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Abstract

Neutron stars are among the most compact objects known in the Universe, with central
densities several times that encountered in the center of atomic nuclei. The properties
of neutron stars, such as their masses and radii, depend strongly on their internal com-
position, and hence the equation of state, which is still an open question. Most neutron
stars are observed as pulsars, which rotate with periods as low as the millisecond. It is
therefore of fundamental importance to study how rotation affects its structure and this
is the main purpose of this project. To this aim, the TOV equations with the Hartle-
Thorne approach for rotating neutron stars are solved for different angular velocities of
rotation employing two different hadronic models: A pure nucleonic equation of state for
nuclear matter, widely used in the literature, and a recently developed hyperonic equation
of state, the FSU2H model, which allows two-solar-mass neutron stars with hyperons in
their cores. It is found that, due to its stiffer behaviour, the FSU2H equation of state
leads to smaller Keplerian frequencies than the pure nucleonic model (H&H) and, hence,
the FSU2H rotating neutron stars suffer bigger deformations and reach higher moments
of inertia. Particularly, the less massive neutron stars are the systems that experience the
larger effects due to rotation.
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Chapter 1

Introduction

A neutron stars is a type of stellar compact remnant that results from the gravitational
core-collapse of an ordinary giant star with a mass in the range between 8-25M� during a
Type-II, Ib or Ic supernova event [1].

The supernova explosion occurs when the red giant star has exhausted all its possibil-
ities for energy production by nuclear fusion. Therefore, the pressure gradient provided
by radiation is not sufficient to balance the gravitational attraction, consequently, the star
becomes unstable and it eventually collapses. The inner dense regions of the star col-
lapse first and gravitational energy is released and transferred to the outer layers, blowing
them away as an expanding and fast-moving shock wave into the surrounding interstellar
medium. This turns into an expanding shell of gas and dust which is observed as the
supernova remnant.

Once formed, neutron stars no longer actively generate heat and cool over time. They
are in hydrostatic equilibrium as the gravitational collapse is compensated by neutron
degeneracy pressure and repulsive nuclear forces. Neutron degeneracy pressure is based
on the Pauli exclusion principlei; however, this mechanism can just hold up an object until
0.7M�. For this reason, repulsive nuclear forces play a crucial role in supporting the more
massive neutron stars observed.

Nevertheless, if the remnant star exceeds a maximum mass Mmax ∼ 3M� (Kalogera [2]),
the neutron degeneracy pressure and the nuclear forces will not be enough to support the
neutron star and it will collapse into a black hole.

In this context, neutron stars are the most compact objects known without an event
horizon and have masses in the range between 1-2M�. The upper limit of 2M� has been
determined in very recent measurements of neutron star binary systems (Demorest et
al. [3], Antoniadis et al. [4] and Cromartie et al. [5] works). Meanwhile, their estimated
range for radii goes from 10.7 km to 13.1 km (Lattimer & Prakash [6]).

iQuantum mechanical principle which states that two or more identical fermions cannot occupy the
same quantum state simultaneously.
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The properties of neutron stars, such as the mass and radius, strongly depend on their
dense interior although its composition is still unknown and, hence, the equation of
state (EoS) remains also undetermined. The knowledge of the EoS is a fact of great
interest for many fields of Physics, ranging from nuclear physics, particle physics to astro-
physics. As the true behaviour of the nuclear EoS at very high densities remains uncertain,
there exist many hypothesis about the particles and phases of matter that could be pos-
sibly present in the core of neutron stars. Such models in the literature include hyperons,
pion and kaon condensates, as well as deconfined quark matter.

Furthermore, the recent detection of the first direct gravitational wave event (GW170817)
due to the merging of two neutron star in a binary system by LIGO and Virgo collabora-
tion on 17 August 2017 has opened a new window of possibilities into astrophysics, dense
matter, gravitation, and cosmology. This event might unlock a new path through new
observables for a more detailed knowledge of the EoS at high densities for neutron stars
and, as for instance their tidal deformability [7]. For example, a maximum star limit at
2.17 M� has been suggested by Margalit & Metzger [8] taking into account the measure-
ment of the tidal deformation.

It should be emphasized that neutron stars are mostly observed as pulsars, namely neu-
tron stars in rotation that emit periodic electromagnetic radiation. They are typically
classified in terms of their period of rotation into millisecond- or second-type pulsars [9].

In consequence, the main objective of this project is to study how rotation affects neu-
tron stars by analysing their properties after solving the hydrostatic equilibrium equations
within the Hartle-Thorne approach for rotating systems. Particularly, the behaviour of
the dense neutron star interior is described by an hyperonic EoS recently released by the
Barcelona group [10], the so-called FSU2H model. Results are compared with those ob-
tained with a pure nucleonic EoS widely used in the literature [11].

This purpose is achieved by first solving the non-rotating neutron stars equations and
later implementing the ones for rotating neutron stars via a numerical procedure, which
implies the construction and development of a FORTRAN programme, a task that has
represented a personal challenge.

Nowadays, pulsars rotating with periods bigger than 700 Hz have not been observed yet,
although a physics explanation preventing a more rapid rotation does not exist. For
this reason, and motivated by the recently proposed sub-millisecond pulsars after the
GW170817 event, we will explore different angular velocities (Ω=1000, 3000, 5000 Hz)
into the neutron stars obtained by the different EoS.
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Chapter 2

Theoretical framework

In this chapter, a brief summary of the historical discoveries related to neutron stars is
presented. Furthermore, the structure of neutron stars is also explained in a concisely
way.

2.1 Historical overview

It was not until 1932 when James Chadwick discovered the neutron. Only one year later,
Walter Baade and Fritz Zwicky proposed the concept of neutron stars during their inves-
tigations of supernovae: a compact object formed by the collapse of the central core of the
presupernova star [12].

This compact star made of "closely packed neutrons" would have to be degenerate and it
could not generate energy after its formation; just only radiate its remaining heat through
the slow process of photon diffusion.

Nevertheless, due to the small size of neutron stars in comparison with white dwarfsi,
they would be rarely observed by optical telescopes. Then, no searches for neutron stars
were performed after Baade and Zick’s paper.

A few years later, in 1939, Oppenheimer and Volkoff [14] and Tolman [15] derived the
equations that describe the structure of a static star with spherical symmetry in General
Relativity, and performed the first theoretical calculation of the equilibrium conditions of
neutron stars and their properties assuming an ideal gas of neutrons at high density.

In their calculation, they found that stable static neutron stars could not have masses
larger than ∼ 0.75 M�, a value much lower than the Chandrasekhar limit of white dwarfs
∼ 1.44 M�. This low value is a consequence of the simple description they made of the
state of matter of the neutron star interior in terms of non-interacting neutrons, and it is

iStellar core remnants composed mostly of electron-degenerate matter, which represent the end point
of stellar evolution for main-sequence stars with masses from 0.07 to 10M�. The first white dwarf (40 Eri-
dani B) was officially discovered in 1914 by Walter Adams [13].
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an indication that the role of the nuclear forces is fundamental to determine properly the
structure of these objects.

In the mid-1950s Wheeler and collaborators [16] built a more realistic neutron star matter
EoS. They calculate the EoS for a non-interacting gas made of neutrons, protons and elec-
trons under β-equilibrium conditions with respect to weak interaction processes. These
authors developed a rigorous framework in which to understand compact stars, being their
work of great importance even today.

In 1959 the effect of the nucleon-nucleon interaction on the EoS and structure of neu-
tron stars was studied for the first time, finding maximum mass values of Mmax ∼ 2M�
(Cameron [17]). At that time it started to be clear that, in addition to neutrons, protons
and electrons, other particles such as muons, mesons or hyperons (baryons with strangeness
content) could also be present in the interior of neutron stars. In spite of many efforts,
the behaviour of the nuclear EoS at very high densities remained still uncertain.

Another important theoretical step was the idea that neutron superfluidity could occur
in neutron star interiors, that is, a singlet-state neutron pairing which operates at sub-
nuclear densities in the inner crust of the neutron star but disappears in the core where
the neutron-neutron interaction becomes repulsive [18]. The possibility of having in the
core proton pairing in a singlet-state and neutron pairing in a triplet-state was understood
later. It is well known that superfluidity in nuclear matter implies important consequences
for cooling and other phenomena [19].

The main processes of a strict neutron star cooling theory seems to be the emission of
neutrinos and photons in a later stage. Photon cooling consists on the photon diffusion
mechanism as indicated before, but the neutrino emission processes have a stronger rele-
vance on the cooling rates of neutron stars. Neutrinos are emitted in β-decay processes
Eqs. (2.1), where thermally excited neutrons or protons undergo direct or inverse beta
decay and the generated neutrinos carry away energy as they escape from the star. Con-
sequently, the star cools and the number of thermally excited nucleons drops [20].

β− : n → p + e− + ν̄e

β+ : p → n + e+ + νe
(2.1)

Neutrino cooling can be used to constraint the dense matter EoS by comparing the results
of theoretical cooling models with the observation of the thermal radiation from neutron
stars (Bahcall and Wolf [21,22]).

It was not until 1967 that Pacini [23] showed that rapidly rotating neutron star with
a strong dipole magnetic field could transform its rotational energy into electromagnetic
radiation and accelerate particles to high energies, powering in this way a surrounding
nebula, like the Crab nebula (named as Crab Pulsar later on in 1968 by Pacini).
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After that, on August 1967, the first radio pulsar (named PSR B1919+21) was discovered
by Bell and Hewish [24]; and the name of "pulsar" was selected due to their stable sig-
nals. However, it was not until the argument of Gold [25] that pulsars were thought to be
highly magnetised rotating neutron stars. Furthermore, the simultaneous discoveries of
Crab and Vela pulsars in 1968 (as mentioned before), both located in supernova remnants,
also confirmed the prediction of Baade and Zwicky: neutron stars are formed in supernova
explosions.

Indeed, since 1968, understanding the properties of neutron stars was a matter of pri-
mordial importance and a lot of theoretical work was developed. In 1971, the discovery
of pulsating compact X-ray sources (X-ray pulsars) stimulated this scenario even further.
Those sources were believed to come from a neutron star in a close binary system which
is accreting matter from its ordinary companion star [26].

Another important step in the history of neutron stars was the observation of the first
binary pulsar (PSR J1913+16) by Hulse and Taylor in 1974 [27]. During the next years,
several satellites were launched in order to observe neutron stars down to the last detail.

A last historical surprise about neutron stars has been the very recent first direct de-
tection of gravitational waves from the merger of two neutron stars in 2017 [7], which has
shaken up the entire physics’ world anew.

2.2 Structure of neutron stars

Neutron stars are supported against gravitational collapse mainly by the neutron degen-
eracy pressure, as mention in the previous section. Having masses of the order of 1-2M�
and radii within the range 10-13 km, an average density of the order of ∼ 1014 g/cm3 is
required. However, the internal structure of these objects can be described as an "onion"
with a wide range of densities into their different shells (Figure 2.1).

The atmosphere is the most external region and constitutes the thin layer, having a vari-
ation of its thickness from ∼ 10 cm in hot neutron stars to ∼ mm in cold ones. The
densities in the atmosphere are in the range n ≤ 106 g/cm3. It is a plasma layer where
matter is formed by atoms of heavy nuclei, mainly nuclei around the iron mass number,
distributed in a lattice in order to minimise the Coulomb energy.

The observed thermal spectrum of the neutron stars comes from this region and, although
the theoretical study of neutron stars atmospheres has been carried out by many authors,
the current models are still incomplete due to some uncertainties. The main problems that
need to be solved are the difficulty of the calculation of the EoS, the ionisation equilib-
rium and the spectral opacity of the atmospheric plasma (see ref. [28] for a detailed review).

Then, we find the crust which is formed by the outer and inner crust, having a total
thickness of ∼ 1 km and contributing only to a few percent of the total mass of the
neutron star.
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Figure 2.1: A schematic figure showing the layered structure of a neutron star. The different
regions are not drawn in scale. Image from [1].

The outer crust is a solid region where atoms are ionised and the matter consists of a
Coulomb lattice of nuclei embedded in a gas of free ultrarelativistic electrons at densities
n > 106 g/cm3. This lattice is in β-equilibrium with the strongly degenerate electron gas.

Once we start moving towards the interior of the star, still at the outer crust, the in-
crease of the average density induces electron capture processes [Eq. (2.2)] and inverse
β-decay processes [Eq. (2.3)] on the lattice’s nuclei thus becoming the outer crust more
and more neutron-rich (direct β-decays are inhibited).

e− + AZ → A(Z − 1) + νe

e− + p → n + νe
(2.2)

ν̄e + AZ → A(Z − 1) + e−

ν̄e + p → n + e−
(2.3)

When the density reaches a value n = ndrip ∼ 4×1011 g/cm3, nuclei cannot support the
neutron excess and start to emit neutrons that can only occupy the levels in the contin-
uum which are the ones available. Consequently, the nuclear "drip out" starts and this
neutron drip limit defines the border between the outer and the next layer: the inner crust.

The inner crust can be about one kilometre thick and the density in this region ranges
from ndrip up to ∼ 0.5n0

ii. As we have passed the drip density limit, neutrons have dripped
out and formed a neutron gas coexisting with the nuclei. Hence, the inner crust’s matter

iin0 is the nuclear saturation density and has a value of 2.7×1014g/cm3 ' 0.16 fm−3.
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consists on a mixture of very neutron-rich nuclei arranged in a Coulomb lattice, electron
and free neutrons which are expected to be paired in the s-wave by the nuclear residual
interaction and, therefore, to form a superfluid [1].

In addition, due to the competition between the nuclear and Coulomb forces, nuclei
would lose their spherical shapes and would adopt more exotic topologies; giving, as a
result, the so-called "nuclear pasta" phase whose existence and relevance are not clear yet.
Even though, recent works have provided some hints. Pons et al. [29] may have given
the first observational evidence for an amorphous inner crust by showing that a highly
resistive innermost layer limits the spin period of isolated X-ray pulsars. Meanwhile, New-
ton et al. [30] suggested that a high degree of disorder is needed in the inner crust by
comparing the calculations of the magnetic field decay of neutron stars and their corre-
sponding observational spin evolution, which may also provide the evidence of "nuclear
pasta".

The outer core starts at densities of about ∼ 1014 g/cm3, when the nuclear clusters dis-
solve into their constituents, neutrons and protons. Then matter roughly consists of an
homogeneous quantum fluid of nucleons and electrons in beta equilibrium. Specifically,
matter is mainly composed of p-wave superfluid neutrons with a smaller concentration of
s-wave superconducting protons and normal electrons (in the same amount of protons in
order to achieve charge neutrality), and muons which appear as soon as their chemical
potential equals that of the electron (µµ = µe).

Lastly, the densities of this region go in the range 0.5n0 ≤ n ≤ 2n0 and it has a thickness
of several kilometres. For low-mass neutron stars, whose central densities are found to be
less than 2-3n0, the outer core actually constitutes the entire core of the object. But for
high-mass neutron stars, the central densities could easily be in the range n ≥ 2n0 forming
the innermost layer.

So, finally, the inner core is several kilometres of thickness and its composition is still
unknown. However, there are some speculative ideas. The hypotheses go from hyperonic
matter, pion or kaon condensates to deconfined quark matter.

In any case, this project would focus on purely baryonic matter phase at the centre of the
star. Therefore, nucleonic and hyperonic models used in this work are briefly explained in
the next chapter.
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Chapter 3

Equations of state of β-stable
neutron star matter

The EoS is a relation in which thermodynamic variables describes the state of matter; even
though, its determination is still one of the main problems that need to be solved. For
that reason, one can find in the literature many EoSs obtained from different approaches
(Mean-Field or Microscopic model) using diverse types of interactions (non-relativistic,
relativistic, effective theories or/and meson-exchange based) with or without many-body
forces.

Consequently, in this chapter, we are going to explain the purely baryonic EoSs used
in this project and their respective formalisms and parameterizations. The H&H model is
based on nucleonic matter meanwhile FSU2H EoS incorporates hyperonic matter.

However, one should understand first how matter remains in equilibrium in neutron stars.

3.1 Beta-stability conditions

First of all, as previously mentioned in Section 2.2, neutron stars are not only made
of neutrons. In order to determine its chemical composition, one should impose some
conditions: charge neutrality

L∑
i=1

qlinli +
B∑
i=1

qbi
nbi

= 0 , (3.1)

and conservation of the baryonic density

nB =
B∑
i=1

Bbi
nbi

, (3.2)
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being bi and li the baryon and lepton indexes respectively, that run over all types of
baryons (B) and leptons (L). Meanwhile Bbi

refers to the corresponding baryonic number
and the products qbi

nbi
and qlinli describe the charge density of baryons and leptons, being

qbi
and qli the proper charge number.

Also, neutron stars are in equilibrium against weak interaction processes (β decay and
lepton capture) described by:

b1 → b2 + l + ν̄l b2 + l→ b1 + νl (3.3)

where b1 and b2 represent two different types of baryons, l refers to a lepton, and νl and
ν̄l are the respective leptonic neutrino and anti-neutrino.

If only the β-decay process was taking place, the decay of a free baryon would be halted
by the presence of the second baryon and lepton; as baryons have already occupied their
lowest levels of their corresponding Fermi seas. Therefore, the Pauli exclusion principle
would prevent the decay reaction. The equilibrium is obtained by the lepton capture reac-
tion, imposing charge and baryon number conservation [see Eqs. (3.1) and (3.2)]. Notice
that lepton number conservation is not applied since the free path of a neutrino in a neu-
tron star is bigger than its typical radius (∼ 10 km), assuming throughout that neutrinos
escape freely out of the star.

Once we have explained the two conserved charges of cold neutron stars, as a way of
finding its equilibrium state, we proceed minimising the total energy density of the system
constrained by the equilibrium conditions previously mentioned employing the method of
Lagrange multipliers:

F (nb1 , nb2 , ..., nbB
, nl1 , nl2 , ..., nlL) = ε(nb1 , nb2 , ..., nbB

, nl1 , nl2 , ..., nlL)

+ α

nB −∑
bi

Bbi
nbi

+ β

∑
bi

qbi
nbi

+
∑
li

qlinli


(3.4)

The quantities α and β are the corresponding Lagrange multipliers. In coherence, the
subscripts bi and li run over B and L respectively.

Now, the minimisation of the energy of the system is given by:

∂F

∂nb1

= 0, ..., ∂F

∂nbB

= 0, ∂F

∂nl1
= 0, ..., ∂F

∂nlL
= 0,

∂F

∂α
= 0, ∂F

∂β
= 0. (3.5)
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Then, keeping in mind that the chemical potential of a species "i" is just µi = ∂ε/∂ni, we
obtain a set of general equations for all type of baryons and leptons respectively:

µbi
−Bbi

α+ qbi
β = 0, i = 1, ..., B; (3.6)

µlj + qljβ = 0, j = 1, ..., L. (3.7)

In general, N species and 2 Lagrange multipliers give N+2 equations, what means B+L
equations from Eq. (3.5) and the 2 equations from the conserved charges [Eqs. (3.1) & (3.2)].
Consequently, the first B+L equations allow to write the unknown chemical potentials
in terms of the two chosen ones (there are as many independent chemical potentials as
conserved charges), thus helping us to eliminate the Lagrange multipliers α and β and
determine the composition of beta-stable neutron star matter.

For convenience, we develop the baryonic equation for the neutron and the leptonic equa-
tion for the electron:

∂F

∂nn
= µn − α = 0 −→ µn = α (3.8)

∂F

∂ne
= µe − β = 0 −→ µe = β. (3.9)

Therefore, the chemical potential of any particle can be obtained in terms of µe (associated
with charge neutrality) and µn (associated with conservation of the total baryonic density)
as a linear combination weighted by the baryon number and the electric charge of the
particle as

µbi
= Bbi

µn − qbi
µe, i = 1, ..., B; (3.10)

µlj = −qljµe, j = 1, ..., L. (3.11)

Finally, from these equations, it is clear that not only the weak interaction rules the com-
position of neutron star matter, being the responsible for the conversion processes of one
species into another, but also the strong interaction plays a role as it determines the ex-
plicit value of the chemical potentials of the baryons.

In brief, the solution of these last equations determines the composition of beta-stable
matter at its ground state for a given density and type of particle.

10



3.2 General Equations-of-State considerations

Before starting with the explanation for the purely baryonic models used in this project,
one needs to introduce some basic concepts.

The pressure P is defined as

P = ρ2∂E

∂ρ
= ρ

∂ε

∂ρ
, (3.12)

where E refers to the energy per baryon which has units of MeV, while the number density
ρ is in units of fm−3. The energy density correspond to ε and has dimensions of MeV/fm3

as the pressure P.

In the calculations of properties of neutron star matter in β-equilibrium, one needs the
calculation of the energy per baryon E for several proton fractions xp, which correspond
to the ratio of protons as compared to the total nucleon number (Z/A). It is defined as

xp = ρp
ρ

= ρp
ρp + ρn

, (3.13)

where ρ = ρp+ρn is the total baryonic density if neutrons and protons are the only baryons
present, which is one of the charges that must be conserved as already mentioned. Note
that ρp = xpρ and ρn = (1− xp)ρ.

Then, the total Fermi momentum kF and the Fermi momenta kFp , kFn for protons and
neutrons are related to the total baryon density (or nucleon density) by:

ρ = 2
3π2k

3
F = xpρ+ (1− xp)ρ = 1

3π2k
3
Fp

+ 1
3π2k

3
Fn
. (3.14)

The energy per baryon is thus labelled as E (ρ, xp), referring E (ρ, 0) to the energy per
baryon for pure neutron matter (PNM) while E (ρ, 1/2) is the corresponding value for
symmetric nuclear matter (SNM). An important ingredient in the discussion of any EoS
is the so-called symmetry energy, defined as the difference in energy for symmetric nuclear
matter and pure neutron matter:

S (ρ) = E (ρ, 0)− E (ρ, 1/2). (3.15)

Expanding the energy per baryon only in the proton concentration xp about the value of
the energy for SNM (xp = 1/2), we obtain:

E (ρ, xp) = E (ρ, 1/2) + 1
2
d2E

dx2
p

(ρ)(xp − 1/2)2 + ... ' E (ρ, 1/2) + 4S (ρ)(xp − 1/2)2, (3.16)
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where the term d2E
dx2

p
is associated with the symmetry energy S (ρ) by the empirical mass

formula and the higher-order derivatives are assumed to be small.

From the definition of the chemical potential and imposing the known beta-equilibrium
conditions, we are able to express proton and neutron chemical potentials in terms of the
symmetry energy and proton fraction:

µp = ∂ε

∂ρp
= ∂(E ρ)

∂ρp
= ∂(E ρ)

∂ρ

∂ρ

∂ρp
+ ∂(E ρ)

∂xp

∂xp
∂ρp

=
[
∂E

∂ρ
ρ+ E

]
+ (1− xp)

∂E

∂xp

µn = ∂ε

∂ρn
= ∂(E ρ)

∂ρn
= ∂(E ρ)

∂ρ

∂ρ

∂ρn
+ ∂(E ρ)

∂xp

∂xp
∂ρn

=
[
∂E

∂ρ
ρ+ E

]
− xp

∂E

∂xp

⇒ µn − µp = − ∂E

∂xp
= 4S (ρ)(1− 2xp). (3.17)

Finally, other properties of interest in the characterisation of EoSs are the incompressibility
modulus K at non-zero pressure:

K = 9∂P
∂ρ

, (3.18)

and the sound speed vs, which depends also on the density of the nuclear medium thorugh
the relation:

(
vs
c

)2
= dP

dε
= dP

dρ

dρ

dε
=
(

K

9(mnc2 + E + P/ρ)

)
. (3.19)

The tracking of the dependence on density of vs is important, since a superluminal be-
haviour can occur at higher densities for some EoSs.
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3.3 Nucleonic matter: H&H model

Heiselberg and Hjorth-Jensen [11] detailed a simple parameterization of a non-relativistic
nuclear matter model including three-body forces at temperatures much lower than the
typical Fermi energies (T=0).

The binding energy per nucleon in nuclear matter used by Heiselberg and Hjorth-Jensen
(H&H) is adopted to be the sum of a compressional and a symmetry term:

E = Ecomp(n) + S (n)(1− 2xp)2 = E0u
u− 2− δ

1 + δu
+ S0u

γ(1− 2xp)2 , (3.20)

being S (n) the symmetry energy and xp is the proton fraction, defined as xp = np/n.
The ratio of the baryon density to nuclear saturation density corresponds to u = n/n0.

The first term is parametrized in order to reproduce the saturation density, binding energy
and compressibility of symmetric nuclear matter. The binding energy per nucleon at satu-
ration density is taken to be E0=-15.8 MeV (without Coulomb energies). The introduction
of δ parameter is justified by applying the condition that the sound speed v2

s = ∂P/∂ε does
not exceed the speed of light. A value of δ=0.2 is chosen in order to avoid having a EoS
that becomes superluminical at high densities. In agreement with the experimental value,
the compressibility related to the first term is found to be K0=18E0/(1+δ) ' 200 MeV.
For the second term (the symmetry energy term), the best fit gives S0=32 MeV and γ=0.6.

In neutron star matter, one needs to impose beta-stable conditions. In the H&H model,
charge neutral uniform matter is made mainly of neutrons, protons, electrons and muons,
and their composition is determined by the requirements of chemical and electrical equi-
librium as exposed in Section 3.1. From Eqs. (3.3) and (3.11), the following conditions
for matter in β-equilibrium with only nucleonic degrees of freedom are obtained:

µn = µp + µe np = ne. (3.21)

Notice that neutrinos are not included in the conditions for β-stable matter as already
mentioned before.

Moreover, assuming ultra-relativistic electrons (pe ∼ 100 MeV), their chemical potential
is found to be:

µe = 1
n

∂ε

∂xp
= kFe = (3π2ne)1/3 = (3π2np)1/3 = 4S (n)(1− 2xp). (3.22)
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The dependence of the electron chemical potential on the symmetry energy and proton
fraction (last term of Eq. (3.22)) is found by using the expressions for the proton and
neutron chemical potentials [Eq. (3.17)] from the previous section, keeping in mind the
β-equilibrium conditions [Eq. (3.22)]. Therefore, from these results, one can conclude
that the symmetry energy S (ρ) has a important role in studies of neutron star matter in
beta-equilibrium.

Therefore one is able to express the proton fraction in terms of the symmetry energy:

nxp = (4S (n)(1− 2xp))3

3π2 . (3.23)

In the case of the H&H parametrization, the energy per particle for β-stable matter turns
out to be given analitically by:

E = E0u
u− 2− δ

1 + δu
+ S0u

γ

(
2
√
a

tan(2ψ)

)2

, (3.24)

where a = 2(4S0u
γ)3/π2n and tanψ = (tan φ

2 )1/3 with tanφ = −2
√
a

3 .

3.4 Nucleonic and Hyperonic matter: FSU2H model

Tolós, Centelles and Ramos [10] started from the Relativistic Mean Field model of matter,
where the baryons interact through the exchange of mesons, in order to provide a covariant
description of the EoS and nuclear systems.

The Lagrangian density can be expressed as the sum of the baryons (b), leptons (l) and
mesons (m) Lagrangian densities:

L =
∑
b

Lb + Lm +
∑
l=e,µ

Ll, (3.25)

with the lepton (electrons and muons) andm the possible exchanged mesons (σ,ω,ρ and φ).
Their respective Lagrangians are given by
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Lb = Ψ̄b(iγµ∂µ − qbγµAu −mb + gσbσ − gωbγµωµ − gφbγµφµ − gρbγµ~Ib ~ρ µ)Ψb,

(3.26)
Ll = ψ̄l (iγµ∂µ − qlγµAµ −ml)ψl,

(3.27)

Lm = 1
2∂µσ∂

µσ − 1
2m

2
σσ

2 − κ

3!(gσNσ)3 − λ

4!(gσNσ)4 − 1
4ΩµνΩµν + 1

2m
2
ωωµω

µ

+ ζ

4!(gωNωµω
µ)4 − 1

4
~Rµν ~Rµν + 1

2m
2
ρ~ρµ~ρ

µ + Λωg2
ρN~ρµ~ρ

µg2
ωNωµω

µ

− 1
4P

µνPµν + 1
2m

2
φφµφ

µ − 1
4F

µνFµν , (3.28)

where Ψb and Ψl are the baryon and lepton Dirac fields, respectively, while the mesonic
and electromagnetic field strength tensors are Ωµν = ∂µων − ∂νωµ, ~Rµν = ∂µ~ρν − ∂ν~ρµ,
Pµν = ∂µφν − ∂νφµ and Fµν = ∂µAν − ∂νAµ. The meson couplings to a certain baryon
are denoted by g (with N indicating nucleon). The electromagnetic couplings are written
as q and the baryon, meson and lepton masses by m. The isospin operator is denoted by
the vector ~Ib.

The Dirac equations for baryons and leptons are presented below in which the effective
baryon masses are set to m∗b = mb − gσbσ,

(iγµ∂µ − qbγ0A
0 −m∗b − gωbγ0ω

0 − gφbγ0φ
0 − gρbI3bγ0ρ

0
3)Ψb = 0,(

iγµ∂
µ − qlγ0A

0 −ml

)
ψl = 0.

(3.29)

Now, following the Euler-Lagrange equations, the equations of motion for the meson fields
in the mean-field approximation are expressed in terms of the respective meson mean-field
expectation values (σ̄ =< σ >, ρ̄ =< ρ0

3 >, w̄ =< w0 > and φ̄ =< φ0 >) as

m2
σ σ̄ + κ

2 g
3
σN σ̄

2 + λ

3!g
4
σN σ̄

3 =
∑
b

gσbn
s
b,

m2
ω ω̄ + ζ

3!g
4
ωN ω̄

3 + 2Λωg2
ρN g

2
ωN ρ̄

2ω̄ =
∑
b

gωbnb,

m2
ρ ρ̄+ 2Λωg2

ρNg
2
ωN ω̄

2ρ̄ =
∑
b

gρbI3bnb,

m2
φφ̄ =

∑
b

gφbnb , (3.30)

where I3b is the third component of isospin of baryon b with the convention I3p = +1/2.
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The baryonic and leptonic Fermi energies in terms of their Fermi momenta, kFb and
kFl, are described by

EFb =
√
k2
Fb +m∗2b ,

EFl =
√
k2
Fl +m2

l , (3.31)

In this way, the scalar and vector densities for baryons b and leptons l look like:

nsb = m∗b
2π2

[
EFbkFb −m∗2b ln kFb + EFb

m∗b

]
,

nb = k3
Fb

3π2 ,

nl = k3
Fl

3π2 . (3.32)

The energy density of the system is given by

ε =
∑
b

εb +
∑
l

εl + 1
2m

2
σσ̄

2 + 1
2m

2
ωω̄

2 + 1
2m

2
ρρ̄

2 + 1
2m

2
φφ̄

2 + κ

3!(gσσ̄)3

+ λ

4!(gσσ̄)4 + ζ

8(gωω̄)4 + 3Λω(gρgωρ̄ ω̄)2, (3.33)

with the energy densities of baryons and leptons:

εb = 1
8π2

[
kFbE

3
Fb + k3

FbEFb −m∗4b ln kFb + EFb
m∗b

]
,

εl = 1
8π2

[
kFlE

3
Fl + k3

FlEFl −m4
l ln kFl + EFl

ml

]
. (3.34)

The pressure of the system is computed using the thermodynamic relation

P =
∑
i

µini − ε, (3.35)

with the baryonic and leptonic chemical potentials given by
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µb = EFb + gωb ω̄ + gρb I3b ρ̄+ gφb φ̄ ,

µl = EFl. (3.36)

In this context, the parameters of the EoS are fitted with a view to fulfil the saturation
properties of nuclear matter and finite nuclei, constraints of the high-density nuclear pres-
sure from heavy-ion collisions and the 2M� observations, while keeping small stellar radius
in line with certain analysis [6]. The parameters are shown in the Table 3.1.

mσ (MeV) 497.479
mw (MeV) 782.500
mρ (MeV) 763.000
g2
σN 102.7200
g2
wN 169.5315
g2
ρN 197.2692
κ 4.0014
λ -0.013298
ξ 0.008

Λw 0.045

Table 3.1: Parameters of the FSU2H model from [10]. The mass of the nucleon is mN=939 MeV.

In brief, the parametrization of FSU2H model leads to obtain the following properties at
saturation density (n0=0.1505 fm−3). The energy per particle results in E/A=-16.28 MeV,
the compressibility is K=238.0 MeV and the effective nucleon mass in symmetric nuclear
matter leads to m∗N/mN=0.593. The symmetry energy is set to Esym=30.5 MeV whose
slope and curvature are defined by L=44.5 and Ksym=86.7 MeV, respectively. Finally, the
pressure of pure neutron matter is PPNM=2.30 MeV fm−3 at n0.

As the interior of neutron stars stays globally neutral and in conditions of β-equilibrium
[Eqs. (3.1) & (3.2)], therefore, the chemical potentials and the number densities of each par-
ticle in a neutron star are related to the beta-conditions already explained [see Eqs. (3.10)
& (3.11)].

Finally, solving the Dirac equations (3.29) for the baryons and leptons with the mesonic
field equations (3.30) for a given total baryon density n and obtaining the corresponding
chemical potential from each species, one can determine the energy density and pressure
of the β-stable neutron star as functions of density.
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3.5 Equations of state

In this section, we are going to represent the EoSs for the H&H and FSU2H models em-
ployed in this study, in order to analyse them and distinguish their characteristics. Indeed,
Figures 3.1 and 3.2 show the energy density and pressure of the system, respectively, as
functions of the baryon density for the H&H and FSU2H models.
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Figure 3.1: Energy density vs. baryon density for the different models presented in the text: H&H
(Heiselberg & Hjorth-Jensen [11]) and FSU2H (Tolós, Centelles & Ramos [10]).
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Figure 3.2: Pressure vs. baryon density for the different models presented in the text:
H&H (Heiselberg & Hjorth-Jensen [11]) and FSU2H (Tolós, Centelles & Ramos [10]).
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On the one hand, from Figure 3.2, one can extract some conclusions. The FSU2H model
has a stiffer behaviour in the range n0 ≤ n ≤ 5n0 than the H&H model, although the
appearance of hyperons (∼ 2n0) softens the pressure of the FSU2H system so that the
H&H EoS becomes stiffer from ' 5n0 onwards.

The change in the pressure conduct due to the introduction of hyperons can be explained
in terms of the Fermi pressure, which reduces with the presence of this new species that
starts to fill up its own Fermi sea. For that reason, the H&H model gives a harder EoS
for larger densities. The lack of new species prevents the reduction of the pressure and
the electrons, protons and neutrons continue occupying higher energy states of their own
Fermi seas, rising the pressure of the neutron star.

In this context, greater pressure values mean having a system harder to compress and, ac-
cordingly, it is able to resist more against gravity. In fact, a stronger bearing at saturation
densities is translated into larger neutron star radii and a stiffer conduct at suprasatura-
tion densities is marked by higher masses.

On the other hand, the FSU2H energy density in function of the baryon density is larger
than the H&H EoS in all the density range explored in Figure 3.1.

Finally, Figure 3.3 represents the dependence of the pressure on the energy density for both
models in study. As expected this plot shows the same behaviour sustained by Fig. 3.2
as both pressure and energy density increase monotonically with density. We show Fig-
ure 3.3 because pressure and energy density enter in the structure equations of neutron
stars, presented in the next chapter.
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Figure 3.3: Pressure vs. energy density for the different models presented in the text:
H&H (Heiselberg & Hjorth-Jensen [11]) and FSU2H (Tolós, Centelles & Ramos [10]).
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Chapter 4

Non-rotating neutron stars:
TOV equations

In order to determine the structure of a neutron star, Einstein’s General Relativity Theory
is needed as we are dealing with one of the densest objects in the Universe. For this reason,
the equations that describe a non-rotating star in equilibrium (or Schwarzschild star) start
from Einstein’s field equations. Using Gravitational Units (G=c=1)i, the Einstein’s field
equations are given by

Gµν = −8πTµν , (4.1)

where Gµν is the so-called Einstein tensor and Tµν is the energy-momentum tensor.

The solution of the Einstein’s equations for a static, spherically symmetric and relativistic
star are known as the Tolman-Oppenheimer-Volkoff equations (TOV equations) [14, 15].
For a given EoS, and a given value of the central density, the stellar structure equations
of hydrostatic equilibrium in General Relativity are:

dp(r)
dr

= −(ε(r) + p(r))(M(r) + 4πr3p(r))
r(r − 2M(r)) (4.2)

and
dM(r)
dr

= 4πr2ε(r). (4.3)

By re-writing Equation (4.2), we arrive to

dp(r)
dr

= −M(r)ε(r)
r2

(
1 + p(r)

ε(r)

) (
1 + 4πr3p(r)

M(r)

)
(
1− 2M(r)

r

) . (4.4)

iWe are going to use Gravitational Units from now to the end of this project.
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The equation can be interpreted as follows [1]. On the one hand, the left-hand side of
Eq. (4.4) is the net force acting outward on the surface of the shell by the pressure differ-
ence dp(r). On the other hand, the first factor of the right-hand side of Eq. (4.4) is the
attractive gravity Newtonian force acting on the shell by the mass enclosed. The second
factor on the right-hand side of the equation refers to the corrections from General Rela-
tivity. Thus, these equations express the balance at each r between the internal pressure
and the gravitational attraction of the mass enclosed at r.

Moreover, the integration of the pressure p(r) and the enclosed mass to a given radius,
M(r), must be performed outward; starting at the star’s centre (r=0) where the mass of
the star is M=0 and the pressure is pC . We finish when the pressure becomes p = 0, which
defines the edge of the star. The point at which the pressure vanishes defines the radius
of a non-rotating star, R.

The integration of equation (4.3) from the centre of the star up to its radius defines
its gravitational mass:

MG = 4π
∫ R

0
drr2ε(r). (4.5)
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Chapter 5

Rotating neutron stars:
Hartle-Thorne approach

When the core of a massive star collapses to produce a neutron star, conservation of angu-
lar momentum assures its enhanced rotation. That rotation necessarily breaks spherical
symmetry as the rotating star is centrifugally deformed, only maintaining its axial sym-
metry. The relevance of the deformation depends on the angular velocity Ω of the star:
the quicker, the flatter. Therefore, in this chapter we are interested in effects of rotation
on the internal structure of relativistic stars.

However, this symmetry breaking holds some difficulties when constructing the structure
equations of rotating neutron stars in comparison with the non-rotating case. The main
issues are related to the deformation of the star, the increase of its mass due to rotation
and the consequent alteration of the geometry of space-time, and the general relativistic
effect of the dragging of local inertial frames (Lense-Thirring effect [12]).

The angular velocity associated with dragging of local inertial frames is fundamental to ro-
tation in General Relativity, carrying its name because of its effect. For example, imagine
a particle dropped from rest at a great distance from a star. If the star was not rotating,
the particle would fall directly toward the centre of that star. But if the star was rotating,
the particle would experience an increasing drag in the direction of rotation of the star as
it approaches [12]. See Figure 5.1.

Figure 5.1: Schematic of the trajectory of a particle dropped from infinity to a rotating star.
Image from [12].

22



The so-called frame-dragging frequency is largest at the centre of a rotating star and falls
to cero at large distances where spacetime becomes flat. Therefore, the rotation of local
inertial frames has a true effect on the internal structure of rotating stars.

Indeed, if we could behave as an observer in an inertial frame near a rotating star, we
would rotate around our centre relative to the distant stars, rotating the more rapidly, the
closer we approach the star. Hence, we would need a rocket or other ways of propulsion
to stop our own rotation.

In order to determine the properties of rotating neutron stars, we will present the set
of equations that we have used coming from the perturbative method developed by Hartle
and Thorne ( [31], [32]). For years, this method was thought to be valid only for slowly
rotating stars. However nowadays, it is known to be valid up to the Keplerian frequency,
which is the frequency at which a rotating star would shed matter at its equator, within a
few percent of the exact numerical solution determined by a direct numerical integration
of Einstein’s equations [33].

In summary, we are interested in obtaining the properties of neutron stars, such as the
mass, moment of inertia and angular momentum of rotating neutron stars.

5.1 Hartle-Thorne approach

In equilibrium, a rotating star attains a balance between pressure, gravitational and cen-
trifugal forces. As it has already mentioned, the structure of a rotating star depends on
its frequency due to the rotation of the local inertial frames. Then, the centrifugal force
acting on a fluid element of the star depends on the difference between the total angular
frequency of the star Ω and the frequency w(r) of the local inertial frame at the location
(r, θ) of the fluid element as

w̄(r) ≡ Ω− w(r), (5.1)

being w̄(r) the relative angular velocity.

Hartle in Ref. [31] quoted the following differential equation where it is shown that w̄(r)
depends only on the radial coordinate r to lowest order in Ω:

1
r4

d

dr

(
r4j(r)dw̄(r)

dr

)
+ 4
r

dj(r)
dr

w̄(r) = 0. (5.2)

At the centre of the star, the magnitude w̄(r) is subjected to the boundary conditions
w̄(0) = w̄c and (dw̄(r)/dr)r=0 = 0, with w̄c being an arbitrary constant value.

23



The function j(r) is defined in terms of the metric for a Schwarzchild star as

j(r) ≡ e−ν(r)

√
1− 2M(r)

r
, r < R, (5.3)

j(r) ≡ 1, r ≥ R. (5.4)

The metric function ν(r) fulfils the equation

dν(r)
dr

= M(r) + 4πr3p(r)
r(r − 2M(r)) , (5.5)

with M(r) and p(r) being the solutions of the TOV equations.

The former differential equation solution must match the exterior solution which can be
deduced from Eqs. (5.3) and (5.4) and reads as

e−ν(r) =
(

1− 2M(r)
r

)−1/2
, r ≥ R. (5.6)

If ν(r) is a solution for Eq. (5.5), adding any constant to that solution of ν(r), we still
have a valid solution. So, we obtain the correct condition at the surface of the star R if
we make the change:

ν(r)→ ν(r)− ν(R) + 1
2 ln

(
1− 2M

R

)
, r ≤ R. (5.7)

Now, Equation (5.1) was defined inside of the star but outside the star one has to ac-
complish the following relation. Thus, the relative angular velocity when one reaches the
surface is given by

w̄(r) = Ω− 2
r3J(Ω) r ≥ R, (5.8)

where J(Ω) is the total angular momentum of the star given by:

J(Ω) = 8π
3

∫ R

0
drr4 p(r) + ε(r)√

1− 2M(r)
r

(Ω− w(r))e−ν(r). (5.9)
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From the total angular momentum of the star, we are able to define the moment of inertia
of the star as:

I ≡ J(Ω)
Ω . (5.10)

Thus, it is important keep in mind the relativistic corrections added to the moment of
inertia of the star coming from Eq. (5.9). Those corrections are due to the dragging
of local inertial frames that is w̄(r)/Ω < 1, the red-shift (e−ν(r)) and space curvature
(1/
√

1− 2M(r)
r ) factors.

Moreover, we may notice that, outside the star, the angular velocity of the local iner-
tial frame can be written using equations (5.8) and (5.10) as:

w(r) = 2J(Ω)
r3 = 2I

r3 Ω, r ≥ R. (5.11)

This last expression together with Equation (5.2) permits us to calculate the dragging
angular velocity everywhere by taking into account that w vanishes far away from the
star. Consequently, by matching both relations, it may be noticed that w̄(r)/Ω is a
universal function for a given EoS and value of the central density [12], so that:

w(r)
Ω = w′(r)

Ω′ . (5.12)

This relation is proved in Figure 5.2, which shows that for a given EoS and value of the
central density (meaning, a given star with a mass and radius), the ratio of the frame-
dragging frequency to the star frequency is a universal function.
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In Figure 5.3, it is also shown the ratio between the frame-dragging angular velocity with
an angular velocity of Ω=1000 s−1 but for four different members of the stellar sequence
given by the FSU2H EoS, among them the minimum and maximum mass stars. Then,
the relation is always less than unity and decreases monotonically with r. Furthermore,
the value of this ratio increases with the mass of the star. Consequently, we appreciate
bigger effects of the relative angular velocity for stars that have higher central densities.

Now, as we have already deduced the expressions due to rotation and explained some
necessary details related to it, we are able to calculate the deformations of the star due to
the rotation. So, the increase in mass of a star with central energy density εc and angular
velocity Ω can be obtained from the relation

∆M(Ω) = m0(R) + J(Ω)2

R3 . (5.13)

In this expression, R is the spherical radius from the non-rotating star and the func-
tion m0(r) is the monopole mass perturbation that can be determined by integrating the
equation

dm0(r)
dr

=4πr2 dε

dp
(ε(r) + p(r))p0(r) + 1

12j(r)
2r4

(
dw̄(r)
dr

)2

+ 8π
3 r5j(r)2 ε(r) + p(r)

r − 2M(r) w̄(r)2.

(5.14)

This integration has to be done simultaneously with that for the monopole pressure per-
turbation p0(r) function given by:

dp0(r)
dr

=− 1 + 8πr2p(r)
(r − 2M(r))2m0(r)− 4π (ε(r) + p(r))r2

r − 2M(r) p0(r)

+ 1
12

r4j(r)2

r − 2M(r)

(
dw̄(r)
dr

)2
+ 1

3
d

dr

(
r3j(r)2w̄(r)2

r − 2M(r)

)
,

(5.15)

with the boundary conditions m0(0)= p0(0)=0. With these boundary conditions, the ro-
tating star will have the same central density as the non-rotating one.

Finally, the deformation of the star due to the rotation can be characterised by the eccen-
tricity, which describes the shape of the star at its surface. It is defined as

e =

√√√√1−
(
Rp
Req

)2

, (5.16)
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where Rp and Req are the polar and equatorial radii of the rotational deformed star,
respectively. In the Hartle-Thorne approach, the equatorial and polar radii are obtained
from the radius R in the non-rotating star configuration and the consequent displacements
in the rotating configuration:

Req ≈ R+ ξ0(R)− 1
2ξ2(R),

Rp ≈ R+ ξ0(R) + ξ2(R).
(5.17)

The quantities ξ0(r) and ξ2(r) are referred to the spherical and quadrupole stretching
functions:

ξ0(r) = −p0(r)(ε(r) + p(r))
(
dp(r)
dr

)−1
,

ξ2(r) = −p2(r)(ε(r) + p(r))
(
dp(r)
dr

)−1
.

(5.18)

As we can see, they are defined in terms of the energy density ε(r), pressure density (r),
monopole pressure perturbation p0(r) and the quadrupole pressure perturbation p2(r),
which is given by

p2(r) = −h2(r)− 1
3(rw̄(r))2e−2ν(r). (5.19)

The function h2(r), which appears in the previous equation, is the solution of the following
equation

dh2(r)
dr

=
(
−2dν(r)

dr
+ 2r
r − 2M(r)

(
dν(r)
dr

)−1 (
2π(ε(r) + p(r))− M(r)

r3

))
h2(r)

− 2
r(r − 2M(r))

(
dν(r)
dr

)−1
v2(r)

+ 1
6

(
r
dν(r)
dr
− 1

2(r − 2M(r))

(
dν(r)
dr

)−1)
r3j(r)2

(
dw̄(r)
dr

)2

− 1
3

(
r
dν(r)
dr

+ 1
2(r − 2M(r))

)(
dν(r)
dr

)−1
(rw̄(r))2dj(r)2

dr
.

(5.20)
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It must be simultaneously integrated together with the following equation

dv2(r)
dr

= −2dν(r)
dr

h2(r)+
(1
r

+ dν(r)
dr

)(
−r

3

3
dj(r)2

dr
w̄(r)2 + j(r)2

6 r4
(
dw̄(r)
dr

)2)
, (5.21)

with boundary conditions v2(0)=h2(0)=0 and v2(∞)=h2(∞)=0.

To sum up, we have shown all necessary expressions that determining the structure of
a rotating neutron star.

5.2 Numerical calculation

In this section, we explain how to deal with the equations that permit us to determine the
deformation of rotating neutron stars. We have developed a Fortran programme within
the Hartle-Thorne approach that is shown in Appendix A.1.

First of all, we read our data from the EoS and solve the TOV equations [Eqs. (4.2)
& (4.3)] in order to know the gravitational mass and radius for the static solution. We
start the integration from the origin having as initial conditions M(0)=0 and a particular
value of the central pressure p(0) = pc, until it becomes zero with R the radius of the star
and M(R) its gravitational mass.

The integration of the metric function ν(r) [Eq. (5.5)] is done together with the TOV
equations, selecting the convenient value of ν(0) = 0. As it is figured out, since M(r) and
p(r) are the variables of the TOV equations, one can obtain ν(r) simultaneously.

Once we have the result for the metric function ν(r), we find the correct condition of
the metric function at R by applying Eq. (5.7). We also work out the j(r) function [Eq.
(5.3)] and the relative dragging frequency [Eq. (5.2)], being the arbitrary constant value
fixed to w̄c = 1 for convenience in order to accomplish the boundary conditions, and,
finally, the total angular momentum [Eq. (5.9)].

Now, using Equation (5.8), we are able to find the value for the total angular velocity
of the star, named as Ωarb. As we are interested to chose the total angular momentum of
the star Ω, one must scale the relative angular velocity w̄(r) as

w̄const = Ω
Ωarb

. (5.22)

Consequently, one should apply the rescale not only to the relative angular velocity but
also to the respective derivative and total angular momentum of the star.
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Furthermore, we are able to calculate the moment of inertia [Eq. (5.10)] and the Keplerian
frequency ΩK . We use the approximation [12]

ΩK = 0.65
(
M

R3

)1/2
. (5.23)

Next, we begin the integration for the monopole mass [Eq. (5.14)], the monopole pressure
[Eq. (5.15)], the h2 function [Eq. (5.20)] and v2 function [Eq. (5.21)] with the respective
boundary conditions already mentioned. Once the integration has finished, we are able to
get the increment of mass due to rotation given in Eq. (5.13).

Lastly, we can do the integration for the quadrupole pressure [Eq. (5.19)] and the stretch-
ing functions [Eq. (5.18)], which allow us getting the polar and equatorial radii [Eq. (5.17)]
and the star eccentricity [Eq. (5.16)].

All these steps are repeated for every star, that means for every central density given
in the EoS data file.
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Chapter 6

Results

In this chapter, we are going to show the results obtained after solving the TOV equations
for non-rotating neutron stars and, afterwards, the ones obtained after applying the Hartle-
Thorne approach of rotating neutron stars, which is the main interest of this project. The
results for rotating neutron stars will be classified according to the deformation in size and
mass due to rotation and, the moment of inertia associated to those rotating neutron stars.

The calculations have been performed for the nucleonic H&H and the hyperonic FSU2H
EoSs, for different rotating velocities (Ω=1000, 3000 & 5000 Hz). Those values have
been chosen taking into account that pulsars rotating with periods bigger than 700 Hz
(∼ 4500 s−1) have not been observed yet, despite the fact that it does not exist an upper
limit banning a more rapid rotation.

Therefore, we will compare the results of the two models for the selected rotating ve-
locities and try to understand their differences.

6.1 Non-rotating neutron stars

First of all, it is important to understand the features of non-rotating neutron stars. For
that reason, in Figure 6.1, we show the mass and radius relation obtained for both EoSs
after solving the TOV equations (eqs. (4.2) & (4.3)).

For stars with approximately the same mass, we denote a substantial difference between
their radii. The FSU2H model gives rise to the larger radii as compared to the H&H EoS,
a fact that is related to its stiffness (see Table 6.1). Even though, both EoSs give radii
within the estimated range (10.7-13.1 km).

Consequently, it turns out that only the FSU2H model achieves the maximum mass limit
of 2M� given by observations. The maximum non-rotating neutron star masses are found
to be of 1.94M� for H&H EoS and 2.02M� for FSU2H model, with the corresponding
radii of R=10.21 km and R=12.13 km, as seen in Table 6.1.
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In brief, a stiffer EoS leads to larger masses but also bigger stellar radii.

M/M� R (km) ρc (fm−3) εc (MeV/fm3) Ωk(s−1)

H&H

1.04 12.06 0.40 400 5773
1.40 11.91 0.52 537 6815
1.90 10.77 0.97 1153 9239
1.94 10.21 1.21 1555 10092

FSU2H

1.02 13.04 0.28 276 5088
1.39 13.29 0.33 327 5761
1.90 13.14 0.53 573 6843
2.02 12.13 0.87 1040 7971

Table 6.1: Mass (M) and radius (R) obtained for H&H and FSU2H models, together with the
corresponding central density and energy density. The Keplerian frequency is also
shown for each case.
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Figure 6.1: Plot of the mass and radius relation for the FSU2H and H&H EoSs for non-rotating
neutron stars.
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6.2 Rotating neutron stars

Before starting the analysing of the rotating neutron stars results, it is of great utility
to understand first the relation of our non-rotating neutron stars parameters with the
Keplerian frequency.

The Keplerian frequency indicates the upper limit on the rotation of stable neutron stars.
Therefore, calculating the Keplerian frequency of a star of mass M and radius R will
establish the maximum angular velocity that is capable to support before becoming un-
stable. Thus, the Keplerian frequency informs us about the angular velocities that our
neutron stars can hold up in the rotation.

Figure 6.2 illustrates the dependence of the Keplerian angular velocity ΩK on the gravita-
tional neutron star mass [Eq. (5.23)], and consequently, on the underlying EoS also. The
Keplerian frequency values increase as the gravitational mass of the stellar sequence does.
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Figure 6.2: Keplerian angular velocity vs gravitational mass of non-rotating neutron stars for
different EoSs.

Referring to the EoSs in study, we oserve that the two different models have led to quite
different values for ΩK as a function of M . This difference highlights with the rise of the
gravitational mass.

According to Glendenning [12], the dependence of P on ε (Fig. 3.3) has an important
impact on the Keplerian frequency. The EoS must be soft at low and intermediate den-
sities and hard at high densities for a neutron star to withstand fast rotation. Such
behaviour agrees with the nucleonic H&H model.
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Consequently, the largest values for ΩK(M) result from the H&H EoS; the reason of its
behaviour lies in the smaller values of the star radius that this model produces. Thus, the
H&H model will allow higher rotational frequencies for a given mass value.

Lastly, the three horizontal dashed lines represent the three angular velocities that will be
employed in our calculations of rotating neutron stars (Ω=1000, 3000, 5000 s−1), setting
a limit on the neutron stars that have smaller Keplerian frequency value. Therefore, the
neutron stars with Keplerian angular velocities ΩK below these limiting lines will not be
taken into account in the following, as they have arrived at their critical equatorial velocity
at which mass-shedding sets in.

6.2.1 Deformation

Firstly, we represent the dependence of the equatorial radius (Req) with the central en-
ergy density for different angular velocities, together with the non-rotating case, for both
models in study. Figures 6.3 and 6.4 represent the results obtained with the H&H and
FSU2H EoSs, respectively.

For the non-rotating case, the relation of the radius with the central energy density gives
us an idea about the compactness of the star. Not only the increase of the central energy
density is linked with a decrease of the radius but also with bigger gravitational masses.
In consequence, the size of the star is reduced with increasing central energy densities,
leading to more compact neutron stars.

Comparing the results of the H&H model with those of the FSU2H one for the same
radius, we see that the nucleonic EoS gives a smaller central energy density and gravita-
tional mass, outcoming into more diluted neutron stars than the FSU2H ones.

Moreover, the FSU2H model shows a "wiggle" for ε ∼ 2-4·102 MeV/fm3 which indicates
that the same radius is obtained for different central energy densities, meaning different
mass configurations and, on consequence, distinct stars. This is clearly seen in Figure 6.1,
where the mass-radius plot for non-rotating neutron stars is shown.

Once stars rotate, stars with the same central energy density but rotating faster become
more extended due to the equatorial radius growth. Moreover, the deformation of the star
is more evident for those stars with lower central energy densities, that is, more diluted
stars.

Lastly, comparing both studied models, we observe that FSU2H gives rise to larger equa-
torial radii values due to its harder EoS for densities around saturation, as previously
discussed.
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Figure 6.3: Equatorial radius vs. central energy density for different angular frequencies Ω for
the H&H EoS.
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Figure 6.4: Equatorial radius vs. central energy density for different angular frequencies Ω for
the FSU2H EoS.
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The deformation of the star from its spherical form due to rotation can be also shown
by plotting the relation between the polar and equatorial radii. Figures 6.5 and 6.6 show
this relation for the nucleonic H&H and the hyperonic FSU2H models, respectively, for
different angular velocities.

In accord with the previous conclusions for Figures 6.3 & 6.4, the higher the value of
the equatorial radius, the more deviation of the star from its spherical shape. Thus, stars
with smaller gravitational masses and, on consequence, bigger non-rotating radii (lower
values of εc) suffer larger deformations on their aspect than the more massive stars.

Moreover, the deviation from the spherical configuration increases as the angular velocity
does, meaning having more oblate neutron stars for faster rotating configurations.

By comparing the results for both models, the representation of polar and equatorial radii
seems to give a more extensive deformed aspect for the star configurations of the FSU2H
EoS, in concordance with the last conclusions of Figures 6.3 and 6.4. This behaviour will be
illustrated more clearly by the observables represented in the following Figures 6.7 and 6.8.

Notice that the number of stars decreases with the implementation of higher rotation.
This is due to the fact that the ending point on the right of each angular velocity function
is the last star which fulfils the Keplerian condition, and the higher the rotation, the faster
this limit of instability is reached.

Finally, in Figures 6.7 and 6.8, we show the eccentricity as a function of the rotational
mass for the different angular velocities and both EoSs. This observable also illustrates
the deformation of the star due to rotation but by the description of the star’s surface
[Eq. (5.16)].

For a fixed frequency, the deformation is larger (higher eccentricity) for the less mas-
sive stars as this systems are characterised by a smaller Keplerian frequency. Thus, the
less massive stars have a larger size (bigger radii and lower central energy density) be-
cause they are rotating closer to their mass-shedding limit. Consequently, those systems
are more deformed from their original non-rotating spherical configuration.

With the growth of the angular velocity Ω, the eccentricity increases its value approaching
unity, which is in agreement with the rise of the degree of deformation of the equatorial
and polar radii. In brief, the deformation increases as the system is getting closer to its
Keplerian frequency.

Now, by comparing both figures, since the FSU2H model is characterised by smaller Ke-
plerian frequencies, it suffers larger deformations due to rotation than the H&H, thereby
showing higher eccentricity values. This behaviour is also supported by our previous dis-
cussion of deformation.

Note that eccentricity values very close to unity are not obtained as those values would
come from rotating stars with frequencies above the Keplerian limit, and hence, unstable.
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Figure 6.5: Polar vs. equatorial radius for different angular frequencies Ω for the H&H EoS.
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Figure 6.6: Polar vs. equatorial radius for different angular frequencies Ω for the FSU2H EoS.
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6.2.2 Mass

Firstly, Figures 6.9 and 6.10 display the rotational neutron star mass as a function of
central energy density for the H&H and FSU2H models, respectively. Figures 6.11 and
6.12 show the relation between the rotational mass and the non-rotating radius, for the
same two models. Plots are represented for the non-rotating as well as the rotating con-
figurations.

In these figures, we observe that the difference between the gravitational and the ro-
tational masses increases with the angular velocity. This can be understood by the fact
that the increment of mass due to rotation having a direct dependence with the angular
velocity via the total angular momentum of the star as given in Eq. (5.13). In fact, the
increase of the angular velocity leads to the increase of the centrifugal force that needs to
be compensated by a larger mass.

We remind that the FSU2H EoS is harder than the H&H model, leading to higher grav-
itational masses and radii as already mentioned. Because of that, the FSU2H model
gives rise to larger total angular momentum values, leading to higher increments of mass
and bigger rotational masses. We will appreciate more clearly the last argument in Fig-
ures 6.15 and 6.16, where the moment of inertia is shown for both EoSs.

In order to finish the analysis of the increment of mass due to rotation, we show the rota-
tional mass as a function of the equatorial radius. The resultingM−R relation for rotating
neutron stars is presented for the different angular velocities in Figures 6.13 and 6.14 in
case of the H&H and FSU2H EoSs, respectively.

We observe that, for a fixed value of the angular velocity Ω, the increment of the equato-
rial radius is more relevant for less massive stars, meaning smaller central energy density
values. Moreover, the growth on the equatorial radii rises for faster rotations, evidently.
Qualitatively, the nucleonic H&H and hyperonic FSU2H models show similar behaviour
referring to its shape and increment of mass due to rotation.
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Figure 6.9: Rotational mass vs. central energy density for different angular frequencies Ω for the
H&H EoS.
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Figure 6.10: Rotational mass vs. central energy density for different angular frequencies Ω for
the FSU2H EoS.

39



	0

	0.5

	1

	1.5

	2

	2.5

	10 	11 	12 	13 	14 	15 	16

M r
ot
/M

s

R	[km]

H&H

Ω=0	s-1
Ω=103	s-1

Ω=3*103	s-1
Ω=5*103	s-1

Figure 6.11: Rotational mass vs. radius for different angular frequencies Ω for the H&H EoS.
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Figure 6.12: Rotational mass vs. radius for different angular frequencies Ω for the FSU2H EoS.
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Figure 6.13: Rotational mass vs. equatorial radius for different angular frequencies Ω for the
H&H EoS.
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Figure 6.14: Rotational mass vs. equatorial radius for different angular frequencies Ω for the
FSU2H EoS.

41



6.2.3 Moment of inertia

To finalise the study of rotating neutron stars, we have plotted the moment of inertia as
a function of the rotational mass for different angular velocities for the H&H and FSU2H
models in Figures 6.15 and 6.15, respectively.

From the previous mentioned figures, one can observe that the moment of inertia de-
creases for faster rotations. Moreover, it is also seen that as the mass of the star increases
also does the moment of inertia. In particular, the FSU2H EoS gives rise to higher moment
of inertia values in comparison to the H&H model due to its stiffer behaviour, which leads
to larger-size stars.

Lastly, Figures 6.17 and 6.18 display the moment of inertia as a function of the equa-
torial radius for the different rotational frequencies and for the H&H and FSU2H models,
respectively.

By the use of markers (crosses in Figures 6.17 and 6.18), we are able to compare stars
with rotational masses of 1.5M� for the different angular velocities and the two models.
Consequently, we can conclude that the moment of inertia decreases with the rise of an-
gular velocity, as already commented.

Keeping in mind that stars suffer an increment of mass when rotating, the rotating neutron
stars with masses of 1.5M� come from smaller gravitational masses and, hence, smaller
central energy densities than the one associated to 1.5M� non-rotating star. Moreover,
considering that the increment of mass rises as angular velocity does, the rotating neutron
star of 1.5M� comes from an even smaller original star mass for faster rotation.

Therefore, these less massive non-rotating stars are described by larger radius in com-
parison with a more massive neutron star, giving rise to more diluted systems. Finally,
those more diluted configurations explain the decrease of the moment of inertia with the
angular velocity.
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Figure 6.15: Moment of inertia vs. rotational mass for different angular frequencies Ω for the
H&H EoS.
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Figure 6.16: Moment of inertia vs. rotational mass for different angular frequencies Ω for the
FSU2H EoS.
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Figure 6.17: Moment of inertia vs. equatorial radius for different angular frequencies Ω for H&H
EoS.
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Chapter 7

Conclusions

The main aim of this project has been to study the rotation of neutron stars and to under-
stand how it could affect to their mass, radius and moment of inertia. We have analysed
the results obtained by the recently developed hyperonic FSU2H EoS and compared them
with those of the nucleonic H&H model, being able to distinguish the differences in be-
haviour depending on the presence or absence of hyperons in the neutron star composition
and, thus, arriving to diverse conclusions.

On the one hand, from the non-rotating neutron stars, one is able to foresee the behaviour
due to rotation via the analysis of the EoS. A stiffer EoS is connected with characteristic
higher gravitational masses and radii and, in consequence, smaller Keplerian frequencies.
In this context, the Keplerian frequency sets the limit of angular velocity that a neutron
star is capable to withstand. Thus, the FSU2H model due to its harder behaviour gives a
sign of allowing lower rotational frequencies, leading of bigger affectations due to rotation.

On the other hand, from the rotating neutron stars, one is interested in the specific
changes to their properties, such as the mass and radius. Thereby, rotating neutron stars
characterised by smaller masses suffer larger deformations in radii than the more mas-
sive ones due to their lower Keplerian frequencies, leading to a more oblate configuration.
Moreover, the faster the rotation, the larger the deformation and the increment of mass.

Referring to the moment of inertia of rotating neutron stars, the systems described by
higher masses lead to larger values for the moment of inertia. When increasing the ro-
tational frequency, we obtained a less intuitive result at first sight: the increment of the
angular velocity leads to lower moment of inertia values, in spite of an increase of the
equatorial radius.

Therefore, by comparing the H&H and FSU2H models, we have found that the hyperonic
FSU2H model reaches a more oblate configuration due to rotation than the H&H EoS.
This fact was previously predicted by its stiffer behaviour close to saturation densities
that leads to larger radii deformations due to its distinctive smaller Keplerian frequencies.
Additionally, the FSU2H EoS gives rise to more massive non-rotating neutron stars, larger
rotational masses and, hence, higher moments of inertia.
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Finally, in future projects, it would be interesting to calculate the tidal deformability
of the rotating hyperonic neutron stars obtained. Furthermore, one must be intrigued
from the very recent developed FSU2H model including ∆ particles [34] as its analysis
could be of great importance in understanding how neutron stars are affected to rotation.
Thereby, we would be able to compare the rotating ∆ neutron stars with the hyperonic
ones already obtained.
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Appendix A

Appendix

A.1 Programme

c... Program that solves the TOV equations for a given EoS and the Hartle-Thorne
approach for rotating neutron stars

c... Determines M-R diagram
c... Gives Mass profile for a couple of stars
c... Gives rotation parameters and characterises the rotational deformation of the

star
c... (Adpated by Anna Campoy from Àngels Ramos and Laura Tolós code of non-rotating

neutron stars)

IMPLICIT NONE
integer i,ncrust,ncore,ni,nf,nmax,nstep,k,ipre,ndiscard,imax
integer column
parameter (nmax=5000)
real*8 pai,pai2,conv1,conv2,conv3,conv4,conv5,conv6,conv7
real*8 pmn,msolar,mmax,rmax
real*8 rho(nmax),en(nmax),pre(nmax),eder(nmax)
real*8 nur(100000),w(100000),mass(100000),press(100000)
real*8 functh2(100000),functv2(100000)
real*8 eps0(100000),eps2(100000),press2(100000)
real*8 derj(100000),derw(100000),dernu(100000)
real*8 m1,p1,en1,dens1,fntv1,dx,nu0,w0,w1,fntj1,mass1,press1
real*8 functv2_1, functh2_1,v2,h2,eder0,eder1
real*8 derw1,derj1,dernu1
real*8 ma,prener,ener,x,dens,fntv,fntvR,fntj,mass0,press0
real*8 dm,dp,dv,fac1,fac2,jintx,dmass0,dpress0,dh2,dv2
real*8 omega,wconst,omega_arb,Jsum,inmom,massinc
real*8 polarR,equatR,eccent,kepler
real*8 xx
real*8 premin
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c... input files
open(unit=7,file=’EoS_crust_FSU2H_reduced.dat’)

c... output files
open(unit=8,file=’M_vs_R_npe.dat’)
open(unit=9,file=’profile_npe1.dat’)
open(unit=10,file=’profile_npe2.dat’)
open(unit=12,file=’profile_npe3.dat’)
open(unit=11,file=’derederp.dat’)
write(11,’(a)’) ’#rho e p de/dp’
open(unit=13,file=’M_vs_R_rot.dat’)
open(unit=14,file=’M_vs_R_rot-monopole.dat’)
open(unit=15,file=’M_vs_R_rot-def.dat’)
open(unit=17,file=’w(i).dat’)
open(unit=18,file=’usefull_parameters.dat’)

c... conversion factors
pai=3.14159
pai2=pai*pai
mmax=0.d0
rmax=0.d0
conv1=1.3234d-16 !(cm^(-2))*(fm^3/MeV) [de Mev/fm^3 a cm^(-2)]
conv2=1.d-5 !km/cm [de cm a Km]
conv3=1.d39 !fm^3/cm^3 [de fm^-3 a cm^-3]
conv4=7.4237d-29 ! [g/cm^3 a cm^(-2)] (1g a cm)
conv5=2.9979d10 !1s a cm
conv6=4.0383d38 ! conv5/conv4 [cm a g.cm/s]
conv7=1.d-15 !cm3 a km3
pmn=939.566d0 !MeV
msolar=1.4766d5 !cm
omega=0./conv5 !cm^(-1)
column=0

c... write in file radius and mass
write(8,’(2a)’) ’#r(km), M/Msol, rho_c(fm-3),’,

& ’ E_c(MeV/fm^3), nu (adim), index’

c... write in file metric function, j function, dragging angular velocity,
arbitrary angular velocity, total angular momentum and inertial momentum
write(13,’(3a)’) ’#r(km), M/Msol, nu(adim),’,

& ’ j(adim), w(s-1), Omega_arb(s-1),’,
& ’ J (g*cm^2/s), I(g*cm^2), kepler(s^-1) index’
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c... write in file monopole mass and pressure, v2 and h2 functions, and the
increase of mass due to rotation
write(14,’(3a)’) ’#r(km), M/Msol, monopole mass(g)’,

& ’ monopole pressure, v2 function,’,
& ’ h2 function, massinc(g), index’

c... write in file quadrupole pressure, spherical and quadrupole stretching
functions, polar and equatorial radius, and eccentricity
write(15,’(3a)’) ’#r(km), M/Msol, quadr pressure,’,

& ’ sph stretch(cm), quadr stretch(cm), polar R(km),’,
& ’ equatorial R(km), eccentricity, index’

c... write in file rel. ang. velocity and Kepler frequency
write(17,’(2a)’) ’#r(km), M/Msol, w(i)/omega,’,

& ’ kepler(s^-1), index’

c... write in file rotational mass, polar and equatorial radius, Kepler freq.,
eccentricity, central energy density and moment of inertia
write(18,’(3a)’) ’ #r(km), M/Msol, M/Msol rot,’,

& ’ Req(km), Rpol(km), kepler(s^-1), eccent,’,
& ’ E_c(MeV/fm^3), I(g*cm^2), index’

c... read files of density, energy density and presure (crust and core)
ncrust=129
ncore=108
nf=ncrust+ncore !total number of points

read(7,*) !read the points of the EoS file

do i=1,nf
read(7,*) xx,en(i),pre(i) !rho: fm^-3, en: MeV/fm^3, pre: MeV/fm^3
rho(i)=xx*conv3 !cm^(-3)

c... write(*,*) rho(i)/conv3,en(i),pre(i)
en(i)=en(i)*conv1 !cm^(-2)
pre(i)=pre(i)*conv1 !cm^(-2)

enddo

c... computing derivative of energy density w.r.t pressure density
do i=1,nf-1

eder(i)=(en(i+1)-en(i))/(pre(i+1)-pre(i))
if(pre(i+1).eq.pre(i)) eder(i)=eder(i-1)

c if(i.eq.ncrust) eder(i)=eder(i-1)
enddo
eder(nf)=eder(nf-1) !set last value equal of the derivative to the previous one
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write(11,’(4g20.12)’) rho(1)/conv3,en(1)/conv4,pre(1)/conv4,
& eder(1)
do i=2,nf-1

if(i.eq.83.or.i.eq.ncrust.or.eder(i).lt.0.d0)
& eder(i)=eder(i-1)+(eder(i+1)-eder(i-1))*(rho(i)-rho(i-1))/
& (rho(i+1)-rho(i-1))

write(11,’(4g20.12)’) rho(i)/conv3,en(i)/conv4,pre(i)/conv4,
& eder(i)
enddo
write(11,’(4g20.12)’) rho(nf)/conv3,en(nf)/conv4,pre(nf)/conv4,

& eder(nf)

c stop

premin=pre(1)

c... step for integration of Euler method
nstep=100000 !with step of 1 meter, we go up to 100 Km
dx=100 !cm (step of 1 meter)

c... which initial/central pressure to use to calculate the corresponding mass-radius
ni=ncrust+2 !where to start

c... loop over different stars (with different central densities)
do k=ni,nf

c do k=213,213

c... m1: initial mass; p1: initial pressure; en1: initial energy density;
dens1: initial density; fntv1: initial nu function

m1=0.d0 !initial mass
p1=pre(k) !initial pressure
en1=en(k) !initial energy density
dens1=rho(k) !initial density
fntv1=0.d0 !initial metric function

c... write(*,*) k, p1/conv1,en1/conv1,dens1/conv3

c... solve differential equations with Euler method
c... starting values

ma=m1
prener=p1
ener=en1
dens=dens1
fntv=fntv1
x=1 !cm
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if (k.eq.2581)
& write(9,’(3a)’) ’#r(km), M/Msol, P/c^2(g/cm^3),’,
& ’ E/c^2(g/cm^3), dens(fm-3),’,
& ’ nu (adim)’

if (k.eq.2627)
& write(10,’(3a)’) ’#r(km), M/Msol, P/c^2(g/cm^3),’,
& ’ E/c^2(g/cm^3), dens(fm-3),’,
& ’ nu (adim)’

if (k.eq.2572)
& write(12,’(3a)’) ’#r(km), M/Msol, P/c^2(g/cm^3),’,
& ’ E/c^2(g/cm^3), dens(fm-3),’,
& ’ nu (adim)’

c... start integration (outwards)
do i=1,nstep

c... write density profile for a couple of cases (M=1.4Msolar, M=Mmax=1.9Msolar,
M=Msolar)

if (k.eq.2581)
& write(9,’(6g20.12)’) x*conv2,ma/msolar,prener/conv4,ener/conv4,
& dens/conv3,fntv

if (k.eq.2627)
& write(10,’(6g20.12)’) x*conv2,ma/msolar,prener/conv4,ener/conv4,
& dens/conv3,fntv

if (k.eq.2572)
& write(12,’(6g20.12)’) x*conv2,ma/msolar,prener/conv4,ener/conv4,
& dens/conv3,fntv

c... description of differential TOV equations and metric function
dm=4.*pai*x**2.*ener*dx ! cm
dp=-(ener+prener)*(ma+4.*pai*x**3.*prener)/(x*(x-2.*ma))*dx !cm^(-2)
dv=(ma+4.*pai*x**3.*prener)/(x*(x-2.*ma))*dx !adim

c... new mass, pressure, radial position and metric function
ma=ma+dm
prener=prener+dp
x=x+dx
fntv=fntv+dv

c... write(*,*) ma/msolar,prener/conv4,x*conv2,fntv

if(prener.lt.premin) then !if pressure less than minimum --> finish the loop
ma=ma-dm
x=x-dx
prener=prener-dp
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fntv=fntv-dv
goto 10
endif

c... determine index of new pressure within the pressure array
do ipre=1,nf-1
if(((prener-pre(ipre))*(prener-pre(ipre+1))).lt.0.) goto 11
enddo

11 continue

c... linear interpolation (to determine energy and density at the new position)
ener=en(ipre)+(en(ipre+1)-en(ipre))/(pre(ipre+1)-pre(ipre))*

& (prener-pre(ipre))
dens=rho(ipre)+(rho(ipre+1)-rho(ipre))/(pre(ipre+1)-pre(ipre))*

& (prener-pre(ipre))
c...

enddo ! enddo nstep integration

write(8,*) ’#no solution for k:’,k
write(*,*) ’#no solution for k:’,k
write(8,’(5g14.6,i5)’) x*conv2,ma/msolar,dens1/conv3,en1/conv1,

& fntv,k
c... write(*,’(3g14.6,i5)’) x*conv2,ma/msolar,dens1/conv3,k

goto 12

10 continue

write(8,’(5g14.6,i5)’) x*conv2,ma/msolar,dens1/conv3,en1/conv1,
& fntv,k

c... write(*,’(3g14.6,i5)’) x*conv2,ma/msolar,dens1/conv3,k

c max mass, and radius at the max mass
if (ma/msolar.gt.mmax) then

mmax = ma/msolar
rmax = x*conv2

endif

c ... solve Hartle-Thorne approach: rotation neutron stars eqs
c ... new initial conditions

fntvR=fntv !assign nu final value as nu(R)
nu0=-fntvR+0.5*LOG(1.-2.*ma/x) ! new initial condition for the metric function

(match with the exterior solution)
c print *, ’ nu0=’,nu0

m1=0.d0 !initial mass
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p1=pre(k) !initial pressure
en1=en(k) !initial energy density
dens1=rho(k) !initial density
fntv1=nu0 !initial metric function
w0=1.d0 !1rst boundary condition to dragging angular velocity (arb. cte value)
w1=w0 !2nd boundary cond. to dragg. ang. vel. (1rst derivative equal to 0 at r=0)
fntj1=EXP(-nu0) !1rst value of j function
Jsum=0.d0 !initial total angular momentum

c... solve differential equations with Euler method
c... starting values

ma=m1
prener=p1
ener=en1
dens=dens1
fntv=fntv1
x=1 !cm

c... once solved the TOV eqs, open new integration loop to solve rotation eqs
do i=1,nstep

dm=4.*pai*x**2.*ener*dx ! cm^(-2)*cm
dp=-(ener+prener)*(ma+4.*pai*x**3.*prener)/(x*(x-2.*ma))*dx !cm^(-3)*cm
dv=(ma+4.*pai*x**3.*prener)/(x*(x-2.*ma))*dx !dimentionless

c... new mass, preassure, radius and metric function
ma=ma+dm
prener=prener+dp
x=x+dx
fntv=fntv+dv
nur(i)=fntv

c... write(*,*) ma/msolar,prener/conv4,x*conv2,fntv

fntj=EXP(-fntv)*(1.-2.*ma/x)**(0.5) ! j function value for every integration
step in r (dimentionless)

c print *, ’ fntj=’,fntj
c print *, ’ fntv=’,nur(i)
c print *, ’ ma=’,ma/msolar

c... defining derivative of j function, derivative of metric function and
factor1 and factor2 for diff eq (5.2)

derj(i)=(fntj-fntj1)/dx
dernu(i)=(nur(i)-fntv1)/dx
fac1=fntj+4.*fntj*dx/x+derj(i)*dx+4.*derj(i)*dx**2./x
fac2=2.*fntj+4.*fntj*dx/x+derj(i)*dx
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w(i)=(-fntj*w0+fac2*w1)/fac1 !diff. eq. we want to solve for dragg. ang. vel.
derw(i)=(w(i)-w1)/dx ! derivative of dragging angular velocity
jintx=8.*(pai/3.)*x**4.*((prener+ener)/(1.-2.*ma/x)**(0.5))*

& w(i)*EXP(-fntv) !integrand of total angular momentum eq

Jsum=Jsum+dx*jintx !total angular momentum integral

c... we proceed as previous loop and finalize when pressure is less than minimum value
if(prener.lt.premin) then ! set previous values
ma=ma-dm
x=x-dx
prener=prener-dp
imax=i-1 !last valid number of the integration loop
nur(imax)=fntv-dv
w(imax)=w1
derw(imax)=derw1
derj(imax)=derj1
dernu(imax)=dernu1
Jsum=Jsum-dx*jintx
fntj=fntj1
goto 20
endif

c... determine index of new pressure within the pressure array
do ipre=1,nf-1
if(((prener-pre(ipre))*(prener-pre(ipre+1))).lt.0.) goto 21
enddo

21 continue

c... linear interpolation (to determine energy at the new position)
ener=en(ipre)+(en(ipre+1)-en(ipre))/(pre(ipre+1)-pre(ipre))*

& (prener-pre(ipre))

c... assign "i" find value as "i-1" value, continue with the loop
fntj1=fntj
w0=w1
w1=w(i)
derw1=derw(i)
derj1=derj(i)
dernu1=dernu(i)

c write(13,’(6g20.12)’) x,ma,fntv,fntj,w(i),Jsum

enddo !end nstep integration
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20 continue

c... calculation of the angular velocity at r=R (outside the star)
omega_arb=w1+2.*Jsum/x**3.
wconst=omega/omega_arb !constant value in order to rescale dragging angular

velocity if desired

c... write without applying normalization of wconst
c write(13,’(7g25.16,i5)’) x*conv2,ma/msolar,nur(imax),fntj1,
c & w1*conv5,Jsum*conv6,omega_arb*conv5,k
c write(*,’(5g14.6,i5)’) x*conv2,ma/msolar,fntv,fntj,w,k

c... rescale dragging angular velocity, its derivative and angular total momentum
to omega desired value

do i=1,imax
w(i)=wconst*w(i) ! cm^(-1)
derw(i)=wconst*derw(i) ! cm^(-1)

enddo

Jsum=Jsum*wconst ! cm^2
inmom=Jsum/omega ! cm^3
kepler=0.65*(ma/x**3)**0.5 !cm^(-1)

c... write applying normalization of wconst
write(13,’(9g14.6,i5)’) x*conv2,ma/msolar,nur(imax),fntj1,

& w(imax)*conv5,omega_arb*conv5,
& Jsum*conv6,inmom/conv4,kepler*conv5,k

c... reset initial conditions for a new loop
m1=0.d0 !initial mass
p1=pre(k) !initial pressure
en1=en(k) !initial energy density
if(pre(k+1).eq.pre(k)) then !conditions to the dervivative of energy density

w.r.t. pressure density
eder1=(en(k)-en(k-1))/(pre(k)-pre(k-1))

else
eder1=(en(k+1)-en(k))/(pre(k+1)-pre(k))

endif
c... write every of these energy density w.r.t. preassure density derivatives into

an array pf k dimention
eder1=eder(k)

c... write(*,*) k, p1/conv1,en1/conv1,dens1/conv3
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c... solve differential equations with Euler method
c... new starting values

ma=m1
prener=p1
ener=en1
mass0=0.d0 !initial monopole mass [cm]
eder0=eder1 ! initial de/dp value [dimentionless]
press0=0.d0 !initial monopole pressure [dimentionless]
h2=0.d0 !boundary condition to h2 function [dimentionless]
v2=0.d0 !boundary condition to v2 function [dimentionless]
x=1 ! cm

c... initialising integration loop in order to solve eqs 42 & 43
do i=1,imax

dm=4.*pai*x**2.*ener*dx ! cm
dp=-(ener+prener)*(ma+4.*pai*x**3.*prener)/(x*(x-2.*ma))*dx ! cm^(-2)

fntj=EXP(-nur(i))*(1.-2.*ma/x)**(0.5) ! j function value for every
integration step in r

dmass0=(4*pai*x**2*eder0*(ener+prener)*press0+1/12.*fntj**2*
& x**4*(derw(i))**2+8.*pai/3.*x**5*fntj**2*
& ((ener+prener)/(x-2*ma))*(w(i))**2)*dx

dpress0=(-(1.+8.*pai*x**2*prener)/((x-2*ma)**2)*mass0-
& 4.*pai*((prener+ener)*x**2)/(x-2*ma)*press0+
& 1./12.*(x**4*fntj**2)/(x-2*ma)*(derw(i))**2+
& 1./3.*((3.*x**2*fntj**2*w(i)**2)/(x-2*ma)+
& (x**3*2.*fntj*derj(i)*w(i)**2)/(x-2*ma)+
& (x**3*fntj**2*2.*w(i)*derw(i))/(x-2*ma)-
& (x**3*fntj**2*w(i)**2)*(1-2*dm/dx)/(x-2*ma)**2))*dx

dh2=((-2.*dernu(i)+2.*x/((x-2*ma)*dernu(i))*(2.*pai*
& (ener+prener)-ma/x**3))*h2-2/(x*(x-2*ma)*dernu(i))*v2+
& 1./6.*(x*dernu(i)-1./(2.*(x-2*ma)*dernu(i)))*x**3*fntj**2*
& (derw(i))**2-1./3.*(x*dernu(i)+ 1./(2*(x-2*ma)))/
& dernu(i)*x**2*w(i)**2*2.*fntj*derj(i))*dx

dv2=(-2.*dernu(i)*h2+(1./x+dernu(i))*(-x**3/3*2.*fntj*derj(i)*
& w(i)**2+fntj**2/6.*x**4*(derw(i))**2))*dx

c ... new mass, preassure, radius, monopole mass and pressure, v2 and h2 functions
ma=ma+dm
prener=prener+dp
x=x+dx
mass0=mass0+dmass0
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press0=press0+dpress0
h2=h2+dh2
v2=v2+dv2
mass(i)=mass0 ! defining monopole mass array
press(i)=press0 ! defining monopole pressure array
functv2(i)=v2 ! defining v2 function array
functh2(i)=h2 ! defining h2 function array

c... write(*,*) ma/msolar,prener/conv4,x*conv2,fntv

c... determine index of new pressure within the pressure array
do ipre=1,nf-1
if(((prener-pre(ipre))*(prener-pre(ipre+1))).lt.0.) goto 31
enddo

31 continue

c... linear interpolation (to determine energy and density at the new position)
ener=en(ipre)+(en(ipre+1)-en(ipre))/(pre(ipre+1)-pre(ipre))*

& (prener-pre(ipre))

c... linear interpolation (to determine energy derivative w.r.t. pressure
at the new position)

eder0=eder(ipre)+
& (eder(ipre+1)-eder(ipre))/(pre(ipre+1)-pre(ipre))*
& (prener-pre(ipre))

c... write interesting parameters in order to make some figures
write(17,’(4g25.16,i5)’) x*conv2,ma/msolar,w(i)/omega,

& kepler*conv5,k
c print *, ’ mass0=’,mass0
c print *, ’press0=’,press0

enddo

c... increase of mass of the star due to rotation
massinc=mass(imax)+Jsum**2/x**3 ! cm

write(14,’(7g14.6,i5)’) x*conv2,ma/msolar,mass(imax)/conv4,
& press(imax),functv2(imax),functh2(imax),
& massinc/msolar,k

c... outside the star, relative angular velocity behaves as:
do i=imax+1,imax+8000
x=x+dx
w(i)=omega-2.*Jsum/x**3

write (17,*) x*conv2,column,w(i)/omega
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enddo

c ... initialising again the loop
m1=0.d0 !initial mass
p1=pre(k) !initial pressure
en1=en(k) !initial energy density

c... write(*,*) k, p1/conv1,en1/conv1,dens1/conv3

c... solve differential equations with Euler method
c... initial conditions

ma=m1
prener=p1
ener=en1
x=1 !cm

c ... initialising integration loop in order to solve eqs 49 & 50
do i=1,imax

dm=4.*pai*x**2.*ener*dx ! cm
dp=-(ener+prener)*(ma+4.*pai*x**3.*prener)/(x*(x-2.*ma))*dx ! cm^(-2)

c... new mass, pressure and radial position
ma=ma+dm
prener=prener+dp
x=x+dx

c... definition of quadrupole pressure perturbation array, and spherical
and quadrupole stretching function arrays

press2(i)=-functh2(i)-1./3.*x**2*w(i)**2*EXP(-2*nur(i)) ! dimentionless
eps0(i)=-press(i)*(prener+ener)*dx/dp ! cm
eps2(i)=-press2(i)*(prener+ener)*dx/dp ! cm

c... determine index of new pressure within the pressure array
do ipre=1,nf-1
if(((prener-pre(ipre))*(prener-pre(ipre+1))).lt.0.) goto 41
enddo

41 continue

c... linear interpolation (to determine energy at the new position)
ener=en(ipre)+(en(ipre+1)-en(ipre))/(pre(ipre+1)-pre(ipre))*

& (prener-pre(ipre))

enddo
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c... gives polar and equatorial radius, and eccentricity (description of the
star’s shape at its surface)

equatR=x+eps0(imax)-eps2(imax)/2. ! cm
polarR=x+eps0(imax)+eps2(imax) ! cm
eccent=(1-(polarR/equatR)**2)**0.5 ! dimentionless

write(15,’(8g14.6,i5)’) x*conv2,ma/msolar,press2(imax),
& eps0(imax),eps2(imax),polarR*conv2,
& equatR*conv2,eccent,k

write(18,’(9g14.6,i5)’) x*conv2,ma/msolar,(ma+massinc)/msolar,
& equatR*conv2,polarR*conv2,kepler*conv5,
& eccent,en1/conv1,inmom/conv4,k

12 continue

enddo !k different central densities

c... write maximum mass and the corresponding radius
open(unit=22, file=’M_R_max_grav-pr.res’)
print*, mmax, rmax
write(22,*) ’Mmax Rmax’
write(22,’(2g14.6)’) mmax,rmax

close(5)
close(7)
close(8)
close(9)
close(10)
close(12)
close(13)
close(14)
close(15)
close(17)
close(22)
end
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