and his attitude
on �rm's �nances (second Principal Component).

Figure 1.33: Biplot: managers data

Conclusions After all this discussion, it seems that a two�dimensional representation of Irish
data is achievable. More speci�cally, we concluded that both entrepreneurs and managers may
represent the nine BMC elements by two factors.

44

Figure 1.34: Biplot for both entrepreneurs and managers

However, the two groups represent the elements in a di�erent way, since, as far as entrepreneurs
are concerned, the �rst PC corresponds to Finance and Operations and the second one to Serving
Products to New and Existing Customers, while regarding the managers, �rst PC has to do with
Making Products and Serving them to Existing Customers and the second one refers to Costs
and Revenues. This di�erence between the two groups is visible in Figure 1.34, where both
entrepreneurs and managers are included but they are distinguished by di�erent colors. [6]

45

1.5 Chicken Dataset

In this section, we will examine the modern application of Principal Components Analysis, in which
the number of the observations is much smaller than the number of the variables. In other words, we
have the case n� p.

1.5.1 Presentation

Due to the outstanding technological development in our days, and more speci�cally in the �eld of
Biology and Medicine, huge amounts of data are being generated and the consequential need to anal-
yse and explore such datasets is more than essential. For this purpose, the application of multivariate
projection techniques to reduce dimensionality is vital [25].
Such a dataset is the one we will present in this subsection. It is formed by the observations on 43
chickens and 4306 genes. These chickens have an additional factor that distinguish them: their diet.
Thus, our factors are 4307 if we consider this information, where the last variable is a qualitative one,
which includes 6 di�erent diet types [13].

Data Description

The chicken data pertains to the gene expression levels of chickens and is gathered in a data�frame
consisting of 4306 rows and 43 columns. The rows correspond to the genes, while the columns corre-
spond to the chickens. As we have already mentioned, we will include in our analysis the qualitative
variable, diet, which the chickens followed. This categorical variable contains 6 diets based on its
distinct conditions: normal diet (N), fasting for 16 hours (F16), fasting for 16 hours then refed for 5
hours (F16R5), fasting for 16 hours then refed for 16 hours (F16R16), fasting for 48 hours (F48) and
fasting for 48 hours then refed for 24 hours (F16R5).

Aim of our analysis

The purpose of our analysis on this dataset is to detect whether the di�erence between the 6 types of
diets, that the 43 chickens follow, a�ects the gene expression. More precisely, it may be interesting to
see how long the chicken needs to be refed after fasting before it returns to a normal state, i.e., a state
comparable to a state of a chicken with a normal diet [13]. This problem, which is known as batch
e�ect problem is among the most popular when dealing with this kind of data and PCA is often used
as an exploratory tool to visualize data and carry out tests [25].

46

1.5.2 Statistical Analysis

Exploratory Analysis First of all, we carry out an exploratory analysis in which:

• The matrix is transposed.

• The supplementary variable �Diet� is created.

The R�package �dplyr� is loaded.

Firstly, as we have mentioned earlier and as we see above, the data is structured in a data�frame
of 7406 rows and 43 columns.

> class(chicken)

[1] "data.frame"

> dim(chicken)

[1] 7406 43

However, given that in a data�frame rows correspond to the observations and the columns to the
variables, we have to transpose the matrix, as follows:

> chicken <- as.data.frame(t(chicken))

> dim(chicken)

[1] 43 7406

Next, we need to create the supplementary variable �Diet�, which includes the 6 di�erent diets of
the chickens. For this, we used the R�package �dplyr�, which is really useful in such manipulation
matters. As we see below, we concluded in the desired matrix.

> chicken <- mutate(chicken,

+ Diet = as.factor(c(rep("N",6),rep("J16",5),rep("J16R5",8),

+ rep("J16R16",9),rep("J48",6),rep("J48R24",9))))

> dim(chicken)

[1] 43 7407

Applying PCA Now that we �xed the form of our data�frame, we move on applying Principal
Components Analysis on the chicken data. For this procedure we used the R�package �FactoMineR�.
The command is given below:

> pca <- PCA(chicken,quali.sup=7407,scale.unit = T, graph = F)

We have to point out that the command needs the qualitative/supplementary variable to be men-
tioned.
Continuing, using the �factoextra� R�package, we get the eigenvalues, which correspond to the vari-
ances of the principal components. We notice, here, that the number of Principal Components is 42,
in other words n− 1, which was expected as we are in the case where n < p.
Here we present just the �rst 6 principal components in order to be concise.

47

> eig <- get_eigenvalue(pca)

> head(eig)

eigenvalue variance.percent cumulative.variance.percent

Dim.1 1453.5724 19.626957 19.62696

Dim.2 692.7879 9.354413 28.98137

Dim.3 536.2080 7.240183 36.22155

Dim.4 434.4534 5.866235 42.08779

Dim.5 374.6216 5.058352 47.14614

Dim.6 324.0825 4.375945 51.52209

From the above results we take the percentages of the variance explained by each Principal Com-
ponent, and the cumulative percentages of them. For example, the �rst PC explains approximately
19.63% of the variance, the second PC 9.35% and both of them together explain 29% of the variation.

Carrying on, we look at the individuals.
Firstly, we calculate the distances of the �rst individuals from their categories.

> head(ind$dist)

1 2 3 4 5 6

72.88762 69.63425 70.81357 80.13850 71.00282 76.83545

Then, we take their contributions in the determination of the �rst �ve PCs.

> head(round(ind$contrib,3))

Dim.1 Dim.2 Dim.3 Dim.4 Dim.5

1 0.061 1.011 9.590 0.957 0.003

2 0.383 0.692 5.951 0.677 0.034

3 0.460 0.709 7.619 0.273 0.223

4 0.371 1.191 5.514 0.010 0.002

5 0.203 0.006 3.118 0.148 0.743

6 0.617 0.635 1.172 0.068 0.035

Also, we can see their quality of representation in the �rst �ve PCs.

> head(round(ind$cos2,3))

Dim.1 Dim.2 Dim.3 Dim.4 Dim.5

1 0.007 0.057 0.416 0.034 0.000

2 0.049 0.042 0.283 0.026 0.001

3 0.057 0.042 0.350 0.010 0.007

4 0.036 0.055 0.198 0.000 0.000

5 0.025 0.000 0.143 0.005 0.024

6 0.065 0.032 0.046 0.002 0.001

As far as the variables are concerned, now, we take a look at the �rst ones, as the inspection of all
of them is di�cult and meaningless because of their large number.
Firstly, we calculate the coordinates/loadings of the �rst variables for the �rst �ve PCs:

> variable <-get_pca_var(pca)

> head(round(variable$coord, 3))

Dim.1 Dim.2 Dim.3 Dim.4 Dim.5

A4GALT -0.526 -0.060 -0.139 -0.082 -0.098

48

A4GNT -0.124 0.217 0.228 -0.183 0.274

AACS 0.332 0.036 0.019 0.127 0.042

AADACL1 0.253 0.284 -0.339 0.141 0.059

AADACL2 0.510 -0.486 0.178 -0.314 0.100

AADACL3 0.314 0.237 -0.268 0.157 0.164

Then, we see their contribution in the formation of the �rst �ve PCs:

> head(round(variable$contrib, 3))

Dim.1 Dim.2 Dim.3 Dim.4 Dim.5

A4GALT 0.019 0.001 0.004 0.002 0.003

A4GNT 0.001 0.007 0.010 0.008 0.020

AACS 0.008 0.000 0.000 0.004 0.000

AADACL1 0.004 0.012 0.021 0.005 0.001

AADACL2 0.018 0.034 0.006 0.023 0.003

AADACL3 0.007 0.008 0.013 0.006 0.007

At last, we take the quality of representation of these variables on the factor map:

> head(round(variable$cos2, 3))

Dim.1 Dim.2 Dim.3 Dim.4 Dim.5

A4GALT 0.276 0.004 0.019 0.007 0.010

A4GNT 0.015 0.047 0.052 0.034 0.075

AACS 0.110 0.001 0.000 0.016 0.002

AADACL1 0.064 0.081 0.115 0.020 0.003

AADACL2 0.260 0.236 0.032 0.098 0.010

AADACL3 0.098 0.056 0.072 0.025 0.027

Moving on by displaying the variable plot for those variables whose correlation is greater than
0.8 (this is because of the large number of variables in the dataset), we will get an image for the
relationships between them. This variable plot, which is given in Figure 1.35, shows which of the
variables are highly, positively correlated between them (variables that appear close to each other),
which are signi�cantly, negatively correlated (variables that are on opposite sides of the graph), and
we see that there are no uncorrelated variables (those which are orthogonal in the graph).

49

Figure 1.35: Variable Plot: chicken data

Next, we inspect the supplementary category �Diet�.
From the results below, which are taken from the summary command, we see:

• The distances of each of the six diet�categories from the center of the circle.

• Their coordinates/loadings on the three �rst PCs.

• Their quality of representation (cos2) on the factor map.

Supplementary categories

Dist Dim.1 cos2 v.test

J16 | 55.795 | 26.069 0.218 1.607

J16R16 | 42.365 | 34.124 0.649 2.984

J16R5 | 41.933 | 18.534 0.195 1.506

J48 | 79.310 | -73.356 0.855 -5.021

J48R24 | 48.622 | -25.591 0.277 -2.238

N | 46.001 | 14.122 0.094 0.967

Dim.2 cos2 v.test Dim.3 cos2 v.test

J16 7.307 0.017 0.653 | 35.312 0.401 3.585 |

J16R16 -7.524 0.032 -0.953 | -10.099 0.057 -1.454 |

J16R5 -13.613 0.105 -1.602 | 17.219 0.169 2.304 |

J48 -22.706 0.082 -2.251 | 7.912 0.010 0.892 |

J48R24 36.262 0.556 4.594 | -7.333 0.023 -1.056 |

N -8.340 0.033 -0.827 | -34.148 0.551 -3.849 |

50

Because, as we have already underlined, our goal in the whole analysis is to �nd out if there
exist di�erences in gene expression between the distinct types of diet, the presentation of some graphs
corresponding to the categorical variable �Diet� is necessary.

Thus, in Figure 1.36 the 43 individuals are represented on the factor map according to the category
of the variable �Diet�, to which they belong. The two�dimensional space is formed by the two �rst
principal components. From Figure 1.36, we observe that the �rst PC distinguishes the individuals
which are grouped within the diet�types J48R24 and J48 from the remaining four categories, while
the second PC distinguishes these individuals that come under J48R24 and J16 from the rest. On the
other hand, the individuals which followed the diets J16R16, J16R5 and N lie together on the factor
map, so no outstanding di�erence among them is noticed.

For a better visualization, we plot the con�dence ellipses around the categories of the variable
�Diet�, as shown in Figure 1.37. Figure 1.37 helps us understand if an observation comes or not from
a determined population, which has a normal bivariate distribution, detect abnormal points and, of
course, compare the di�erent six categories. More speci�cally, we see that J16R16, J16R5, J16 and N
overlap, contrary to the J48 and J48R24.

Figure 1.36: Individual Plot: chicken data

51

Figure 1.37: Con�dence Ellipses around the categories of Diet

Conclusions In other words, from both Figure 1.36 and Figure 1.37 a signi�cant di�erence between
the diet�types J48, J48R24 (diets under excessive stress) and the rest is concluded. That means that
the chickens that follow the diets J16R16, J16R5, J16 and N, have a similar gene expression, whereas
those that follow J48 and those that follow J48R24 appear a uniquely di�erent gene expression.

52

Chapter 2

Classi�cation: Parametric Techniques

2.1 Introduction to Classi�cation

Examples of Classi�cation Problems

• A medical researcher is interested in determining whether the probability of a heart attack can be
predicted given the patient's blood pressure, cholesterol level, calorie intake, gender, and lifestyle.

• An online banking service must be able to determine whether or not a transaction being performed
on the site is fraudulent, on the basis of the user's IP address, past transaction history, and so
forth.

• A criminologist is interested in determining di�erences between on�parole prisoners who have
and who have not violated their parole, then using this information for making future parole
decisions.

• On the basis of DNA sequence data for a number of patients with and without a given disease,
a biologist would like to �gure out which DNA mutations are deleterious (disease�causing) and
which are not. [35, 14]

Presenting the problem of classi�cation, we will �rst need to introduce some de�nitions.

Discriminant Analysis

Discriminant analysis is one of the available techniques for achieving the following objectives:

1. Identify the variables that discriminate �best� between the two groups.

2. Use the identi�ed variables or factors to develop an equation or function for computing a new
variable or index that will parsimoniously represent the di�erences between the two groups.

3. Use the identi�ed variables or the computed index to develop a rule to classify future observations
into one of the two groups.

The third objective of discriminant analysis is to classify future observations into one of the two
groups. Classi�cation can be considered as an independent procedure unrelated to discriminant anal-
ysis. However, it can also be treated as a part of the discriminant analysis procedure. [35]

Training Data

We will always assume that we have observed a set of n di�erent data points. Let xij represent

53

the value of the jth predictor, or input, for observation i, where i = 1, 2, . . . , n and j = 1, 2, . . . , p.
Correspondingly, let yi represent the response variable for the ith observation. These observations
are called the training data because we will use these observations to train, or teach, our method
how to estimate f . Then our training data consist of {(x1, y1), (x2, y2), . . . , (xn, yn)} where xi =
(xi1, xi2, . . . , xip)

′. Our goal is to apply a statistical learning method to the training data in order to
estimate the unknown function f (f is some �xed but unknown function of X1, . . . , Xp and represents
the systematic information that X provides about Y) . In other words, we want to �nd a function f
such that Ŷ ≈ f(X) for any observation (X,Y). When we have to handle a statistical problem, we
explore linear and non�linear approaches for estimating f [14].

Test Data

Test data is referred to the unseen or held�out observations that we use to evaluate the performance
of a statistical learning method [14].

Parametric methods

Parametric methods involve a two�step model�based approach.

1. First, we make an assumption about the functional form, or shape, of f . For example, one very
simple assumption is that f is linear in X:

f(X) = β0 + β1X1 + β2X2 + . . .+ βpXp. (2.1)

Once we have assumed that f is linear, the problem of estimating f is greatly simpli�ed. Instead
of having to estimate an entirely arbitrary p�dimensional function f(X), one only needs to
estimate the p+ 1 coe�cients β0, β1, . . . , βp.

2. After a model has been selected, we need a procedure that uses the training data to �t or
train the model. In case of the linear model given in (2.1), we need to estimate the parameters
β0, β1, . . . , βp. That is, we want to �nd values of these parameters such that Y ≈ β0 + β1X1 +
β2X2 + . . . + βpXp. The most common approach to �tting the model (2.1) is referred to as
(ordinary) least squares. However, least squares is one of many possible ways to �t the linear
model.

The model�based approach just described is referred to as parametric because it reduces the problem
of estimating f down to one of estimating a set of parameters. Assuming a parametric form for f
simpli�es the problem of estimating f because it is generally much easier to estimate a set of parameters,
such as β0, β1, . . . , βp in the linear model (2.1), than it is to �t an entirely arbitrary function f [14].

Non�Parametric methods

Non�parametric methods do not make explicit assumptions about the functional form of f . Instead,
they seek an estimate of f that gets as close to the data points as possible without being too rough
or wiggly. Such approaches can have a major advantage over parametric approaches: by avoiding the
assumption of a particular functional form for f , they have the potential to accurately �t a wider range
of possible shapes for f . Any parametric approach brings with it the possibility that the functional
form used to estimate f is very di�erent from the true f , in which case the resulting model will not �t
the data well. In contrast, non�parametric approaches completely avoid this danger, since essentially
no assumption about the form of f is made. But non�parametric approaches do su�er from a major
disadvantage: since they do not reduce the problem of estimating f to a small number of parameters,
a very large number of observations (far more than is typically needed for a parametric approach) is
required in order to obtain an accurate estimate for f [14] .

Supervised Learning

For each observation of the predictor measurement xi, i = 1, . . . , n there is an associated response

54

measurement yi. We wish to �t a model that relates the response to the predictors, with the aim
of accurately predicting the response for future observations (prediction) or better understanding the
relationship between the response and the predictors (inference) [14].

Unsupervised Learning

Unsupervised learning describes the somewhat more challenging situation in which for every observation
i = 1, . . . , n, we observe a vector of measurements xi but no associated response yi. It is not possible
to �t a regression model, since there is no response variable to predict. In this setting, we are in some
sense working blind [14].

Quantitative Variables

Quantitative variables are the variables that take on numerical values. Examples include a person's
age, height, or income, the value of a house, and the price of a stock [14].

Qualitative Variables

Qualitative/Categorical variables are the variables that take on values in one of K di�erent classes,
or categories. Examples of qualitative variables include class a person's gender (male or female), the
brand of product purchased (brand A, B, or C), whether a person defaults on a debt (yes or no), or
a cancer diagnosis (Acute Myelogenous Leukemia, Acute Lymphoblastic Leukemia, or No Leukemia)
[14].

Regression Problems

The problems with a quantitative response are de�ned as regression problems [14].

Classi�cation Problems

The problems that involve a qualitative response are referred to as classi�cation problems. Predicting
a qualitative response for an observation can be referred to as classifying that observation, since it
involves assigning the observation to a category, or class [14].

Training Error Rate

Suppose that we seek to estimate f on the basis of training observations {(x1, y1), . . . , (xn, yn)} where
y1, . . . , yn are qualitative. The most common approach for quantifying the accuracy of our estimate f̂
is the training error rate , the proportion of mistakes that are made if we apply our estimate f̂ to the
training observations:

1

n

n∑
i=1

I(yi 6= ŷi) (2.2)

Here ŷi is the predicted class label for the ith observation using f̂(xi). And I(yi 6= ŷi) is an indicator
variable that equals 1 if yi 6= ŷi and zero if yi = ŷi. If I(yi 6= ŷi) = 0, then the ith observation was
classi�ed properly by our classi�cation method. Otherwise it was misclassi�ed. Hence Equation (2.2)
computes the fraction of incorrect classi�cations. Equation (2.2) is referred to as the training error
rate because it is computed based on the data that was used to train our classi�er [14].

Test Error Rate

The test error rate�for which we are most interested among the error rates,when applying our classi�er�
is the error rate applied to test observations that were not used in training set. So, the test error rate,
associated with a set of test observations of the form (x0, y0) is given by:

Ave(I(y0 6= ŷ0)), (2.3)

55

where ŷ0 is the predicted class label that results from applying the classi�er to the test observation
with predictor x0. A good classi�er is one for which the test error introduced in (2.3) is smallest [14].

Classi�er

The methods used for classi�cation are known as classi�ers [14].

In this chapter we will present the widely parametric classi�ers: logistic regression, linear discrimi-
nant analysis and quadratic discriminant analysis. The non�parametric classi�ers K�nearest neighbors
and Classi�cation Trees are presented in Chapter 3 and Chapter 4, respectively.

k�fold Cross Validation on Classi�cation Problems

This approach involves randomly dividing the set of observations into k groups, or folds, of approxi-
mately equal size. The �rst fold is treated as a validation set, and the method is �t on the remaining
k − 1 folds. The number of misclassi�ed observations, is then computed on the observations in the
held�out fold. This procedure is repeated k times; each time, a di�erent group of observations is
treated as a validation set. This process results in k estimates of the test error, Err1,Err2, . . . ,Errk.
The k�fold CV estimate is computed by averaging these values,

CV(k) =
1

k

k∑
i=1

Erri, (2.4)

where Erri = I(yi 6= ŷi). [14]

56

2.2 Logistic Regression

2.2.1 Introduction

Logistic regression models the probability that a variable Y belongs to a particular category. Here we
consider the simplest case of a binary response coded 0 or 1. Let us denote the conditional probability
that Y = 1 for given values of multiple predictors X = (X1, . . . , Xp) by p(X) = p(X1, . . . , Xp) =
Pr(Y = 1|X). Next we have to �nd an appropriate way to express the dependence of p(X) on the
regressor variables. We cannot simply write

p(X1, . . . , Xk) = β0 + β1X1 + β2X2 + . . .+ βpXp

because the right�hand side of this expression is not, in general, contained in the interval [0, 1]. Prob-
abilities cannot be negative or greater than 1. However there is merit in trying to retain some linearity
and this is done by using the logistic regression model with the systematic component

p(X1, . . . , Xp) =
eβ0+β1X1+β2X2+...+βpXp

1 + eβ0+β1X1+β2X2+...+βpXp
, (2.5)

and the random component
Y |X ∼ Bernoulli(p(X)) (2.6)

The systematic component shows how p depends on the Xs and the random component shows how Y
varies about p. [3, 14]
The logistic function (2.5) will always produce an S�shaped curve of this form (see Figure 2.1), and so
regardless of the value of X, we will obtain a sensible prediction.

Figure 2.1: The logistic curve.

Figure 2.1 gives the relationship between probability p, and each independent variable, Xi. It can
be seen that the relationship between probability and the independent variable is represented by a
logistic curve that asymptotically approaches one as Xi approaches positive in�nity and zero as Xi

approaches negative in�nity. The function that gives the relationship between probability and the
independent variables is known as the link function, which is logit for the above model. Other link
functions such as normit or probit (i.e., the inverse of the cumulative standard normal distribution
function) and complementary log-log function (i.e., inverse of the Gompertz function) can also be used
[35].

The Bernoulli distribution is a special case of the Binomial distribution and simply speci�es that a
single random variable, Y , say, will take the value 1 with probability p and the value 0 with probability

57

(1 − p). Thus the model in equations (2.5) and (2.6) speci�es that the probability that Y = 1 is the
given function of the X values. After a bit of manipulation of (2.5), we �nd that:

p(X)

1− p(X)
= eβ0+β1X1+β2X2+...+βpXp (2.7)

The quantity p(X)/[1 − p(X)] is called the odds, and can take on any value between 0 and ∞.
Values of the odds close to 0 and ∞ indicate very low and very high probabilities, respectively.
By taking the logarithm of both sides of (2.7), we arrive at

logit(p(X)) = log

(
p(X)

1− p(X)

)
= β0 + β1X1 + . . .+ βpXp (2.8)

The left�hand side of (2.8) is called the log�odds or logit. We see that the logistic regression model
(2.5) has a logit that is linear in X. [3, 14]

2.2.2 Interpretation and Estimation of the Coe�cients

Interpretation of the coe�cients

In a multiple linear regression model, βi gives the average change in Y associated with a one�unit
increase in Xi. In contrast, in a multiple logistic regression model, increasing Xi by one unit changes
the log�odds by βi, (2.8), or equivalently it multiplies the odds by eβi , (2.7). However, because the
relationship between p(X) and the Xi in (2.5) is not a straight line, βi does not correspond to the
change in p(X) associated with a one-unit increase in Xi. The amount that p(X) changes due to a
one�unit change in Xi will depend on the current value of Xi. But regardless of the value of Xi, if βi is
positive then increasing Xi will be associated with increasing p(X), and if βi is negative then increas-
ing Xi will be associated with decreasing p(X). The fact that there is not a straight�line relationship
between p(X) and Xi, and the fact that the rate of change in p(X) per unit change in Xi depends on
the current value of Xi, can also be concluded by the S�shaped curve, see Figure 2.1, that the logistic
regression produces [14].

As a summary, under the logistic model:

• βi is the change in the log�odds associated with a unit increase in Xi. The odds are multiplied
by eβi for each unit increase in Xi.

• β0 is log�odds at X = 0; eβ0 is the odds of a favorable response at this X�value (which may not
have a reasonable interpretation if X = 0 is far from the range of the data) [7].

Estimation of the coe�cients

The coe�cients βi in (2.5) are unknown, and must be estimated based on the available training data.
While in the case of linear regression the least squares approach is used to estimate the unknown coef-
�cients, in the case of logistic regression the more general method of maximum likelihood is preferred,
since it has better statistical properties. The basic intuition behind using maximum likelihood to �t
a logistic regression model is as follows: we seek estimates for βis such that the predicted probability
p̂(xi) for each observation, using (2.5), corresponds as closely as possible to its observed value. In
other words, we try to �nd β̂is such that plugging these estimates into the model for p(X), given in
(2.5), yields a number close to one for the observations where Y = 1, and a number close to zero for

58

those where Y = 0. This intuition can be formalized using a mathematical equation called a likelihood
function

`(β0, β1, . . . , βp) =
∏
i:yi=1

p(xi)
∏

i′:yi′=0

(1− p(xi′)). (2.9)

The estimates β̂is are chosen to maximize this likelihood function. Maximum likelihood is a very
general approach that is used to �t many of the non�linear models [14].

2.2.3 ROC Curve

From Equation (2.5) we have that the estimated/predicted probability of success is:

p̂ = P̂r(Y = 1) =
eβ̂0X0+β̂1X1+...+β̂pXp

1 + eβ̂0X0+β̂1X1+...+β̂pXp
(2.10)

Now we suppose a threshold p0 for which:

• if p̂ > p0, then it is predicted Y = 1

• if p̂ ≤ p0, then it is predicted Y = 0

Comparing the predictions with the true values of the binary variable Y , gives the confusion matrix
(see Table 2.1). For example, a is the number of the observations with a true status of Y = 1, for
which their predicted status is also 1. [5]

True Status

Y = 1 Y = 0

Predicted Status
Y = 1 a b a+ b
Y = 0 c d c+ d

a+ c b+ d n

Table 2.1: Confusion Matrix

Based on the Table 2.1, the following terms are de�ned:

• Sensitivity = a/(a+c), the percentage of the observations, where Y = 1, that are identi�ed (true
positive rate).

• Speci�city = d/(b + d), the percentage of the observations, where Y = 0, that are correctly
identi�ed (true negative rate).

In the confusion matrix the elements on its diagonal represent individuals whose statuses were
correctly predicted, while o��diagonal elements represent individuals that were misclassi�ed. [10]

The ROC curve is a popular graphic for simultaneously displaying the two types of errors: false
positive (1− Specificity) and false negative rate for all possible thresholds (See Figure 2.2).

59

Figure 2.2: A ROC curve.

The overall performance of a classi�er, summarized over all possible thresholds, is given by the area
under the (ROC) curve (AUC). An ideal ROC curve will hug the top left corner, so the larger area
under the (ROC) curve the better the classi�er. If the AUC is close to the maximum of one, it will be
considered very good. We expect a classi�er that performs no better than chance to have an AUC of
0.5 (when evaluated on an independent test set not used in model training). ROC curves are useful
for comparing di�erent classi�ers, since they take into account all possible thresholds [14].

60

2.2.4 Application to Irish data

In this subsection we will examine the Irish data via logistic regression. This dataset was introduced
in Section 1.4.

Exploratory Analysis First of all, we carry out an exploratory analysis in which outliers are de-
tected and the dataset is prepared to apply logistic regression. The R�packages �naniar� and �im-
puteTS� are used, as it is next illustrated.

Thus, �rst we will replace the outliers of our dataset, which had been detected in the Subsection
1.4.2, with the median of the observations, as follows:

> irish[102,4] <- NA

> irish[95,6] <- NA

> irish[c(87, 97), 9] <- NA

> irish[120,5] <- NA

> irish[162,6] <- NA

> irish[125,7] <- NA

> irish[125,8] <- NA

> irish <- na.mean(irish, option = "median")

For this procedure, the R�packages �naniar� and �imputeTS� were loaded.

Moving on, we rename some of the columns of the data in order to gain a better view of them in
our results. This is done as follows:

> colnames(keane)[c(1,2,3,5)] <- c("Status","C_Seg","V_Prop","C_Rel")

Next, we create the variable �status�, with the following command, in which we give the value �ent�
(entrepreneur) to the observations which have a �Status� equal to 2 and the value �mgr� (manager) to
the rest of them, in other words, to these that have a �Status� equal to 1.

> status = as.factor(ifelse(keane$Status==2, "ent", "mgr"))

In order to �nd out how the categorical variable �status� is encoded in R, we use the contrasts()
function:

> contrasts(status)

mgr

ent 0

mgr 1

We see that contrasts() function indicates that R has created a dummy variable with a 1 for
managers. To be coherent with the whole analysis, we will change this encoding as follows:

> status <- factor (as.character(status), levels = c("mgr", "ent"))

61

In this way we have managed to make entrepreneurs correspond to the value 1 and managers to
the value 0 of the dummy variable. We check this as follows:

> contrasts(status)

ent

mgr 0

ent 1

Applying Logistic Regression Now, we are ready to realize our whole analysis upon the fact that
an observation is an entrepreneur.

Firstly, we will �t a logistic regression model in order to predict status using the nine variables:
Customer Segments, Value Propositions, Channels, Customer Relationships, Revenue Streams, Key
Resources, Key Activities, Key Partners and Cost Structure. We apply the glm() function in which
we pass the argument family = binomial, in order to run a logistic regression rather than some other
type of generalized linear model.

> glm.fit = glm(status ~ C_Seg+V_Prop+Chan+C_Rel+Rev_Str+Key_Res+Key_Act+Key_Part+Cost_Str,

+ data=irish,

+ family=binomial)

> summary(glm.fit)

Call:

glm(formula = status ~ C_Seg + V_Prop + Chan + C_Rel + Rev_Str +

Key_Res + Key_Act + Key_Part + Cost_Str, family = binomial,

data = irish)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.5334 -0.5562 0.2329 0.6704 2.3479

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -14.30728 3.19174 -4.483 7.37e-06 ***

C_Seg 0.15446 0.06775 2.280 0.02260 *

V_Prop 0.29564 0.07444 3.971 7.15e-05 ***

Chan -0.05435 0.06003 -0.905 0.36532

C_Rel -0.11635 0.08721 -1.334 0.18213

Rev_Str 0.14363 0.06399 2.244 0.02480 *

Key_Res -0.14105 0.07498 -1.881 0.05996 .

Key_Act 0.03175 0.06658 0.477 0.63344

Key_Part -0.02416 0.06067 -0.398 0.69047

Cost_Str 0.17099 0.05473 3.124 0.00178 **

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 225.07 on 170 degrees of freedom

Residual deviance: 139.24 on 161 degrees of freedom

AIC: 159.24

Number of Fisher Scoring iterations: 5

62

Here, we see that the most statistically signi�cant predictors are: Customer Segments, Value Propo-
sitions, Revenue Streams, Key Resources and Cost Structure (For a level of statistical signi�cance 5%).
Examining their coe�cients, we observe that all of them are positive except for Key Resources, which
means that if high values of these predictors are noticed, it is more likely for the individual/observation
to be an entrepreneur. However, in the case of Key Resources, we have the opposite result: high val-
ues of the variable Key Resources indicate an individual to be more likely a manager. That means
that, high scores of the above variables predict the individual as an entrepreneur, apart from the Key
Resources variable, whose high scores forecast the individual as a manager.

For a less cumbersome interpretation, we will �nd the odds ratios and their con�dence intervals,
using the exp() and confint() functions. The code is the following:

> exp(cbind(OddsRatio = coef(glm.fit),confint(glm.fit)))

Waiting for profiling to be done...

OddsRatio 2.5 % 97.5 %

(Intercept) 6.115438e-07 6.110882e-10 0.0001834451

C_Seg 1.167032e+00 1.024764e+00 1.3397285648

V_Prop 1.343984e+00 1.167533e+00 1.5672468497

Chan 9.471036e-01 8.393961e-01 1.0647334200

C_Rel 8.901613e-01 7.482377e-01 1.0558293732

Rev_Str 1.154458e+00 1.022385e+00 1.3166412224

Key_Res 8.684492e-01 7.420023e-01 0.9976975744

Key_Act 1.032261e+00 9.065822e-01 1.1790869574

Key_Part 9.761306e-01 8.651556e-01 1.0987969356

Cost_Str 1.186480e+00 1.072202e+00 1.3308615706

Regarding the signi�cant predictors, as mentioned above we can come to the following conclusions:

• Customer Segments: If the value of the variable Customer Segments is increased by one unit,
while the rest of the variables have a �xed value, it is more likely for the individual to be an
entrepreneur by about 17% (the odds ratio is 1.17).

• Value Propositions: It is about 1.34 times more likely for an individual to be an entrepreneur
than a manager, if the variable Value Propositions increases by 1 unit and the rest of the variables
are �xed.

• Revenue Streams: If the variable Revenue Streams is increased by one unit, while the rest
variables remain �xed, it is more likely for the individual to be an entrepreneur than a manager,
with an odds ratio of 1.15.

• Key Resources: Increase of the value of the variable Key Resources by one unit, makes the
probability of an individual to be an entrepreneur 0.87 times as likely to be a manager. Or,
managers are more likely than entrepreneurs with an odds ration of 1.15.

• Cost Structure: Similarly to the above, here the odds ratio for this variable is approximately
1.19, which means that it is by 19% more likely for an individual to be an entrepreneur than a
manager.

The predict() function can be used to predict the probability that the observation is an en-
trepreneur, given values of the predictors. The type=�response� option tells R to output probabilities
of the form Pr(Y = 1|X), as opposed to other information such as the logit. If no data set is supplied
to the predict() function, then the probabilities are computed for the training data that was used to �t
the logistic regression model. We know that these values correspond to the probability of the individual

63

to be an entrepreneur, rather than a manager, because we have made the contrasts() function indicate
that R has created a dummy variable with a 1 for entrepreneur instead of manager.

> glm.probab=predict(glm.fit ,type="response")

Here we have printed the �rst 10 probabilities:

> glm.probab [1:10]

1 2 3 4 5 6 7 8 9

0.7414775 0.4713426 0.7181912 0.4887675 0.3190825 0.5100011 0.9784613 0.9382211 0.8800505

10

0.4064996

Additionally, we calculate the last 10 probabilities:

> glm.probab [161:171]

161 162 163 164 165 166

0.0822730267 0.0007846501 0.0241564444 0.9475589620 0.0827757677 0.1935759826

167 168 169 170 171

0.6197401126 0.1978726475 0.5050419361 0.1899609389 0.2789557278

We notice, then, that the �rst 10 probabilities are�on the whole�signi�cantly greater than the last
10 probabilities.

In order to make a prediction as to whether we have an entrepreneur or not, we must convert these
predicted probabilities into class labels: mgr and ent. The following two commands create a vector of
class predictions based on whether the predicted probability of an individual to be an entrepreneur is
greater than or less than 0.5.

glm.predict = rep("mgr",171)

glm.predict[glm.probab > 0.5]="ent"

The �rst command creates a vector of 171 elements labelled as manager (mgr). The second line
transforms to entrepreneur (ent) all of the elements for which the predicted probability of an individual
to be an entrepreneur exceeds 0.5.

Performance metrics Given the predictions discussed previously, the table() function can be used
to produce a confusion matrix in order to determine how many observations were correctly or incorrectly
classi�ed.

> table(glm.predict ,status)

status

glm.predict mgr ent

ent 20 94

mgr 43 14

> accuracy = mean(glm.predict == status)

> accuracy

[1] 0.8011696

64

Normally the diagonal elements of the confusion matrix indicate correct predictions, while the o��
diagonals represent incorrect predictions. Here we have the opposite result because of the encoding
we have applied. Hence, our model correctly predicted that the individual is an entrepreneur in 94
out of 108 of the cases, and that the individual is a manager in 43 out of 63 of the them, for a total
of 94 + 43 = 137 correct predictions. The mean() function can be used to compute the fraction of
observations for which the prediction was correct. In this case, logistic regression correctly predicted
the di�erent categories with an accuracy of about 80.12%.

As an additional measure for assessing the performance of the model, we use the ROC curve. The
Area Under the Curve (AUC) summarizes the overall performance of the classi�er, over all possible
probability cuto�s. As we have mentioned in Subsection 2.2.3 the larger the AUC, the better the
classi�er.

For the construction of the ROC we used the R�package �pROC�. The code in R is:

> roc(status, fitted.values(glm.fit),smooth=TRUE,plot=TRUE,asp=NA)

Call:

roc.default(response=status,predictor=fitted.values(glm.fit),smooth=TRUE,plot=TRUE,asp=NA)

Data: fitted.values(glm.fit) in 108 controls (status ent) < 63 cases (status mgr).

Smoothing: binormal

Area under the curve: 0.8809

Figure 2.3: ROC for the glm.�t model.

We see that the AUC is approximately 0.881, which is quite near the �ideal� 1.

Remarks Concerning the accuracy of the model, this is really high. However, this result is misleading
because we trained and tested the model on the same set of 171 observations. In other words, 100%−
80.12% = 19.88% is the training error rate. The training error rate is often overly optimistic�it tends
to underestimate the test error rate. In order to better assess the accuracy of the logistic regression
model in this setting, we can �t the model using part of the data, and then examine how well it predicts

65

the held out data. This will yield a more realistic error rate, in the sense that in practice we will be
interested in our model's performance not on the data that we used to �t the model, but rather on the
observations that we set apart.

Splitting the data To implement this strategy, we will randomly split the data into training set
(80% for building a predictive model) and test set (20% for evaluating the model). We make sure to
set seed for reproducibility.

> set.seed(123)

> train <- sample(1:nrow(irish), nrow(irish) * 0.80)

> test <- irish[-train,]

> status.test <- status[-train]

> dim(test)

[1] 35 10

As we see, the number of observations in the test dataset is 35, which we will use later.

Applying Logistic Regression after splitting the data We, now, �t a logistic regression model
using only the subset of the observations that correspond to the training set, using the subset argument.
We then obtain predicted probabilities of the individual to be an entrepreneur in our test set.

> glm.fit1 = glm(status ~ C_Seg+V_Prop+Chan+C_Rel+Rev_Str+Key_Res+Key_Act+Key_Part+Cost_Str,

+ data=irish ,

+ family = binomial,

+ subset=train)

> summary(glm.fit1)

Call:

glm(formula = status ~ C_Seg + V_Prop + Chan + C_Rel + Rev_Str +

Key_Res + Key_Act + Key_Part + Cost_Str, family = binomial,

data = irish, subset = train)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.4080 -0.5726 0.2516 0.6165 2.3218

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -12.73639 3.15671 -4.035 5.47e-05 ***

C_Seg 0.10177 0.07807 1.304 0.192369

V_Prop 0.33016 0.09286 3.556 0.000377 ***

Chan -0.06886 0.08014 -0.859 0.390232

C_Rel -0.11896 0.10299 -1.155 0.248080

Rev_Str 0.14259 0.08323 1.713 0.086678 .

Key_Res -0.15417 0.09327 -1.653 0.098366 .

Key_Act 0.01027 0.08197 0.125 0.900244

Key_Part -0.00725 0.07125 -0.102 0.918950

Cost_Str 0.17513 0.06288 2.785 0.005351 **

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 177.78 on 135 degrees of freedom

66

Residual deviance: 106.60 on 126 degrees of freedom

AIC: 126.6

Number of Fisher Scoring iterations: 5

What we see from the above output, is that the most statistically signi�cant predictors here, for
a signi�cance level of 5%, are: Value Propositions and Cost Structure. We notice an outstanding
di�erence from our previous model, where all of the data was included. More speci�cally, in the initial
model we considered �ve of the predictors as signi�cant, whereas in the glm.�t1 where the data is split,
only two of them are signi�cant. Regarding the inference for the coe�cients of these variables, this is
similar to that of the previous model. That is to say that, it is more likely for the individual/observation
to be an entrepreneur, if high values of the previously referred predictors are given. In this case we
forecast the individual as entrepreneur.

However, we should also consider the signi�cant predictors for a signi�cance level of 10%, in order
to be more meticulous in our analysis. These are: Value Propositions, Revenue Streams, Key Resources
and Cost Structure.

Again, for a better interpretation, we will �nd the odds ratios and their con�dence intervals, for
these four predictors as follows:

> exp(cbind(OddsRatio = coef(glm.fit1),confint(glm.fit1)))

Waiting for profiling to be done...

OddsRatio 2.5 % 97.5 %

(Intercept) 2.942105e-06 3.061592e-09 0.0008341132

C_Seg 1.107125e+00 9.513840e-01 1.2962507249

V_Prop 1.391198e+00 1.171557e+00 1.6921147082

Chan 9.334602e-01 7.935409e-01 1.0887482245

C_Rel 8.878442e-01 7.231863e-01 1.0874267081

Rev_Str 1.153261e+00 9.854192e-01 1.3684656410

Key_Res 8.571283e-01 7.059337e-01 1.0188377471

Key_Act 1.010328e+00 8.600232e-01 1.1880948573

Key_Part 9.927763e-01 8.626233e-01 1.1423108507

Cost_Str 1.191398e+00 1.061800e+00 1.3606579141

From the above output, the conclusions to which we can come, as far as the signi�cant predictors
are concerned, are:

• Value Propositions: The odds ratio of this variable is approximately 1.39, which means that an
increase of 39% of the probability of an individual to be an entrepreneur is noted if the variable
Value Propositions is increased by one unit.

• Revenue Streams: If the value of the variable Revenue Streams is increased by one unit, while
the rest of the variables are �xed, it is more likely for an individual to be an entrepreneur with
an odds ration of 1.15.

• Key Resources: For this variable we have the opposite inference, compared to the rest. That
is, here, if the value of the variable Key Resources is increased by one unit, the probability for
an individual to be an entrepreneur decreases by more than 14%.

• Cost Structure: For this variable, we have almost the same results as those we got before the
splitting of the dataset. That is, if the variable Cost Structure is increased by one unit, it is more
likely for the individual to be an entrepreneur than a manager, with an odds ratio of 1.19, which
means that it is by 19% more likely for an individual to be an entrepreneur than a manager.

67

Notice that we have trained and tested our model on two completely separate data sets.

Performance metrics after splitting the data Finally, we compute the predictions for the test
set and compare them to the actual status of the observations.

> glm.probab1 = predict(glm.fit1 ,test, type="response")

> glm.predict1 = rep("mgr", 35)

> glm.predict1[glm.probab1 > 0.5] = "ent"

> table(glm.predict1, status.test)

status.test

glm.predict1 mgr ent

ent 6 19

mgr 8 2

> accuracy1 = mean(glm.predict1 == status.test)

> accuracy1

[1] 0.7714286

The accuracy of this model is approximately 77.14%. One can think that this is a worse result,
compared to our initial model, which had an accuracy of 80.12%. However, here we have a typical
over�tting problem, in which the model is being trained really well in a speci�c dataset, but is unable
to predict correctly new data. Thus, we should not take into account the accuracy of the model which
has not been split into training and test set, as such an accuracy is meaningless.

Examining the ROC curve now, we get the following:

> roc(status[train],fitted.values(glm.fit1),smooth=TRUE,plot=TRUE,asp=NA)

Call:

roc.default(response=status[train],predictor=fitted.values(glm.fit1),smooth=TRUE,plot=TRUE,asp=NA)

Data: fitted.values(glm.fit1) in 49 controls (status[train] mgr) < 87 cases (status[train] ent).

Smoothing: binormal

Area under the curve: 0.889

68

Figure 2.4: ROC for the glm.�t1 model.

Here, the AUC is 0.889, that means higher than the initial model. In other words, the ability of
classi�cation in this model, is greater than the initial, where the whole dataset was included in the
logistic regression analysis.

Applying Logistic Regression with two variables Next, we examine if after removing the vari-
ables that appear not to be helpful in predicting the status, we can obtain a more e�ective model.
After all, using predictors that have no relationship with the response tends to cause a deterioration in
the test error rate (since such predictors cause an increase in variance without a corresponding decrease
in bias), and so removing such predictors may in turn yield an improvement. From the output of the
previous logistic regression model, we found out that the most statistically signi�cant predictors for
a signi�cance level of 5% were: Value Propositions and Cost Structure. Thus, re�tting the logistic
regression using these two predictors, instead of all of them, we get the results below:

> glm.fit2 = glm(status ~ V_Prop+Cost_Str, data=irish,

+ family = binomial,

+ subset=train)

> summary(glm.fit2)

Call:

glm(formula = status ~ V_Prop + Cost_Str, family = binomial,

data = irish, subset = train)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.2161 -0.5687 0.3225 0.6994 2.0669

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -13.63065 2.55012 -5.345 9.04e-08 ***

V_Prop 0.27059 0.06005 4.506 6.60e-06 ***

69

Cost_Str 0.15553 0.04179 3.722 0.000198 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 177.78 on 135 degrees of freedom

Residual deviance: 119.57 on 133 degrees of freedom

AIC: 125.57

Number of Fisher Scoring iterations: 5

What we notice here is that, regarding the AIC, in the second model we achieve a lower value of it
(125.57), compared to the previous one (126.6), which means that indeed the second model with the
two predictors is better.

Performance metrics for the two�variable model Moving on, we follow the same procedure as
previously computing the predictions for the test set and compare them to the actual status of the
observations.

> glm.probab2 = predict(glm.fit2 ,test, type="response")

> glm.predict2 = rep("mgr", 35)

> glm.predict2[glm.probab2 > 0.5] = "ent"

> table(glm.predict2, status.test)

status.test

glm.predict2 mgr ent

ent 7 19

mgr 7 2

> accuracy2 = mean(glm.predict2 == status.test)

> accuracy2

[1] 0.7428571

In this case, we see that the model predicts correctly the status of the individuals with a percentage
of 74.29%. In other words, the accuracy of the model falls from 77.14%, which had been achieved in the
�rst model where all of the predictors were included, to 74.29%. Generally, a decrease in the accuracy
of the model is not the desirable, so one could conclude that the �rst model is the most appropriate.
Nevertheless, we should consider the fact that in the second model, the status depends on just two
predictors out of nine we had in the beginning. Under this point of view, we understand the advantage
of the second model in the predicting process. Additionally, the di�erence between the accuracies of
the two models is not so important. We prefer to sacri�ce hardly 3% of the accuracy of the model,
than to keep the complex one in our analysis.
Another point worth noting here is that the glm.�t2 model correctly predicts 19 out of 21 entrepreneurs,
which is a really high true positive rate (sensitivity), while for the case of managers, things are not so
good, as half of them are classi�ed correctly and half of them incorrectly.

To sum up, from both the AIC criterion and the satisfying accuracy of the second model, where
only the signi�cant predictors are included, we choose it as the most appropriate logistic regression
model for predicting the status of the individuals. Thus, in order to forecast if an individual is a man-
ager or an entrepreneur, we only need their values related to: Value Propositions and Cost Structure.
High values of them are more likely to predict an individual as an entrepreneur, whereas low values of

70

them classify him as a manager.

Finally, we examine the ROC graphical method to detect the total proportion of correctly classi�ed
observations via the second model.

> roc(status[train],fitted.values(glm.fit2),smooth=TRUE,plot=TRUE,asp=NA)

Call:

roc.default(response=status[train],predictor=fitted.values(glm.fit2),smooth=TRUE,plot=TRUE,asp=NA)

Data: fitted.values(glm.fit2) in 49 controls (status[train] mgr) < 87 cases (status[train] ent).

Smoothing: binormal

Area under the curve: 0.8508

Figure 2.5: ROC for the glm.�t2 model.

71

As we see, the AUC drops from 0.889 to 0.8508 which does not deter us from selecting the second
model with the two predictors in it, for all the reasons we mentioned previously.

To be careful with our analysis, we will also examine the corresponding results for the case where
we �t a logistic regression model to the Irish data with the most signi�cant predictors for a signi�cance
level of 10%, instead of 5%. This is because, by excluding some of the predictors, the performance of
the prediction model may be decreased signi�cantly.

Applying Logistic Regression with four variables Thus, based on the summary of the model
glm.�t1 where all of the predictors were included after the splitting of the data had been applied,
we had seen that signi�cant variables in a signi�cant level of 10% were the following: Value Proposi-
tions, Revenue Streams, Key Resources, Cost Structure. Then, the logistic regression with these four
predictors gives us the following results:

> glm.fit3 = glm(status ~ V_Prop+Rev_Str+Key_Res+Cost_Str ,

+ data=irish,

+ family = binomial,

+ subset=train)

> summary(glm.fit3)

Call:

glm(formula = status ~ V_Prop + Rev_Str + Key_Res + Cost_Str,

family = binomial, data = irish, subset = train)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.2955 -0.5407 0.2927 0.6309 1.8520

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -14.45769 2.73649 -5.283 1.27e-07 ***

V_Prop 0.30726 0.07703 3.989 6.65e-05 ***

Rev_Str 0.15667 0.07410 2.114 0.03450 *

Key_Res -0.19159 0.08195 -2.338 0.01938 *

Cost_Str 0.17767 0.05689 3.123 0.00179 **

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 177.78 on 135 degrees of freedom

Residual deviance: 110.65 on 131 degrees of freedom

AIC: 120.65

Number of Fisher Scoring iterations: 5

For this model, we see that the value of AIC is the lowest of all that have been �tted. Here AIC is
equal to 120.65, whereas in the glm.�t2 with the two predictors the AIC was 125.57. This is a quite
noticeable di�erence. However, we should compare the accuracy of the two models, as well as their
ROC curves.

Performance metrics for the four�variable model In this way, to get the accuracy of the model
glm.�t3, we follow the same procedure as above:

72

> glm.probab3 = predict(glm.fit3 ,test, type="response")

> glm.predict3 = rep("mgr", 35)

> glm.predict3[glm.probab3 > 0.5] = "ent"

> table(glm.predict3, status.test)

status.test

glm.predict3 mgr ent

ent 7 18

mgr 7 3

> accuracy3 = mean(glm.predict3 == status.test)

> accuracy3

[1] 0.7142857

As we see, the accuracy of this model is approximately 0.71, while this of the glm.�t2 model was
0.74. In other words, the model with the two most signi�cant predictors achieves a higher accuracy of
about 3%, compared to the model with the four more signi�cant predictors.
Regarding the confusion matrix, we have a similar image, as the model glm.�t3 correctly predicts 18
out of 21 entrepreneurs but only 7 out of 14 managers.

Continuing, regarding the ROC curve, we have:

> roc(status[train],fitted.values(glm.fit3),smooth=TRUE,plot=TRUE,asp=NA)

Call:

roc.default(response=status[train],predictor=fitted.values(glm.fit3),smooth=TRUE,plot=TRUE,asp=NA)

Data: fitted.values(glm.fit3) in 49 controls (status[train] mgr) < 87 cases (status[train] ent).

Smoothing: binormal

Area under the curve: 0.8747

Figure 2.6: ROC for the glm.�t3 model.

The AUC of the ROC here is 0.8747, while the corresponding for the glm.�t2 was 0.8508. This
means that the model with the four variables has a better AUC of the ROC by nearly 2.5%.

73

Model selection All in all, comparing the two models, we have the following results:

Model
glm.�t2 glm.�t3

accuracy 0.74 0.71
ROC 85 .08% 87 .47%
AIC 125. 57 120. 65

Table 2.2: Comparing the two models with the two and four most signi�cant predictors, respectively.

Conclusions As we see from the Table 2.2, the model with the four predictors (glm.�t3), has a
higher AUC of ROC and a lower value for AIC, which is desirable. On the other hand, the model
with the two predictors (glm.�t2) gets a higher accuracy and also has the advantage that includes the
fewer variables. As a consequence of the above results, the selection of the most appropriate model is a
matter of choice. If we are more interested in �tting the less complex model with the higher accuracy,
then the glm.�t2 should be selected. Otherwise, if we do not give such an importance to the number of
predictors to be included, but we prefer a model with a better value for ROC and AIC, then glm.�t3
is the most adecuate.

74

2.3 Linear Discriminant Analysis

2.3.1 Introduction

The linear discriminant analysis is preferred to logistic regression for the following reasons:

• When the classes are well�separated, the parameter estimates for the logistic regression model
are surprisingly unstable. Linear discriminant analysis does not su�er from this problem.

• If n is small and the distribution of the predictors X is approximately normal in each of the
classes, the linear discriminant model is again more stable than the logistic regression model.

• Linear discriminant analysis is popular when we have more than two response classes.

Let us, now, present some de�nitions.

Prior

Suppose that we wish to classify an observation into one of K classes, where K ≥ 2. In other words, the
qualitative response variable Y can take on K possible distinct and unordered values. Let πk represent
the overall or prior probability that a randomly chosen observation comes from the kth class; this is
the probability that a given observation is associated with the kth category of the response variable
Y .

Density Function

Let fk(X) = Pr(X = x|Y = k) denote the density function of X for an observation that comes from
the kth class. In other words, fk(x) is relatively large if there is a high probability that an observation
in the kth class has X ≈ x, and fk(x) is small if it is very unlikely that an observation in the kth class
has X ≈ x.

Bayes' Theorem

Bayes' theorem states that:

Pr(Y = k|X = x) =
πkfk(x)∑K
l=1 πlfl(x)

(2.11)

We will use the abbreviation pk(X) = Pr(Y = k|X). This suggests that instead of directly
computing pk(X) as in Subsection 2.2.1, we can simply plug in estimates of πk and fk(X) into (2.11).

Estimation of πks
In general, estimating πk is easy if we have a random sample of Y s from the population: we simply
compute the fraction of the training observations that belong to the kth class.

Estimation of fk(X)
Estimating fk(X) tends to be quite challenging, unless we assume some simple forms for these densities.

Posterior

We refer to pk(x) as the posterior probability that an observation X = x belongs to the kth class (see
2.11). That is, it is the probability that the observation belongs to the kth class, given the predictor
value for that observation.

Bayes classi�er has the lowest possible error rate out of all classi�ers. Therefore, if we can �nd a
way to estimate fk(X), then we can develop a classi�er that approximates the Bayes classi�er. [14]

75

2.3.2 Method

Linear Discriminant Analysis for p = 1

We assume that p = 1, that is we have only one predictor. We would like to obtain an estimate
for fk(x) that we can plug into (2.11) in order to estimate pk(x). We will then classify an observation
to the class for which pk(x) is greatest. In order to estimate fk, we will �rst make some assumptions
about its form.
Suppose we assume that fk is normal or Gaussian. In the one�dimensional setting, the normal density
takes the form:

fk(x) =
1√
2πσk

exp

(
− 1

2σ2k
(x− µk)2

)
, (2.12)

where µk and σ2k are the mean and variance parameters for the kth class. Let us further assume that
σ21 = . . . = σ2K : that is, there is a shared variance term across all K classes, which for simplicity we
can denote by σ2. Plugging (2.12) into (2.11), we �nd that:

pk(x) =
πk

1√
2πσ

exp
(
− 1

2σ2 (x− µk)2
)

∑K
l=1 πl

1√
2πσ

exp
(
− 1

2σ2 (x− µl)2
) (2.13)

The Bayes classi�er involves assigning an observation X = x to the class for which (2.13) is largest.
Taking the log of (2.13) and rearranging the terms, it is not hard to show that this is equivalent to
assigning the observation to the class for which:

δk(x) = x · µk
σ2
−

µ2k
2σ2

+ log(πk) (2.14)

is largest.

The linear discriminant analysis (LDA) method approximates the Bayes classi�er by plugging
estimates for πk, µk, and σ2 into (2.14). In particular, the following estimates are used:

µ̂k =
1

nk

∑
i:yi=k

xi

σ̂2 =
1

n−K

K∑
k=1

∑
i:yi=k

(xi − µ̂k)2,
(2.15)

where n is the total number of training observations, and nk is the number of training observations in
the kth class. The estimate for µk is simply the average of all the training observations from the kth
class, while σ̂2 can be seen as a weighted average of the sample variances for each of the K classes.
Sometimes we have knowledge of the class membership probabilities π1, . . . , πK , which can be used
directly. In the absence of any additional information, LDA estimates πk using the proportion of the
training observations that belong to the kth class. In other words,

π̂k = nk/n. (2.16)

The LDA classi�er plugs the estimates given in (2.15) and (2.16) into (2.14), and assigns an obser-
vation X = x to the class for which

δ̂k(x) = x · µ̂k
σ̂2
−

µ̂2k
2σ̂2

+ log(π̂k) (2.17)

76

is largest. The word linear in the classi�er's name stems from the fact that the discriminant functions
δ̂k(x) in (2.17) are linear functions of x (as opposed to a more complex function of x).

To reiterate, the LDA classi�er results from assuming that the observations within each class come
from a normal distribution with a class�speci�c mean vector and a common variance σ2, and plugging
estimates for these parameters into the Bayes classi�er.

Linear Discriminant Analysis for p > 1

We now extend the LDA classi�er to the case of multiple predictors. To do this, we will assume that
X = (X1, X2, . . . , Xp) is drawn from a multivariate Gaussian (or multivariate normal) distribution,
with a class�speci�c multivariate Gaussian mean vector and a common covariance matrix.
The multivariate Gaussian distribution assumes that each individual predictor follows a one�dimensional
normal distribution, as in (2.12), with some correlation between each pair of predictors.
To indicate that a p�dimensional random variable X has a multivariate Gaussian distribution, we write
X ∼ N (µ, Σ). Here E(X) = µ is the mean of X (a vector with p components), and Cov(X) = Σ is
the p× p covariance matrix of X. Formally, the multivariate Gaussian density is de�ned as

f(x) =
1

(2π)
p
2 |Σ|

1
2

exp
(
− 1

2
(x− µ)TΣ−1(x− µ)

)
. (2.18)

In the case of p > 1 predictors, the LDA classi�er assumes that the observations in the kth class are
drawn from a multivariate Gaussian distribution N (µk, Σ), where µk is a class�speci�c mean vector,
and Σ is a covariance matrix that is common to all K classes. Plugging the density function for the
kth class, fk(X = x), into (2.11) and performing a little bit of algebra reveals that the Bayes classi�er
assigns an observation X = x to the class for which

δk(x) = xTΣ−1µk −
1

2
µTkΣ−1µk + log πk (2.19)

is largest. This is the vector/matrix version of (2.14).

Once again, we need to estimate the unknown parameters µ1, . . . , µK , π1, . . . , πK , and Σ; the
formulas are similar to those used in the one�dimensional case, given in (2.15). To assign a new
observation X = x, LDA plugs these estimates into (2.19) and classi�es to the class for which δ̂k(x) is
largest. Note that in (2.19) δk(x) is a linear function of x; that is, the LDA decision rule depends on
x only through a linear combination of its elements. Once again, this is the reason for the word linear
in LDA. [14]

77

2.3.3 Application to Irish data

In this subsection we will perform Linear Discriminant Analysis (LDA) on the Irish data, introduced
in Section 1.4.

Firstly, we �t a LDA model using the lda() function, whose syntax is identical to that of glm().
We �t the model using the training set that we had created in the Subsection 2.2.4.
We will apply the LDA to the two models we had concluded to, in the Subsection 2.2.4: the one which
includes Value Propositions and Cost Structure and the other which includes Value Propositions,
Revenue Streams, Key Resources and Cost Structure. For the application of LDA in R, the library
�MASS� has to be loaded.

Examining the model with the two most signi�cant predictors.

Fitting the linear discriminant model with the two most signi�cant predictors we get:

> lda.fit2 <- lda(status ~ V_Prop+Cost_Str,

+ data=irish,

+ subset=train)

> lda.fit2

Call:

lda(status ~ V_Prop + Cost_Str, data = irish, subset = train)

Prior probabilities of groups:

mgr ent

0.3602941 0.6397059

Group means:

V_Prop Cost_Str

mgr 31.20408 28.97959

ent 36.13793 35.66667

Coefficients of linear discriminants:

LD1

V_Prop 0.18307987

Cost_Str 0.09538782

The LDA output indicates that π̂1 = 0.36 and π̂2 = 0.64. In other words, 36% of the training
observations correspond to managers. It also provides the group means. These are the average of
each predictor within each class, and are used by LDA as estimates of µk. What we see is that,
when the observation is an entrepreneur, both variables get a higher value compared to the case
when the observation is a manager. The coe�cients of linear discriminants output provides the linear
combination of Value Proposition and Cost Structure that are used to form the LDA decision rule. In
other words, if 0.183 × V_Prop + 0.095 × Cost_Str is large, then the LDA classi�er will predict an
individual as an entrepreneur, while if it is small, then the LDA classi�er will predict an individual as
a manager.

The predict() function returns a list with three elements, as it is shown below:

> lda.pred2 = predict(lda.fit2, test)

> names(lda.pred2)

[1] "class" "posterior" "x"

78

For these elements we have that:

• The �rst element, class, contains LDA's predictions about the status of the individual.

• The second element, posterior, is a matrix whose kth column contains the posterior probability
that the corresponding observation belongs to the kth class.

• The third element, x contains the linear discriminants, described earlier.

Performance metrics for the two�variable model Moving on, we compute the accuracy of this
model, as it is shown below:

> lda.class2 = lda.pred2$class

> table(lda.class2, status.test)

status.test

lda.class2 mgr ent

mgr 7 2

ent 7 19

> acc2 <- mean(lda.class2 == status.test)

> acc2

[1] 0.7428571

From the above result, we observe that the accuracy that is being achieved through the application
of LDA is exactly the same with the accuracy we got through the application of the logistic regression.

Applying a 50% threshold to the posterior probabilities allows us to recreate the predictions con-
tained in lda.pred2$class.

> sum(lda.pred2$posterior[,1] >= 0.5)

[1] 9

> sum(lda.pred2$posterior[,1] < 0.5)

[1] 26

Here, the posterior probability output by the model corresponds to the probability that the indi-
vidual will be a manager. We will compute the �rst ten posterior probabilities for the individual to be
a manager, as well as the prediction of the status of each individual. The code in R is as follows:

> lda.pred2$posterior[1:10, 1]

2 3 12 13 14 40 41 44 49

0.41647566 0.41072263 0.29117043 0.35532999 0.28388177 0.38404715 0.23015402 0.52295971 0.62739678

56

0.05040484

> lda.class2[1:10]

[1] ent ent ent ent ent ent ent mgr mgr ent

Levels: mgr ent

If we wanted to use a posterior probability threshold other than 50% in order to make predictions,
then we could easily do so. For instance, suppose that we wish to predict a manager only if we are
very certain that the individual is indeed a manager � say, if the posterior probability is at least 90%.

> sum(lda.pred2$posterior[,1] >= 0.9)

[1] 0

79

What we get, after considering a threshold of 90%, is that none of the individuals is classi�ed as a
manager.

Examining the model with the four most signi�cant predictors.

The linear discriminant model for the four most signi�cant predictors is as follows:

> lda.fit3 <- lda(status ~ V_Prop+Rev_Str+Key_Res+Cost_Str,

+ data=irish,

+ subset=train)

> lda.fit3

Call:

lda(status ~ V_Prop + Rev_Str + Key_Res + Cost_Str, data = irish,

subset = train)

Prior probabilities of groups:

mgr ent

0.3602941 0.6397059

Group means:

V_Prop Rev_Str Key_Res Cost_Str

mgr 31.20408 29.38776 30.42857 28.97959

ent 36.13793 34.70115 33.93103 35.66667

Coefficients of linear discriminants:

LD1

V_Prop 0.17372709

Rev_Str 0.10040681

Key_Res -0.10086966

Cost_Str 0.09784925

The LDA output, here, indicates that π̂1 = 0.36 and π̂2 = 0.64. We notice that the results in
this case, regarding the prior probabilities and the group means of the variables Value Propositions
and Cost Structure�which are the two most signi�cant predictors,included in the previous model�are
identical with those in the lda.�t2. What changes here is the LDA rule. More speci�cally, we have
LD1 = 0.174 × V_Prop + 0.1 × Rev_Str − 0.101 ×Key_Res + 0.098 × Cost_Str. As we know, if
LD1 is large, then the LDA classi�er will predict an individual as an entrepreneur, while if it is small,
then the LDA classi�er will predict an individual as a manager.

Performance metrics for the four�variable model Let us now compute the accuracy of this
model:

> lda.class3 = lda.pred3$class

> table(lda.class3, status.test)

status.test

lda.class3 mgr ent

mgr 7 3

ent 7 18

> acc3 <- mean(lda.class3 == status.test)

> acc3

[1] 0.7142857

80

As we had observed in the lda.�t2, the accuracy of the model lda.�t3 is exactly the same with the
accuracy we got through the application of the logistic regression in these four predictors.

Next, considering a 50% threshold to the posterior probabilities, we get the predictions contained
in lda.pred3$class. The code is the following:

> sum(lda.pred3$posterior[,1] >= 0.5)

[1] 10

> sum(lda.pred3$posterior[,1] < 0.5)

[1] 25

Here, we see that this model predicts 10 of the 35 individuals to be a manager and 25 to be an
entrepreneur, while the lda.�t2 model predicted 9 and 26, respectively.

Continuing, we will, again, compute the �rst ten posterior probabilities for the individual to be a
manager, as well as the prediction of the status of each individual. For this, we have:

> lda.pred3$posterior[1:10, 1]

2 3 12 13 14 40 41 44 49

0.41384442 0.31835083 0.57149064 0.36159888 0.37794124 0.38345950 0.21400168 0.10895106 0.63893481

56

0.03408866

> lda.class3[1:10]

[1] ent ent mgr ent ent ent ent ent mgr ent

Levels: mgr ent

Let us, in this case too, take a look at the number of individuals to be classi�ed as managers, if
the posterior probability is at least 90%.

> sum(lda.pred3$posterior[,1] >= 0.9)

[1] 2

Remark Here, we resulted in a quite noticeable di�erence in output: after considering a threshold
of 90%, 2 out of the 35 individuals were predicted as managers, whereas in the case of the lda.�t2 we
had seen that for such a threshold none of the individuals was classi�ed as a manager.

81

2.4 Quadratic Discriminant Analysis

2.4.1 Method

Quadratic discriminant analysis (QDA) provides an alternative approach to LDA, which assumes
that the observations within each class are drawn from a multivariate Gaussian distribution with
a class speci�c mean vector and a covariance matrix that is common to all K classes. Like LDA,
the QDA classi�er results from assuming that the observations from each class are drawn from a
Gaussian distribution, and plugging estimates for the parameters into Bayes' theorem in order to
perform prediction. However, unlike LDA, QDA assumes that each class has its own covariance matrix.
That is, it assumes that an observation from the kth class is of the form X ∼ N (µk,Σk), where Σk is a
covariance matrix for the kth class. Under this assumption, the Bayes classi�er assigns an observation
X = x to the class for which

δk(x) = −
1

2
(x− µk)TΣ−1k (x− µk)−

1

2
log |Σk|+ log πk

= −1

2
xTΣ−1k x+ xTΣ−1k µk −

1

2
µTkΣ−1k µk −

1

2
log |Σk|+ log πk (2.20)

is largest. So the QDA classi�er involves plugging estimates for Σk, µk, and πk into (2.20), and then
assigning an observation X = x to the class for which this quantity is largest. Unlike in (2.19), the
quantity x appears as a quadratic function in (2.20). This is where QDA gets its name. [14]

82

2.4.2 Application to Irish data

In this subsection, we will �t a QDA model to the Irish data. QDA is implemented in R using the
qda() function, whose syntax is identical to that of lda(). Similarly to the Subsection 2.3.3, we will �t
the model using the training set that we had created in the Subsection 2.2.4, and apply this method
to the two models: the one that contains the variables Value Propositions and Cost Structure and the
other which includes Value Propositions, Revenue Streams, Key Resources and Cost Structure. For
the application of QDA in R, the library �MASS� has to be loaded, too.

Examining the model with the two most signi�cant predictors.

Fitting the quadratic discriminant model with the two most signi�cant predictors we get:

> qda.fit2 <- qda(status ~ V_Prop+Cost_Str,

+ data=irish,

+ subset=train)

> qda.fit2

Call:

qda(status ~ V_Prop + Cost_Str, data = irish, subset = train)

Prior probabilities of groups:

mgr ent

0.3602941 0.6397059

Group means:

V_Prop Cost_Str

mgr 31.20408 28.97959

ent 36.13793 35.66667

The output contains the group means, which are the same with the corresponding means of the
linear discriminant model, as well as the prior probabilities of the groups, which are also the same with
those of the LDA. However, this output does not contain the coe�cients of the linear discriminants,
because the QDA classi�er involves a quadratic, rather than a linear, function of the predictors.

The predict() function works in exactly the same fashion as for LDA, as is shown below:

> qda.pred2 = predict(qda.fit2, test)

> names(qda.pred2)

[1] "class" "posterior"

The di�erence of the predict() function between the two methods is that in the case of the QDA,
it returns a list with two elements, instead of three we had in the case of LDA. This is due to the fact
that, as we have already commented above, QDA does not contain linear discriminants.

Performance metrics to two�variable model Moving on, we calculate the accuracy of the model:

> qda.class2 = qda.pred2$class

> table(qda.class2, status.test)

status.test

qda.class2 mgr ent

83

mgr 7 2

ent 7 19

> accur2 <- mean(qda.class2 == status.test)

> accur2

[1] 0.7428571

The accuracy of this model is exactly the same with the accuracy of the corresponding linear
discriminant model. This means that the quadratic form assumed by QDA does not improve at all the
accuracy of the linear discriminant and logistic regression models. Thus, we do not have any reason to
apply this method in the Irish data, taking into account its complexity as a model.

Examining the model with the four most signi�cant predictors.

Let us follow the same procedure, �tting the quadratic discriminant model with the four most
signi�cant predictors to check if the inference will be the same:

> qda.fit3 <- qda(status ~ V_Prop+Rev_Str+Key_Res+Cost_Str,

+ data=irish,

+ subset=train)

> qda.fit3

Call:

qda(status ~ V_Prop + Rev_Str + Key_Res + Cost_Str, data = irish,

subset = train)

Prior probabilities of groups:

mgr ent

0.3602941 0.6397059

Group means:

V_Prop Rev_Str Key_Res Cost_Str

mgr 31.20408 29.38776 30.42857 28.97959

ent 36.13793 34.70115 33.93103 35.66667

The output, here, regarding the prior probabilities and the group means of the predictors, is the
same as in the LDA.

Performance metrics for the four�variable model Continuing, we calculate the accuracy of the
model:

> qda.pred3 = predict(qda.fit3, test)

> names(qda.pred3)

[1] "class" "posterior"

> qda.class3 = qda.pred3$class

> table(qda.class3, status.test)

status.test

qda.class3 mgr ent

mgr 8 3

ent 6 18

> accur3 <- mean(qda.class3 == status.test)

> accur3

[1] 0.7428571

84

Conclusions What we notice, here, is that the accuracy of the quadratic discrimination model,
applied to the four most signi�cant predictors (qda.�t3), is greater than the accuracy of the linear
discrimination model applied to the four most signi�cant predictors, too (lda.�t3). Especially, we see
that the value of the accuracy of qda.�t3 is exactly the same with the accuracy of the model applied
to the two most signi�cant predictors with both LDA and QDA (lda.�t2 and qda.�t2, respectively).
Additionally, we have to notice that through the model qda.�t3 is the �rst time we achieve a higher
sensitivity for the managers' case, as 8 out of 14 are correctly classi�ed, whereas in every other case 7
of them where correctly classi�ed.
Concluding, if we decide to include the four most signi�cant predictors in our analysis, then this
suggests that the quadratic form assumed by QDA may capture the true relationship more accurately
than the linear form assumed by LDA and logistic regression.

85

Chapter 3

K-Nearest Neighbors: A Non�Parametric

Classi�er

3.1 Introduction

As we have discussed in Subsection 2.3.1 the Bayes classi�er has the lowest possible error rate out of
all classi�ers. In theory we would always like to predict qualitative responses using the Bayes classi�er.
But for real data, we do not know the conditional distribution of Y givenX, and so computing the Bayes
classi�er is impossible. Therefore, the Bayes classi�er serves as an unattainable gold standard against
which to compare other methods. Many approaches attempt to estimate the conditional distribution
of Y given X, and then classify a given observation to the class with highest estimated probability.
One such method is the K-nearest neighbors (KNN) classi�er [14].
KNN is a memory�based classi�er, and require no model to be �t [11]
.

3.2 Method

Given a positive integer K and a test observation x0, the KNN classi�er �rst identi�es the K points
in the training data that are closest to x0, represented by N0 [14].
For simplicity we will assume that the features are real�valued, and we use Euclidean distance in
feature space:

d(i) = ‖x(i) − x0‖.

[11]
It then estimates the conditional probability for class j as the fraction of points in N0 whose response
values equal j:

Pr(Y = j|X = x0) =
1

K

∑
i∈N0

I(yi = j). (3.1)

Finally, KNN applies Bayes rule and classi�es the test observation x0 to the class with the largest
probability [14].

Remark

• Other distances�apart from Euclidean distance�that are used for the case of real-valued features
are: Manhattan distance or city�clock and Minkowski distance.

• For the case of the qualitative features the Hamming distance is used, according to which the
number of features where there is a discrepancy between the two cases is calculated.

86

• Other distances can be de�ned for the case where both qualitative and quantitative variables are
included. Such a distance is Gower distance.

• Weighted distances can be used, where weights are assigned to each attribute. [32]

The choice of K has a drastic e�ect on the KNN classi�er obtained. When K = 1, the decision
boundary is overly �exible and �nds patterns in the data that don't correspond to the Bayes decision
boundary. This corresponds to a classi�er that has low bias but very high variance. Thus, in the case
where K is small an over�tting is quite probable. As K grows, the method becomes less �exible and
produces a decision boundary that is close to linear. This corresponds to a low�variance but high�bias
classi�er.
The most appropriate K is that one that minimizes the classi�cation error. [14]

Generally, for much more complicated decision boundaries (in the case of KNN no assumptions
are made about the shape of the decision boundary), a non�parametric approach such as KNN can
be superior to parametric approaches such as those analysed in Sections 2.2, 2.3, 2.4. However, KNN
does not tell us which predictors are important [14].

87

3.3 Application to Irish data

In this section we will perform KNN in the Irish data.
We will use the knn() function. For this purpose �class� library is needed. This function works rather
di�erently from the other model �tting functions that we have used thus far in our analyses. Rather
than a two�step approach in which we �rst �t the model and then we use the model to make predictions,
knn() forms predictions using a single command. The function requires four inputs:

1. A matrix containing the predictors associated with the training data, labeled train.X below.

2. A matrix containing the predictors associated with the data for which we wish to make predic-
tions, labeled test.X below.

3. A vector containing the class labels for the training observations, labeled train.status below.

4. A value for k, the number of nearest neighbors to be used by the classi�er.

Similarly to the previous sections of Chapter 2, we will apply the KNN method to the two models:
the one that contains the variables Value Propositions and Cost Structure and the other which includes
Value Propositions, Revenue Streams, Key Resources and Cost Structure.

Examining the model with the two most signi�cant predictors.

We use the cbind() function, short for column bind, to bind the Value Propositions and Cost
Structure variables together into two matrices, one for the training set and the other for the test set.

> train.X2 = cbind(irish$V_Prop, irish$Cost_Str)[train,]

> test.X2 = cbind(irish$V_Prop, irish$Cost_Str)[-train,]

> train.status = status[train]

> status.test = status[-train]

Now the knn() function can be used to predict the status of the individuals that belong to the
test set. We set a random seed before we apply knn() because if several observations are tied as
nearest neighbors, then R will randomly break the tie. Therefore, a seed must be set in order to ensure
reproducibility of results.

> set.seed(2)

> knn.pred2_1 = knn(train.X2, test.X2, train.status, k = 1)

> table(knn.pred2_1 , status.test)

status.test

knn.pred2_1 mgr ent

mgr 6 6

ent 8 15

> acc.knn2_1 <- mean(knn.pred2_1 == status.test)

> acc.knn2_1

[1] 0.6

88

The results using k = 1 are worse than the previous methods, since only 60% of the observations
are correctly predicted. Of course, it may be that k = 1 results in an overly �exible �t to the data.

In order to �nd the best tuning parameter k that maximizes the model accuracy, avoiding the
several trials, we will create the following function in R:

> calc_acc = function(actual, predicted) {

+ mean(actual == predicted)

+ }

Then, using the calc_acc function that we created, we apply the following code:

> set.seed(2)

> k_to_try = 1:100

> acc_k = rep(x = 0, times = length(k_to_try))

>

> for (i in seq_along(k_to_try)) {

+ pred = knn(train.X2, test.X2, train.status, k = k_to_try[i])

+ acc_k[i] = calc_acc(status.test, pred)

+ }

Continuing, we plot the k�nearest neighbors results as it is shown in Figure 3.1. The code for the
speci�c plot is as follows:

> plot(acc_k, type = "b", col = "dodgerblue", cex = 1, pch = 20,

+ xlab = "k, number of neighbors", ylab = "accuracy",

+ main = "Accuracy vs Neighbors")

> abline(h = max(acc_k), col = "darkorange", lty = 3)

Figure 3.1: Plot Accuracy vs k: model with 2 variables.

The dotted orange line represents the greatest accuracy.

89

Moving on, we calculate the highest value of the accuracy, as well as the corresponding values of
k, in which the highest accuracy is achieved. The code and its results are the following:

> max(acc_k)

[1] 0.8

> which(acc_k == max(acc_k))

[1] 23 24 32 33

We see, here, that the highest accuracy (80%) can be achieved for four values of k. We select the
largest, as it is the least variable, and has the least chance of over�tting. In other words, we choose
k = 33 for our model.

So now that we concluded that the best tuning parameter k that maximizes the model accuracy is
equal to 33, we repeat the analysis for k = 33 and we get:

> knn.pred2_2 = knn(train.X2, test.X2, train.status , k = 33)

> table(knn.pred2_2 , status.test)

status.test

knn.pred2_2 mgr ent

mgr 7 0

ent 7 21

> acc.knn2_2 <- mean(knn.pred2_2 == status.test)

> acc.knn2_2

[1] 0.8

The results have improved a lot. Additionally, we notice that with this model, we got the highest
accuracy of all the classi�ers that have been examined so far.

Examining the model with the four most signi�cant predictors.

Now, we bind the Value Propositions, Revenue Streams, Key Resources and Cost Structure variables
together into two matrices, one for the training set and the other for the test set. The code is as follows:

> train.X3 = cbind(irish$V_Prop,irish$Rev_Str,irish$Key_Res, irish$Cost_Str)[train,]

> test.X3 = cbind(irish$V_Prop,irish$Rev_Str,irish$Key_Res,irish$Cost_Str)[-train,]

> train.status = status[train]

> status.test = status[-train]

Next, we compute the accuracy of this model as follows:

> set.seed(2)

> knn.pred3_1 = knn(train.X3,test.X3, train.status, k=1)

> table(knn.pred3_1 , status.test)

status.test

knn.pred3_1 mgr ent

mgr 5 8

ent 9 13

> acc.knn3_1 <- mean(knn.pred3_1 == status.test)

> acc.knn3_1

[1] 0.5142857

90

The results using k = 1 are�in this case too�worse than the previous methods, since only 51.43% of
the observations are correctly predicted. We also observe that the four�variable model achieves lower
accuracy than the two�variable model.

Then, following the same procedure as in the case of the model with the two variables, we use the
calc_acc function and we apply the following code:

> set.seed(2)

> k_to_try = 1:100

> acc_k = rep(x = 0, times = length(k_to_try))

>

> for (i in seq_along(k_to_try)) {

+ pred = knn(train.X3, test.X3, train.status, k = k_to_try[i])

+ acc_k[i] = calc_acc(status.test, pred)

+ }

We then plot the accuracy over the k neighbors and the result is shown in Figure 3.2. The code is
the following:

> plot(acc_k, type = "b", col = "dodgerblue", cex = 1, pch = 20,

+ xlab = "k, number of neighbors", ylab = "accuracy",

+ main = "Accuracy vs Neighbors")

> abline(h = max(acc_k), col = "darkorange", lty = 3)

Figure 3.2: Plot Accuracy vs k: model with 4 variables.

> max(acc_k)

[1] 0.7428571

> which(acc_k == max(acc_k))

[1] 21 22

From the above results, we conclude that the maximum accuracy for the model with the four
variables, is approximately 74.29% and is achieved at the k�values 21 and 22. As we have explained,

91

we choose the higher k.
Thus, applying the model for k = 22, the confusion matrix is given below:

> knn.pred3_2 = knn(train.X3, test.X3, train.status , k = 22)

> table(knn.pred3_2 , status.test)

status.test

knn.pred3_2 mgr ent

mgr 7 2

ent 7 19

> acc.knn3_2 <- mean(knn.pred3_2 == status.test)

> acc.knn3_2

[1] 0.7428571

> max(acc_k)

[1] 0.7428571

In this case, the results have also improved a lot. However, the accuracy of this model is by 6%
lower than the model with the two variables.

Conclusions To sum up, we see that the KNN method achieves a better accuracy for both models.
More speci�cally, for the model with the two most signi�cant predictors included (Cost Structure
and Value Propositions) the accuracy reaches 80% for the �rst time and for the model with the four
most signi�cant predictors included (Customer Segments,Value Propositions, Revenue Streams and
Cost Structure) achieves the higher encountered, so far: approximately 74%. As a consequence, the
contribution of the KNN method to the Irish data seems important.

92

3.4 Application to Khan data

In this section, we will examine the KNN method in a more complex dataset, where the number of the
variables is much greater than the number of the observations, and the number of the categories for
the observations to be classi�ed is four.

3.4.1 Description of the Khan data

Khan et al. [20] realized a study, whose purpose was to develop a method of classifying cancers to
speci�c diagnostic categories based on their gene expression signatures using arti�cial neural networks
(ANNs).
They used cDNA microarrays containing 6567 clones of which 3789 were known genes and 2778 were
ESTs (expressed sequence tags) to study the expression of genes of four types of small round blue�cell
tumors of childhood (SRBCTs). These were neuroblastoma (NB), rhabdomyosarcoma (RMS), Burkitt
lymphoma, a subset of non�Hodgkin lymphoma (BL), and the Ewing family of tumors (EWS).
Gene expression pro�les from both tumor biopsy and cell line samples were obtained and are contained
in this dataset. This dataset contains the �ltered dataset of 2308 gene expression pro�les as described
by Khan et al. [20].
Khan is a dataset containing the following four components: xtrain, xtest, ytrain, and ytest. In our
analysis we will use the xtrain data�frame, which consists of 64 arrays and 2308 gene expression values.

3.4.2 Statistical Analysis of the Khan data

Exploratory Analysis First we will carry out an exploratory analysis in which we:

• take the �rst 306 rows.

• transpose the matrix.

• create the variable �tumor�.

For these procedures the �dplyr� R�package is used.

Khan dataset was available in the �MADE4� package, containing only 306 genes instead of 2308,
but it is no longer. Thus, to be coherent with the �MADE4� package, we will take the �rst 306 rows
of the xtrain data�frame with the following command in R:

khan <- read.csv("khan_train.csv", header = T, nrows = 306)

Moving on, we transform the data and inspect the dimension of the data�frame as follows:

> khan <- khan[,-1]

> dim(khan)

[1] 306 64

We see that our data�frame has 306 rows and 64 columns. In order to make rows correspond to
the observations and the columns to the variables, we have to transpose the matrix, as follows:

93

> khan <- as.data.frame(t(khan))

> dim(khan)

[1] 64 306

We check, here, that the dimensions we get are the desirable ones.

Moving on, using the R�package �dplyr� we create a variable called �tumor�, which includes the 4
di�erent types of cancer. Below, the code to achieve this transformation and the �nal dimensions of
the matrix are given:

> khan <- mutate(khan, tumor = as.factor(c(rep("EWS",23),rep("BL",8),rep("NB",12),rep("RMS",21))))

> dim(khan)

[1] 64 307

Applying KNN In this KNN application, where we treat a more complex dataset, we will take
advantage of the �caret� package. This is because, �caret" automatically tests di�erent possible values
of k, then chooses the optimal k that minimizes the cross�validation (�cv�) error, and �ts the �nal best
KNN model that explains the best our data.
Additionally �caret� can automatically preprocess the data in order to normalize the predictor variables.

So �rst, through the createDataPartition function of the �caret� package, we randomly split the
data into training set (80% for building a predictive model) and test set (20% for evaluating the model).

> set.seed(3033)

> intrain <- createDataPartition(y = khan$tumor, p= 0.8, list = FALSE)

> training <- khan[intrain,]

> testing <- khan[-intrain,]

Now we are just checking the dimensions of the training and test datasets:

> dim(training); dim(testing);

[1] 53 307

[1] 11 307

Continuing, we �t the model on the training dataset. For this purpose, the train() function of the
�caret� package is being used. The code is the following:

> knn_fit <- train(tumor ~.,

+ data = training,

+ method = "knn",

+ trControl= trainControl("cv", number = 10),

+ preProcess = c("center", "scale"),

+ tuneLength = 10)

Let us explain the arguments we used in the function train():

• trControl, to set up ten�fold cross validation.

• preProcess, to normalize the data.

94

• tuneLength, to specify the number of possible k values to evaluate.

Then, we inspect the output of the KNN model that we �t:

> knn_fit

k-Nearest Neighbors

53 samples

306 predictors

4 classes: 'BL', 'EWS', 'NB', 'RMS'

Pre-processing: centered (306), scaled (306)

Resampling: Cross-Validated (10 fold)

Summary of sample sizes: 48, 48, 47, 47, 47, 48, ...

Resampling results across tuning parameters:

k Accuracy Kappa

5 0.7300000 0.5930124

7 0.6766667 0.5500702

9 0.7333333 0.6166543

11 0.7216667 0.6040481

13 0.6900000 0.5361293

15 0.6166667 0.4502424

17 0.5666667 0.3792232

19 0.5550000 0.3721280

21 0.6316667 0.4869555

23 0.5383333 0.3404726

Accuracy was used to select the optimal model using the largest value.

The final value used for the model was k = 9.

What we can �nd from the above output, is that the k parameter in which we take the highest
accuracy is equal to 9. The accuracy of this model is approximately 73.33%, quite high if we take into
account the complexity of the problem we are dealing with in this section.

We can, also, visualize the above output, plotting the accuracy of the KNN model with respect to
the k (see Figure 3.3). The command for this plot is the following:

> plot(knn_fit)

95

Figure 3.3: Plot Accuracy vs k: Khan data.

Furthermore we can check that, indeed, the best value for the tuning parameter k is 9:

> print(knn_fit$bestTune)

k

3 9

Additionally, using this KNN classi�er we take the predictions for the observations on the test set
by using the predict() function. The code is the following:

> test_pred <- predict(knn_fit, newdata = testing)

> test_pred

[1] EWS EWS EWS EWS BL NB NB NB RMS EWS EWS

Levels: BL EWS NB RMS

Performance metrics Lastly, we can evaluate the performance of our model on the data, inspecting
the confusion matrix and the statistics measures. Below the code and its results for this, are shown:

> confusionMatrix(test_pred, testing$tumor)

Confusion Matrix and Statistics

Reference

Prediction BL EWS NB RMS

BL 1 0 0 0

EWS 0 4 0 2

NB 0 0 2 1

RMS 0 0 0 1

Overall Statistics

Accuracy : 0.7273

96

95% CI : (0.3903, 0.9398)

No Information Rate : 0.3636

P-Value [Acc > NIR] : 0.01577

Kappa : 0.6163

Mcnemar's Test P-Value : NA

Statistics by Class:

Class: BL Class: EWS Class: NB Class: RMS

Sensitivity 1.00000 1.0000 1.0000 0.25000

Specificity 1.00000 0.7143 0.8889 1.00000

Pos Pred Value 1.00000 0.6667 0.6667 1.00000

Neg Pred Value 1.00000 1.0000 1.0000 0.70000

Prevalence 0.09091 0.3636 0.1818 0.36364

Detection Rate 0.09091 0.3636 0.1818 0.09091

Detection Prevalence 0.09091 0.5455 0.2727 0.09091

Balanced Accuracy 1.00000 0.8571 0.9444 0.62500

Conclusions From the confusion matrix we can see that the model correctly predicts the true type of
tumor for the �BL�, �EWS� and �NB� categories, but for the �RMS� type of tumor, the model correctly
predicts one out of the four observations that are truly contained in this category, whereas two of them
are classi�ed as �EWS� and the fourth as �NB�.
Moreover, we can inspect more speci�cally the sensitivity and speci�city of the model. As we expected,
the �BL� type of tumor achieves the ideal 1 for both of these measures, while �EWS� and �NB� get
quite high values of sensitivity and speci�city. However, for the �RMS� tumor the sensitivity is really
low, as we explained previously, but the speci�city is equal to the ideal 1, as for the observations that
do not belong in the �RMS� category the model correctly does not classify them to the �RMS� type of
tumor.
Concluding, we check that the accuracy of the model is 72.73%, a quite high accuracy, which enables
us to use this KNN model for classi�cation of the di�erent types of tumor.

All in all, the results of this KNN application to the Khan data are really important, as we managed
easily to �t a model for accurately distinguishing cancers belonging to several diagnostic categories.

97

Chapter 4

Methods Based on Trees

4.1 Classi�cation Trees

4.1.1 Introduction

Classi�cation Trees: Part of Tree�Based Methods

Tree�based methods partition the feature/predictor space into a set of rectangles/regions, and then �t
a simple model (like a constant) in each one. They are conceptually simple yet powerful [11].
In classi�cation trees method, we predict that a given observation belongs to the most commonly
occurring class of training observations in the region to which it belongs. Since the set of splitting rules
used to segment the feature/predictor space can be summarized in a tree, these types of approaches
are known as decision tree methods [14].
In interpreting the results of a classi�cation tree, we are often interested not only in the class prediction
corresponding to a particular terminal node region, but also in the class proportions among the training
observations that fall into that region [14].

Let's consider a classi�cation problem with a binary response Y and inputs X1 and X2, each taking
values in the unit interval. To simplify matters, we restrict attention to recursive binary partitions like
that in the Figure 4.1. We �rst split the space into two regions, and model the response by the most
commonly occurring class of training observations in each region of Y . We choose the variable and
split�point to achieve the best �t. Then one or both of these regions are split into two more regions,
and this process is continued, until some stopping rule is applied. For example, in Figure 4.1 we �rst
split at X1 = t1. Then the region X1 ≤ t1 is split at X2 = t2 and the region X1 > t1 is split at X1 = t3.
Finally, the region X1 > t3 is split at X2 = t4. The result of this process is a partition into the �ve
regions R1, R2, . . . , R5 shown in the Figure 4.1.

98

Figure 4.1: Partition of a two�dimensional feature space by recursive binary splitting.

This same model can be represented by the binary tree in the Figure 4.2. The full dataset sits
at the top of the tree. Observations satisfying the condition at each junction are assigned to the left
branch, and the others to the right branch. The terminal nodes or leaves of the tree correspond to the
regions R1, R2, . . . , R5.
Decision trees are typically drawn upside down, in the sense that the leaves are at the bottom of the
tree. The points along the tree where the predictor space is split are referred to as internal nodes . In
Figure 4.2, the four internal nodes are indicated by the text X1 ≤ t1, X2 ≤ t2, X1 ≤ t3 and X2 ≤ t4.
We refer to the segments of the trees that connect the nodes as branches.
A key advantage of the recursive binary tree is its interpretability. The feature space partition is fully
described by a single tree. [11]

Figure 4.2: Tree corresponding to the partition of Figure 4.1.

4.1.2 Building Classi�cation Trees

The process of building a classi�cation tree includes two steps:

1. We divide the predictor space�that is, the set of possible values for X1, X2, . . . , Xp�into J distinct
and non�overlapping regions, R1, R2, . . . , RJ .

99

2. For every observation that falls into the region Rj , we make the same prediction, which is simply
the most commonly occurring class of training observations in Rj .

We now elaborate on Step 1 above. How do we construct the regions R1, . . . , RJ? In theory, the
regions could have any shape. However, we choose to divide the predictor space into high�dimensional
rectangles, or boxes, for simplicity and for ease of interpretation of the resulting predictive model. The
goal is to �nd boxes R1, . . . , RJ that minimize the classi�cation error rate.
Let us de�ne the classi�cation error rate. Since we plan to assign an observation in a given region
to the most commonly occurring class of training observations in that region, the classi�cation error
rate is simply the fraction of the training observations in that region that do not belong to the most
common class:

E = 1−max
k

(p̂mk). (4.1)

Here p̂mk represents the proportion of training observations in the mth region that are from the
kth class.

Unfortunately, it is computationally infeasible to consider every possible partition of the feature
space into J boxes. For this reason, we take a top�down, greedy approach that is known as recursive
binary splitting.
The approach is top�down because it begins at the top of the tree (at which point all observations
belong to a single region) and then successively splits the predictor space; each split is indicated via
two new branches further down on the tree.
It is greedy because at each step of the tree�building process, the best split is made at that particu-
lar step, rather than looking ahead and picking a split that will lead to a better tree in some future step.

In order to perform recursive binary splitting, we �rst select the predictor Xj and the cutpoint
s such that splitting the predictor space into the regions {X|Xj < s} and {X|Xj ≥ s} leads to the
greatest possible reduction in the classi�cation error rate. (The notation {X|Xj < s} means the
region of predictor space in which Xj takes on a value less than s). That is, we consider all predictors
X1, . . . , Xp, and all possible values of the cutpoint s for each of the predictors, and then choose the
predictor and cutpoint such that the resulting tree has the lowest classi�cation error rate. In greater
detail, for any j and s, we de�ne the pair of half�planes:

R1(j, s) = {X|Xj < s} and R2(j, s) = {X|Xj ≥ s} (4.2)

and we seek the value of j and s that minimize the equation

1−max
k
{p̂R1k, p̂R2k}, (4.3)

where p̂R1k is the proportion for the training observations in R1(j, s) region, and p̂R2k is the proportion
for the training observations in R2(j, s). Finding the values of j and s that minimize (4.3) can be done
quite quickly, especially when the number of features p is not too large.
Next, we repeat the process, looking for the best predictor and best cutpoint in order to split the data
further so as to minimize the classi�cation error rate within each of the resulting regions. However,
this time, instead of splitting the entire predictor space, we split one of the two previously identi�ed
regions. We now have three regions. Again, we look to split one of these three regions further, so as
to minimize the classi�cation error rate. The process continues until a stopping criterion is reached;
for instance, we may continue until no region contains more than �ve observations.
Once the regions R1, . . . , RJ have been created, we predict the response for a given test observation
using the most commonly occurring class of training observations in the region to which that test
observation belongs. [14]

100

Regarding the node purity, there are two more di�erent measures, apart from the classi�cation
error rate. Indeed, it turns out that classi�cation error is not su�ciently sensitive for tree�growing,
and in practice these two measures are preferable: the Gini index and the cross�entropy.

• The Gini index is de�ned by:

G =
K∑
k=1

p̂mk(1− p̂mk), (4.4)

a measure of total variance across the K classes. The Gini index takes on a small value if all
of the p̂mk's are close to zero or one. For this reason the Gini index is referred to as a measure
of node purity�a small value indicates that a node contains predominantly observations from a
single class.

• The cross�entropy is given by:

D = −
K∑
k=1

p̂mk log p̂mk. (4.5)

Since 0 ≤ p̂mk ≤ 1, it follows that 0 ≤ −p̂mk log p̂mk. The cross�entropy will take on a value near
zero if the p̂mk's are all near zero or near one. Therefore, like the Gini index, the cross�entropy
will take on a small value if the mth node is pure.

In fact, it turns out that the Gini index and the cross�entropy are quite similar numerically. When
building a classi�cation tree, either the Gini index or the cross�entropy are typically used to evaluate
the quality of a particular split, since these two approaches are more sensitive to node purity than is
the classi�cation error rate. Any of these three approaches might be used when pruning the tree, but
the classi�cation error rate is preferable if prediction accuracy of the �nal pruned tree is the goal. [14]

4.1.3 Tree Pruning

The process described above may produce good predictions on the training set, but is likely to over�t
the data, leading to poor test set performance. This is because the resulting tree might be too complex.
A smaller tree with fewer splits (that is, fewer regions R1, . . . , RJ) might lead to lower variance and
better interpretation at the cost of a little bias.
One possible alternative to the process described above is to build the tree only so long as the decrease
in the classi�cation error rate due to each split exceeds some (high) threshold. This strategy will result
in smaller trees, but is too short�sighted since a seemingly worthless split early on in the tree might
be followed by a very good split� that is, a split that leads to a large reduction in the classi�cation
error rate later on. Therefore, a better strategy is to grow a very large tree T0, and then prune it back
in order to obtain a subtree.

Determination of the pruning method.

Intuitively, our goal is to select a subtree that leads to the lowest test error rate. Given a subtree, we
can estimate its test error using cross�validation or the validation set approach. However, estimating
the cross-validation error for every possible subtree would be too cumbersome, since there is an ex-
tremely large number of possible subtrees. Instead, we need a way to select a small set of subtrees
for consideration. Cost complexity pruning�also known as weakest link pruning�gives us a way to do

101

just this. Rather than considering every possible subtree, we consider a sequence of trees indexed by
a nonnegative tuning parameter α. For each value of α there corresponds a subtree T ⊂ T0 such that:

E = 1−max
k

(p̂mk) + α|T | (4.6)

is as small as possible. Here |T | indicates the number of terminal nodes of the tree T , p̂mk represents
the proportion of training observations in the mth terminal node that are from the kth class.
The tuning parameter α controls a trade-o� between the subtree's complexity and its �t to the training
data. When α = 0, then the subtree T will simply equal T0, because then (4.6) just measures the
misclassi�cation error. However, as α increases, there is a price to pay for having a tree with many
terminal nodes, and so the quantity (4.6) will tend to be minimized for a smaller subtree. It turns out
that as we increase α from zero in (4.6), branches get pruned from the tree in a nested and predictable
fashion, so obtaining the whole sequence of subtrees as a function of α is easy. We can select a value
of α using a validation set or using cross�validation. We then return to the full data set and obtain
the subtree corresponding to α. This process is summarized in Algorithm 1. [14]

Algorithm 1 Building a Classi�cation Pruned Tree

1. Use recursive binary splitting to grow a large tree on the training data, stopping only when each
terminal node has fewer than some minimum number of observations.

2. Apply cost complexity pruning to the large tree in order to obtain a sequence of best subtrees,
as a function of α.

3. Use K�fold cross�validation to choose α. For each k = 1, . . . ,K:

(a) Repeat Steps 1 and 2 on the K−1
K th fraction of the training data, excluding the kth fold.

(b) Evaluate the mean squared prediction error on the data in the left�out kth fold, as a function
of α.
Average the results, and pick α to minimize the average error.

4. Return the subtree from Step 2 that corresponds to the chosen value of α.

4.1.4 Advantages of the Classi�cation Trees Method

• Making predictions is fast. (no complicated calculations, just looking up constants in the tree)

• It's easy to understand what variables are important in making the prediction. (just look at the
tree)

• If some data is missing, we might not be able to go all the way down the tree to a leaf, but we
can still make a prediction by averaging all the leaves in the sub�tree we do reach.

• The model gives a jagged response, so it can work when the true regression surface is not smooth.
If it is smooth, though, the piecewise-constant surface can approximate it arbitrarily closely (with
enough leaves)

• There are fast, reliable algorithms to learn these trees. [33]

102

4.1.5 Application to Irish data

In this subsection we will apply the method of classi�cation trees onto the Irish data.

Exploratory Analysis Firstly, we recode the variable that we want to examine: Status. This vari-
able is already a binary variable. However, for a better interpretation, we take as �ent� (entrepreneur)
if the Status variable has the value 2 and �mgr� (manager) if the Status gets the value 1.

The code in R is as follows:

> Status = ifelse(irish$Ent_Mgr_Status==2,"ent","mgr")

Moving on, we use the data.frame() function to merge the variable Status with the rest of the
Irish data.

> irish = data.frame(irish ,Status)

Classi�cation Tree application Now, we are ready to �t a classi�cation tree in order to predict
the Status using all variables but Status. For this purpose, we use the tree() function, whose syntax is
quite similar to that of the lm() function. In this procedure, the R�package �tree� was loaded, which
enables us to construct classi�cation and regression trees.

> tree.irish = tree(Status ~.-Ent_Mgr_Status ,irish)

Next, we apply the summary() function, which lists the variables that are used as internal nodes
in the tree, the number of terminal nodes, and the (training) error rate.

> summary(tree.irish)

Classification tree:

tree(formula = Status ~ . - Ent_Mgr_Status, data = irish)

Variables actually used in tree construction:

[1] "Val_Prop" "Rev_Str" "Cust_Seg" "Chan" "Cust_Rel" "Key_Res" "Cost_Str"

[8] "Key_Part"

Number of terminal nodes: 16

Residual mean deviance: 0.5353 = 82.97 / 155

Misclassification error rate: 0.1228 = 21 / 171

We see that the training error rate is approximately 12.3%. The deviance is 53.53%. A small
deviance indicates a tree that provides a good �t to the training data. The residual mean deviance
reported is simply the deviance divided by n− | To |, which in this case is 171 − 16 = 155. One of
the most attractive properties of trees is that they can be graphically displayed. We use the plot()
function to display the tree structure, and the text() function to display the node labels. The argument
pretty = 0 instructs R to include the category names for any qualitative predictors, rather than simply
displaying a letter for each category.

Thus, we have:

103

> plot(tree.irish)

> text(tree.irish ,pretty =0)

Figure 4.3: Fully Grown Classi�cation Tree for the whole of the data.

The plot shows the di�erent possible splitting rules that can be used to e�ectively predict the
Status. The most important variable that determines the Status appears to be Value Propositions,
since the �rst branch di�erentiates individuals that have a score lower than 32.5 with those who exceed
32.5.

If we just type the name of the tree object, R prints output corresponding to each branch of the
tree. R displays the split criterion (e.g.V al_Prop < 32.5), the number of observations in that branch,
the deviance, the overall prediction for the branch (ent or mgr), and the fraction of observations in
that branch that take on values of ent and mgr. Branches that lead to terminal nodes are indicated
using asterisks. For example, line 4) indicates a terminal node, where the individual is predicted as a
manager 100%.

> tree.irish

node), split, n, deviance, yval, (yprob)

* denotes terminal node

1) root 171 225.100 ent (0.63158 0.36842)

2) Val_Prop < 32.5 56 68.750 mgr (0.30357 0.69643)

4) Rev_Str < 26.5 16 0.000 mgr (0.00000 1.00000) *

5) Rev_Str > 26.5 40 54.550 mgr (0.42500 0.57500)

10) Cust_Seg < 34.5 32 41.180 mgr (0.34375 0.65625)

20) Chan < 35.5 27 36.500 mgr (0.40741 0.59259)

104

40) Rev_Str < 32.5 16 17.990 mgr (0.25000 0.75000)

80) Cust_Rel < 36.5 11 6.702 mgr (0.09091 0.90909) *

81) Cust_Rel > 36.5 5 6.730 ent (0.60000 0.40000) *

41) Rev_Str > 32.5 11 14.420 ent (0.63636 0.36364)

82) Key_Res < 32.5 5 0.000 ent (1.00000 0.00000) *

83) Key_Res > 32.5 6 7.638 mgr (0.33333 0.66667) *

21) Chan > 35.5 5 0.000 mgr (0.00000 1.00000) *

11) Cust_Seg > 34.5 8 8.997 ent (0.75000 0.25000) *

3) Val_Prop > 32.5 115 117.800 ent (0.79130 0.20870)

6) Cost_Str < 36.5 81 98.450 ent (0.70370 0.29630)

12) Rev_Str < 28.5 16 21.170 mgr (0.37500 0.62500)

24) Val_Prop < 35.5 6 0.000 mgr (0.00000 1.00000) *

25) Val_Prop > 35.5 10 13.460 ent (0.60000 0.40000) *

13) Rev_Str > 28.5 65 67.730 ent (0.78462 0.21538)

26) Cost_Str < 30.5 16 21.930 ent (0.56250 0.43750)

52) Key_Res < 30.5 8 8.997 ent (0.75000 0.25000) *

53) Key_Res > 30.5 8 10.590 mgr (0.37500 0.62500) *

27) Cost_Str > 30.5 49 40.190 ent (0.85714 0.14286)

54) Key_Part < 35.5 19 0.000 ent (1.00000 0.00000) *

55) Key_Part > 35.5 30 32.600 ent (0.76667 0.23333)

110) Cust_Seg < 32.5 6 7.638 mgr (0.33333 0.66667) *

111) Cust_Seg > 32.5 24 18.080 ent (0.87500 0.12500)

222) Chan < 35.5 14 0.000 ent (1.00000 0.00000) *

223) Chan > 35.5 10 12.220 ent (0.70000 0.30000) *

7) Cost_Str > 36.5 34 0.000 ent (1.00000 0.00000) *

Splitting the data In order to properly evaluate the performance of a classi�cation tree on these
data, we must estimate the test error rather than simply computing the training error. We split the
observations into a training set and a test set, build the tree using the training set, and evaluate its
performance on the test data. The predict() function can be used for this purpose. In the case of a
classi�cation tree, the argument type=�class� instructs R to return the actual class prediction. This
approach leads to correct predictions for around 64% of the Status in the test data set.

> set.seed(2)

> train=sample(1:nrow(irish), nrow(irish)/2)

> irish.test=irish[-train,]

> Status.test=Status[-train]

> tree.irish =tree(Status~.-Ent_Mgr_Status ,irish ,subset=train)

> tree.pred=predict(tree.irish ,irish.test ,type="class")

> table(tree.pred ,Status.test)

Status.test

tree.pred ent mgr

ent 36 10

mgr 21 19

> acc = mean(tree.pred == Status.test)

> acc

[1] 0.6395349

Next, we consider whether pruning the tree might lead to improved results. The function cv.tree()
performs cross�validation in order to determine the optimal level of tree complexity: cost complexity
pruning is used in order to select a sequence of trees for consideration. We use the argument FUN =
prune.misclass in order to indicate that we want the classi�cation error rate to guide the cross-
validation and pruning process, rather than the default for the cv.tree() function, which is deviance.

105

The cv.tree() function reports the number of terminal nodes of each tree considered (size) as well as
the corresponding error rate and the value of the cost�complexity parameter used (k).

> set.seed(3)

> cv.irish =cv.tree(tree.irish ,FUN=prune.misclass)

> names(cv.irish)

[1] "size" "dev" "k" "method"

> cv.irish

$size

[1] 10 7 5 4 2 1

$dev

[1] 38 38 38 36 30 37

$k

[1] -Inf 0.0 0.5 1.0 2.0 15.0

$method

[1] "misclass"

attr(,"class")

[1] "prune" "tree.sequence"

Note that, despite the name, dev corresponds to the cross�validation error rate in this instance. The
tree with two terminal nodes results in the lowest cross�validation error rate, with 30 cross�validation
errors. We plot the error rate as a function of both size and k. The code in R is the following:

> par(mfrow=c(1,2))

> plot(cv.irish$size ,cv.irish$dev ,type="b")

> plot(cv.irish$k ,cv.irish$dev ,type="b")

Figure 4.4: Error Rate for size and k.

106

We now apply the prune.misclass() function in order to prune the tree to obtain the two�node
tree.

prune.irish =prune.misclass (tree.irish ,best=2)

plot(prune.irish)

text(prune.irish ,pretty =0)

Figure 4.5: Best Classi�cation Pruned Tree for the training data.

Performance metrics of the pruned tree Now, we will check how well this pruned tree performs
on the test dataset.

From R we get:

> tree.pred=predict(prune.irish ,irish.test ,type="class")

> table(tree.pred ,Status.test)

Status.test

tree.pred ent mgr

ent 39 9

mgr 18 20

> accuracy = mean(tree.pred == Status.test)

> accuracy

[1] 0.6860465

As we see, 68.6% of the test observations are correctly classi�ed, so not only has the pruning process
produced a more interpretable tree, but it has also improved the classi�cation accuracy. If we increase
the value of best, we generally obtain a larger pruned tree with lower classi�cation accuracy.

107

Inspecting a random tree Let us inspect such a case. Arbitrarily we take for best the value �ve.
Thus, we take:

prune.irish =prune.misclass (tree.irish ,best=5)

plot(prune.irish)

text(prune.irish ,pretty =0)

Figure 4.6: Classi�cation Pruned Tree with 5 terminal nodes.

Conclusions In this case, we notice that the accuracy of this pruned tree with �ve terminal nodes,
is exactly the same with this of the pruned tree with two terminal nodes. However, we choose the one
with the two terminal nodes, as it is the simplest one.

All in all, we come to the conclusion that for the prediction of the two groups based on the method
of classi�cation trees we only need to examine the variable Revenue Streams. If the individual gets
a score lower than 32.5 for this variable, we classify him as a manager, whereas if his score is greater
than 32.5 regarding the Revenue Streams we predict him as an entrepreneur.

108

4.2 Regression Trees

4.2.1 Introduction

Regression Trees is part of the tree�based methods, and all the de�nitions we presented in Section 4.1.1
for the classi�cation trees are the same for the regression trees, as well.

4.2.2 Method

Growing a Regression Tree

Suppose that our data consists of p inputs and a response, for each of N observations: that is, (xi, yi)
for i = 1, 2, . . . , N , with xi = (xi1, xi2, . . . , xip). The algorithm needs to automatically decide on the
splitting variables and split points, and also what topology (shape) the tree should have. Suppose �rst
that we have a partition into M regions R1, R2, . . . , RM , and we model the response as a constant cm
in each region:

f(x) =
M∑
m=1

cmI(x ∈ Rm). (4.7)

If we adopt as our criterion minimization of sum-of-squares
∑

((yi − f(xi))2, it is easy to see that
the best ĉm is just the average of yi in region Rm:

ĉm = ave(yi|xi ∈ Rm). (4.8)

Now �nding the best binary partition in terms of minimum sum of squares is generally computa-
tionally infeasible. Hence we proceed with a greedy algorithm. Starting with all of the data, consider
a splitting variable j and split point s, and de�ne the pair of half�planes

R1(j, s) = {X|Xj < s} and R2(j, s) = {X|Xj ≥ s} (4.9)

Then we seek the splitting variable j and split point s that solve

S = min
j,s

[min
c1

∑
xi∈R1(j,s)

(yi − c1)2 +min
c2

∑
xi∈R2(j,s)

(yi − c2)2]. (4.10)

For any choice j and s, the inner minimization is solved by

ĉ1 = ave(yi|xi ∈ R1) and ĉ2 = ave(yi|xi ∈ R2) (4.11)

For each splitting variable, the determination of the split point s can be done very quickly and
hence by scanning through all of the inputs, determination of the best pair (j, s) is feasible.
Having found the best split, we partition the data into the two resulting regions and repeat the split-
ting process on each of the two regions. Then this process is repeated on all of the resulting regions. [11]

How large should we grow the tree?

A typical stopping criterion is to stop growing the tree when further splits gives less than some minimal
amount of extra information, or when they would result in nodes containing less than, say, �ve percent
of the total data.
Clearly a very large tree might over�t the data, while a small tree might not capture the important
structure.

The basic regression�tree�growing algorithm then is as follows:

109

1. Start with a single node containing all points. Calculate ĉm and sum-of-squares.

2. If all the points in the node have the same value for all the independent variables, stop. Otherwise,
search over all binary splits of all variables for the one which will reduce sum-of-squares as much
as possible. If the largest decrease in sum-of-squares would be less than some threshold δ, or one
of the resulting nodes would contain less than q points, stop. Otherwise, take that split, creating
two new nodes.

3. In each new node, go back to step 1. [34]

4.2.3 Pruning the Regression Tree

After a large tree T0 has been grown, then it is pruned using cost�complexity pruning with the fol-
lowing way: We de�ne a subtree T ⊂ T0 to be any tree that can be obtained by pruning T0, that is,
collapsing any number of its internal (non�terminal) nodes. We index terminal nodes by m, with node
m representing region Rm. Let |T | denote the number of terminal nodes in T . Letting:

Nm = #{xi ∈ Rm},

ĉm =
1

Nm

∑
xi∈Rm

yi,

Qm(T) =
1

Nm

∑
xi∈Rm

(yi − ĉm)2,

(4.12)

we de�ne the cost complexity criterion

Cα(T) =

|T |∑
m=1

NmQm(T) + α|T |. (4.13)

The idea is to �nd, for each α, the subtree Tα ⊆ T0 to minimize Cα(T). The tuning parameter
α 6= 0 governs the tradeo� between tree size and its goodness of �t to the data. Large values of α
result in smaller trees Tα, and conversely for smaller values of α. As the notation suggests, with α = 0
the solution is the full tree T0.

How to choose α?
For each α one can show that there is a unique smallest subtree Tα that minimizes Cα(T). To �nd
Tα we use weakest link pruning: we successively collapse the internal node that produces the smallest
per�node increase in

∑
mNmQm(T), and continue until we produce the single�node (root) tree. This

gives a (�nite) sequence of subtrees, and one can show this sequence must contain Tα. Estimation of α
is achieved by �ve� or tenfold cross�validation: we choose the value α̂ to minimize the cross-validated
sum of squares. Our �nal tree is Tα̂. [11]

110

4.2.4 Application to Boston Data

In this section we will apply the Regression Trees method to a dataset available in R, and more
speci�cally in the �MASS� library: Boston data.

Presentation of the Boston Data

The Boston data�frame has 506 rows and 14 columns.
Boston dataset records medv (median house value) for 506 neighborhoods around Boston. We will
seek to predict medv using 13 di�erent predictors.
The columns of the Boston data�frame are the following:

• crim, per capita crime rate by town.

• zn, proportion of residential land zoned for lots over 25, 000 sq.ft.

• indus, proportion of non�retail business acres per town.

• chas, Charles River dummy variable (= 1 if tract bounds river; 0 otherwise).

• nox, nitrogen oxides concentration (parts per 10 million).

• rm, average number of rooms per dwelling.

• age, proportion of owner�occupied units built prior to 1940.

• dis, weighted mean of distances to �ve Boston employment centres.

• rad, index of accessibility to radial highways.

• tax, full�value property�tax rate per USD 10, 000$,

• ptratio, pupil�teacher ratio by town.

• black, 1000(Bk − 0.63)2 where Bk is the proportion of blacks by town.

• lstat, percentage of lower status of the population.

• medv, median value of owner�occupied homes in 1000s$.

Fitting the Regression Tree

In this decision tree application, we will use the R�package �caret� for easier machine learning work�ow
and the �tidyverse� for easy data manipulation and visualization.

First, we create a training and test set. The code is as follows:

> set.seed(123)

> portion <- Boston$medv %>%

+ createDataPartition(p = 0.8, list = FALSE)

> train.data <- Boston[portion,]

> test.data <- Boston[-portion,]

111

Then, we �t the model on the training data. For this procedure we use the train() function from
�caret� package in which we apply the rpart method for automatically testing di�erent possible values
of cp (complexity parameter). Here we use the arguments:

• trControl, to set up ten�fold cross validation.

• tuneLength, to specify the number of possible cp values to evaluate. Here we'll use 10.

Thus the code is the following:

> set.seed(123)

> model <- train(

+ medv ~., data = train.data, method = "rpart",

+ trControl = trainControl("cv", number = 10),

+ tuneLength = 10

+)

Continuing, the best cp value is the one that minimize the square root of the MSE (RMSE). The
lower the RMSE, the better the model.
So, we choose the cp with the following commands in R:

> plot(model)

> model$bestTune

cp

1 0.007165585

Figure 4.7: Model Error vs cp

In this case, as we notice from Figure 4.7 the most complex tree is selected by cross�validation.
Next, we plot the �nal tree model. For a prettier plot we will use the �rattle� package. The code is the
following and the plot is shown in Figure 4.8:

112

> fancyRpartPlot(model$finalModel, sub = NA)

Figure 4.8: Final Tree Model

The output of the decision rules in the �nal model, as its code too, is the following:

> model$finalModel

n= 407

node), split, n, deviance, yval

* denotes terminal node

1) root 407 35292.0500 22.739310

2) rm< 6.974 348 13999.9200 20.056320

4) lstat>=14.4 143 2641.2730 15.093010

8) nox>=0.607 87 965.8699 12.998850

16) crim>=11.36915 26 144.7465 9.811538 *

17) crim< 11.36915 61 444.4092 14.357380 *

9) nox< 0.607 56 701.1193 18.346430 *

5) lstat< 14.4 205 5378.5900 23.518540

10) lstat>=9.95 90 492.0000 20.666670 *

11) lstat< 9.95 115 3581.7470 25.750430

22) nox< 0.618 108 1736.0900 25.050000

44) rm< 6.543 65 494.5222 23.052310 *

45) rm>=6.543 43 590.0507 28.069770 *

23) nox>=0.618 7 975.1771 36.557140 *

3) rm>=6.974 59 4011.4950 38.564410

6) rm< 7.437 30 522.6897 32.303330 *

7) rm>=7.437 29 1096.1900 45.041380

14) ptratio>=17.6 7 465.9686 38.885710 *

15) ptratio< 17.6 22 280.5800 47.000000 *

According to the �nal model we got, we make the predictions on the test dataset. The code for

113

this and the predictions of the �rst observations are as follows:

> predictions <- model %>% predict(test.data)

> head(predictions)

3 5 11 12 14 15

32.30333 32.30333 18.34643 20.66667 23.05231 20.66667

Lastly, we will compute the square root of the MSE with the following code:

> RMSE(predictions, test.data$medv)

[1] 4.545207

Conclusions What we see is that RMSE is around 4.55, indicating that this model leads to test
predictions that are within around $4.55 of the true median home value for the suburb on average.

Applying the Regression Trees method to such a complex dataset facilitates the inference and pro-
vides reliable predictions about the true median home value.

114

Chapter 5

A Discussion of the Results of the Irish

Data

First of all, let us compare the di�erent classi�cation methods we applied in the Irish data.
Regarding the model with the two most signi�cant variables: Cost Structure and Value Propositions,
we have the following remarks:

• Logistic, LDA and QDA models result in the same accuracy: approximately 74%.
The fact that logistic and LDA model give the same results is generally expected, since logistic
regression and LDA both produce linear decision boundary and di�er only in their �tting proce-
dures.
The fact that QDA gives exactly the same accuracy with the linear models, make us wonder
because with the quadratic decision boundary assumption the accuracy of the model does not
fall but neither increases.

• KNN model results in a remarkable increase in the accuracy of our model, as it reaches 80%.
In this way, we can understand that in our case we have a much more complicated decision
boundary for our model, that is why the quadratic decision boundary did not deteriorate but
neither improved the performance of the model.

Regarding, now, the model with the four most signi�cant variables: Customer Segments, Value
Propositions, Revenue Streams and Cost Structure, we notice the following:

• Logistic and LDA model perform exactly in the same way, as they both achieve an accuracy of
about 71%.

• QDA and KNN model outperform LDA and logistic, as they both increased the accuracy to 74%.
This means that assuming a quadratic decision boundary is quite logical. Choosing between
the two classi�cation methods, we would be for the QDA, as the KNN does not give us any
information about the importance of the predictors.

Regarding the Classi�cation Trees method, we see that it has the lowest accuracy�69%�but is the
easiest method for interpretability.

Moreover, if we take a look at the results in which we had resulted in Subsection 1.4.2, we will
come to some interesting conclusions.

• Cost Structure�which is one of the two most signi�cant predictors for the classi�cation among
the entrepreneurs and the managers�was contributing to the �rst principal component of the
entrepreneurs dataset and the second principal component of the managers dataset. This variable
has to do with the �rm's �nances.

115

• Value Propositions�which is second of the two most signi�cant predictors for the classi�cation
among the entrepreneurs and the managers�was contributing to the second principal component
of the entrepreneurs dataset and the �rst principal component of the managers dataset. This
variable has to do with serving products to new and existing customers.

• Revenue Streams is the variable that�according to Classi�cation Trees method�predicts an indi-
vidual as a manager if he gets a value lower than 32.5 and as an entrepreneur otherwise. Revenue
Streams is also one of the four more signi�cant variables for the models analysed in Subsections
2.2.4, 2.3.3 and 2.4.2. It is also contributing to the forming of the principal components of the
two groups of individuals.

• Key Resources and Channels are the two variables contributing most to the representation of the
principal components in the factor map, for both entrepreneurs and managers dataset. However,
through the classi�cation methods we see that these two variables do not play an important role
for predicting an individual. This may mean that variables that are really important for both
entrepreneurs and managers, do not make any di�erence between them and all the individuals
behave in a similar way regarding these variables.

To conclude, we notice that the aspects of venturing that enable us to distinguish the managers
from the entrepreneurs are: �Serving Products to New and Existing Customers� and �Cost/Finances�.

116

Bibliography

[1] A. Bandura. �Self-E�cacy Beliefs of Adolescents�. In: Guide for constructing self-e�cacy scales.
Vol. 5. IAP, 2006, pp. 307�337.

[2] R.A. Baron. �Opportunity Recognition as Pattern Recognition: How Entrepreneurs �Connect the
Dots� to Identify New Business Opportunities�. In: Academy of Management Perspectives 20.1
(2006), pp. 104�119.

[3] D.J. Bartholomew et al. Analysis of Multivariate Social Science Data. 2nd. CRC Press, 2011.

[4] M. Brannback and A.L. Carsrud. �Understanding the Entrepreneurial Mind�. In: Springer-Verlag
New York, 2009. Chap. Cognitive Maps in Entrepreneurship: Researching Sense Making and
Action, pp. 75�96.

[5] C. Caroni and P. Economou. Statistical Regression Models with MINITAB and R. 2nd. in Greek.
Symeon Publications, 2017.

[6] B.S. Everitt and T. Hothorn. A Handbook of Statistical Analyses Using R. 2nd. Chapman and
Hall/CRC, 2010.

[7] M. Friendly and D. Meyer. Discrete Data Analysis with R Visualization and Modeling Techniques
for Categorical and Count Data. Chapman and Hall/CRC, 2011.

[8] G. George and A.J. Bock. �The Business Model in Practice and its Implications for Entrepreneur-
ship Research�. In: Entrepreneurship: Theory and Practice 35.1 (2011), pp. 83�111.

[9] D.A. Gregoire, A.C. Corbett, and J.S. McMullen. �The Cognitive Perspective in Entrepreneur-
ship: An Agenda for Future Research�. In: Journal of Management Studies 48.6 (2011), pp. 1443�
1477.

[10] D.J. Hand. Statistics: a brief insight. A Brief Insight. Sterling Pub, 2010.

[11] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. 2nd. Springer Series in Statistics. Springer, 2009.

[12] H. Hotelling. �Analysis of a complex of statistical variables into principal components�. In: Journal
of Educational Psychology 24.6 (1933), pp. 417�441.

[13] F. Husson, S. Lé, and J. Pagès. Exploratory Multivariate Analysis by Example Using R. 2nd.
Computer Science and Data Analysis. Chapman and Hall/CRC, 2017.

[14] G. James et al. An Introduction to Statistical Learning with Applications in R. Vol. 103. Springer,
2013.

[15] I.T. Jolli�e. �Discarding Variables in a Principal Component Analysis. I: Arti�cial Data�. In:
Applied Statistics 21.2 (1972), pp. 160�173.

[16] I.T. Jolli�e. Principal Component Analysis. Springer Series in Statistics. Springer New York,
1986.

[17] I.T. Jolli�e. �Rotation of III-De�ned Principal Components�. In: Applied Statistics 38.1 (1989),
pp. 139�147.

117

[18] I.T. Jolli�e and M. Uddin. �The Simpli�ed Component Technique: An Alternative to Rotated
Principal Components�. In: Journal of Computational and Graphical Statistics 9.4 (2000), pp. 689�
710.

[19] S.F. Keane, K.T. Cormican, and J.N. Sheahan. �Comparing how entrepreneurs and managers
represent the elements of the business model canvas�. In: Journal of Business Venturing Insights
9 (2018), pp. 65�74.

[20] J. Khan et al. �Classi�cation and diagnostic prediction of cancers using gene expression pro�ling
and arti�cial neural networks�. In: Natural Medicine 7 (2001), pp. 673�679.

[21] D.R. Krathwohl. �A Revision of Bloom's Taxonomy: An Overview�. In: Theory into Practice 41.4
(2002), pp. 212�218.

[22] N.F. Krueger. �What lies beneath? The experiential essence of entrepreneurial thinking�. In:
Entrepreneurship Theory and Practice 31.1 (2007), pp. 123�138.

[23] J. Magretta. �Why Business Models Matter�. In: Harvard Business Review 80.5 (2002), pp. 86�
92.

[24] K.V. Mardia, J.T. Kent, and J.M. Bibby. Multivariate Analysis. Academic Press, 1979.

[25] C. Meng, B. Kuster, and A.C Culhane. �A multivariate approach to the integration of multi-omics
datasets�. In: BMC Bioinformatics 15.162 (2014).

[26] M. Morris, M. Schindehutte, and J. Allen. �The entrepreneur's business model: toward a uni�ed
perspective�. In: Journal of Business Research 58.6 (2005), pp. 726�735.

[27] D.F. Morrison. Multivariate Statistical Methods. 2nd. McGraw-Hillbook Company, 1976.

[28] A. Osterwalder. �The Business Model Ontology-A Proposition in A Design Science Approach�.
MA thesis. Institut d' Informatique et Organisation, 2004.

[29] A. Osterwalder and Y. Pigneur. Business Model Generation: A Handbook for Visionaries, Game
Changers, and Challengers. John Wiley and Sons, 2010.

[30] A. Osterwalder, Y. Pigneur, and C.L. Tucci. �Clarifying business models: Origins, present, and
future of the concept�. In: Communications of the Association for Information Systems 16 (2005),
pp. 1�25.

[31] K. Pearson. �On lines and planes of closest �t to systems of points in space�. In: Philosophical
Magazine 2.11 (1901), pp. 559�572.

[32] J.M. Muñoz Pichardo. Regresión y clasi�cación mediante KNN. University Lecture.

[33] C. Shalizi. Classi�cation and Regression Trees. University Lecture. 2009.

[34] C. Shalizi. Regression Trees. University Lecture. 2006.

[35] S. Sharma. Applied Multivariate Techniques. Wiley, 1996.

[36] H. Tikkanen et al. �Managerial cognition, action and the business model of the �rm�. In: Man-
agement Decision 43.6 (2005), pp. 789�809.

[37] J.P. Walsh. �Managerial and Organizational Cognition: Notes from a Trip Down Memory Lane�.
In: Organization Science 6.3 (1995), pp. 280�321.

[38] C. Zott and R. Amit. �Business Model Design: An Activity System Perspective�. In: Long Range
Planning 43.2�3 (2010), pp. 216�226.

[39] C. Zott and R. Amit. �The Business Model: Recent Developments and Future Research�. In:
Strategic Management Journal 22.6�7 (2001), pp. 493�520.

[40] C. Zott, R.H. Amit, and L. Massa. �The Business Model: Recent Developments and Future
Research�. In: Journal of Management 37.4 (2011), pp. 1019�1042.

118

