#### Optimal domain for the Hardy operator

Olvido Delgado<sup>§</sup> and Javier Soria<sup>¶</sup>

Abstract. We study the optimal domain for the Hardy operator considered with values in a rearrangement invariant space. In particular, this domain can be represented as the space of integrable functions with respect to a vector measure defined on a  $\delta$ -ring. A precise description is given for the case of the minimal Lorentz spaces.

## 1 Introduction

Let S be the Hardy operator defined by

$$Sf(x) = \frac{1}{x} \int_0^x f(y) \, dy \, , \ x \in (0,\infty) \, .$$

for any function  $f \in L^1_{loc}(\mathbb{R}^+)$ . Let X be a Banach function ideal lattice (abbreviated BFIL), i.e., X is a Banach space of real valued measurable functions on  $\mathbb{R}^+$ , satisfying that if  $g \in X$ and  $|f| \leq |g|$  a.e., then  $f \in X$  and  $||f||_X \leq ||g||_X$  (see [1, 8] for further information). For such an X, there is a natural space on which S takes values in X, namely,

$$[S, X] = \{f : \mathbb{R}^+ \to \mathbb{R} \text{ measurable, } S|f| \in X\}.$$

The space [S, X] is a *BFIL* itself when endowed with the norm  $||f||_{[S,X]} = ||S|f||_X$ . Obviously,  $S: [S, X] \to X$  is continuous. Even more, any *BFIL* Y such that  $S: Y \to X$  is well defined (and so S is continuous, since it is a positive linear operator between Banach lattices [11, p. 2]), is continuously contained in [S, X]. That is, [S, X] is the *optimal domain* for S (considered with values in X) within the class of *BFIL*.

Similar assertions hold for operators T defined by a positive kernel K (i.e.,  $Tf(x) = \int_0^\infty f(y)K(x,y) \, dy$ ) such that T|f| = 0 a.e. implies f = 0 a.e. This general case has been studied in [3, 4], for K defined on  $[0, 1] \times [0, 1]$ , where the authors show that the optimal domain [T, X] for T, is closely related to the space  $L^1(\nu_X)$  of integrable functions with respect to the vector measure  $\nu_X$ , defined by  $\nu_X(A) = T(\chi_A)$  (assuming K and X satisfy the minimal conditions for  $\nu_X$  to be a vector measure with values in X). Indeed, under suitable additional conditions, both spaces coincide and a precise description of them is given. The case when K is defined on  $\mathbb{R}^+ \times \mathbb{R}^+$  has been studied in [6]. Here, the vector measure  $\nu_X$  associated to

<sup>&</sup>lt;sup>§</sup>Research partially supported by grant BFM2003-06335-C03-01.

<sup>&</sup>lt;sup>¶</sup>Research partially supported by grants MTM2004-02299 and 2005SGR00556.

*Keywords:* Hardy operator, optimal domain, r.i. space, Lorentz spaces, vector measures. *MSC2000:* 46E30, 46B25.

T is defined on the  $\delta$ -ring of the bounded measurable sets of  $\mathbb{R}^+$  (there are classical kernel operators, like the Hilbert transform, for which  $\nu_x$  is not defined for sets of infinite measure). Again, under suitable conditions, [T, X] coincides with  $L^1(\nu_x)$ . However, the Hardy operator does not satisfy these conditions, and we need to find a different argument to describe the space [S, X].

In Section 2 we will study several general properties of [S, X] in the case of *rearrangement* invariant spaces X (abbreviated r.i.; that is, if  $g \in X$  and f is equimeasurable with g, then  $f \in X$  and  $||f||_X = ||g||_X$ ), and show that the domain is never an r.i. space (Theorem 2.5). In Section 3, we prove that [S, X] admits a vector valued integral representation, and in Section 4 we identify this domain for the minimal Lorentz space  $\Lambda_{\varphi}$ .

# 2 Optimal domain and r.i. spaces

We start with a particular case where we are able to identify the domain for S. We observe that  $L^{1,\infty}(\mathbb{R}^+)$  is a quasi-Banach r.i. space.

**Proposition 2.1**  $[S, L^{1,\infty}(\mathbb{R}^+)] = L^1(\mathbb{R}^+)$ , with equality of norms.

*Proof.* Recall that  $||g||_{L^{1,\infty}(\mathbb{R}^+)} = \sup_{t>0} t\lambda_g(t)$ , where  $\lambda_g(t) = |\{|g| > t\}|$  is the distribution function of g (see [1]). Let us prove first the following formula for the distribution function of Sf: If  $f \in L^1_{\text{loc}}(\mathbb{R}^+)$ ,  $f \ge 0$ , and  $\{Sf > s\}$  has finite measure for all s > 0, then

$$\lambda_{Sf}(t) = \frac{1}{t} \int_{\{Sf > t\}} f(x) \, dx.$$
(1)

In fact, since  $\{Sf > s\}$  is open and has finite measure, then  $\{Sf > s\} = \bigcup_k (a_k, b_k)$ , where  $0 \le a_k < b_k < \infty$  and these intervals are pairwise disjoint. Moreover, if  $a_k \ne 0$ ,

$$\frac{1}{a_k} \int_0^{a_k} f(x) \, dx = \frac{1}{b_k} \int_0^{b_k} f(x) \, dx = s$$

and hence, for all cases,

$$\int_{a_k}^{b_k} f(x) \, dx = \int_0^{b_k} f(x) \, dx - \int_0^{a_k} f(x) \, dx = s(b_k - a_k).$$

Thus,

$$|\{Sf > s\}| = \sum_{k} (b_k - a_k) = \frac{1}{s} \sum_{k} \int_{a_k}^{b_k} f(x) \, dx$$
$$= \frac{1}{s} \int_{\bigcup_k (a_k, b_k)} f(x) \, dx = \frac{1}{s} \int_{\{Sf > s\}} f(x) \, dx.$$

Using (1) we now have that if  $Sf \in L^{1,\infty}(\mathbb{R}^+)$ ,  $f \ge 0$ , then

$$||Sf||_{L^{1,\infty}(\mathbb{R}^+)} = \sup_{s>0} s\lambda_{Sf}(s) = \sup_{s>0} \int_{\{Sf>s\}} f(x) \, dx$$
$$= \int_{\{Sf>0\}} f(x) \, dx = ||f||_{L^1(\mathbb{R}^+)}.$$

Conversely, if  $0 \le f \in L^1(\mathbb{R}^+)$ , then  $\lambda_{Sf}(s) < \infty$  for all s > 0 and so, the equalities above hold, i.e.,  $\|f\|_{L^1(\mathbb{R}^+)} = \|Sf\|_{L^{1,\infty}(\mathbb{R}^+)}$ .

We are going to consider the case of the  $L^p(\mathbb{R}^+)$  spaces. It is very easy to show that  $[S, L^1(\mathbb{R}^+)] = \{0\}$ . For the other indexes we have the following:

**Proposition 2.2**  $L^p(\mathbb{R}^+) \subsetneq [S, L^p(\mathbb{R}^+)], 1$ 

Proof. Hardy's inequality proves that  $L^p(\mathbb{R}^+) \subset [S, L^p(\mathbb{R}^+)]$ . Now, fix  $\alpha \in (-1, 0)$ , and define the unbounded function  $f_{\alpha}(t) = (1 - t)^{\alpha} \chi_{(0,1)}(t)$ . Observe that  $f_{-1/p} \in L^1(\mathbb{R}^+) \setminus L^p(\mathbb{R}^+)$ , 1 . An easy calculation gives,

$$Sf_{-1/p}(t) = \begin{cases} \frac{1 - (1 - t)^{1 - 1/p}}{(1 - 1/p)t}, & 0 < t < 1\\ \frac{p}{p - 1}\frac{1}{t}, & t \ge 1. \end{cases}$$

Therefore, we get the counterexample since  $Sf_{-1/p}(t) \in L^q(\mathbb{R}^+)$ , for all  $1 < q \le \infty$ . Observe that  $f^*_{-1/p} \notin [S, L^p(\mathbb{R}^+)]$  and hence  $[S, L^p(\mathbb{R}^+)]$  is not r.i.

For a BFIL X, if we define

$$\Gamma_X = \{ f \colon \mathbb{R}^+ \to \mathbb{R} \text{ measurable, } Sf^* \in X \},\$$

with norm  $||f||_{\Gamma_X} = ||Sf^*||_X$ , then  $\Gamma_X$  is the largest r.i. *BFIL* space contained in [S, X]. In fact, if  $f \in \Gamma_X$ , then  $S|f| \leq Sf^* \in X$  and so  $f \in [S, X]$ , and if Y is an r.i. *BFIL* contained in [S, X], then for  $f \in Y$  we have that  $f^* \in Y$  and so  $Sf^* \in X$ , that is  $f \in \Gamma_X$ .

**Proposition 2.3** Given a BFIL X, we have the following:

- (a) If  $S: X \to X$ , then  $X \subset [S, X]$ .
- (b) If X is r.i., then  $\Gamma_X \subset X \cap [S, X]$ .
- (c) If  $S: X \to X$  and X is r.i., then  $\Gamma_X = X$ .
- (d) If X is an r.i., the following conditions are equivalent:

(d1)  $\Gamma_X \neq \{0\}.$ (d2)  $\chi_{(0,1)} \in \Gamma_X$ . (d3)  $\chi_{(0,1)}(t) + \frac{1}{t}\chi_{(1,\infty)}(t) \in X.$  $(d4) \ (L^{\infty} \cap L^{1,\infty})(\mathbb{R}^+) \subset X.$ 

(a) is obvious. To prove (b), given  $f \in \Gamma_X$ , since  $f^* \leq Sf^* \in X$ , then  $f^* \in X$  and Proof. so  $f \in X$ . (c) follows from (a), (b), and the fact that  $\Gamma_X$  is the largest r.i. contained in [S, X]. Finally, observe that for  $f = \chi_{(0,1)}$ , we have  $Sf(t) = \chi_{(0,1)}(t) + \frac{1}{t}\chi_{(1,\infty)}(t)$ , and the equivalences (d1)-(d4) follow easily. For example, if  $g \in (L^{\infty} \cap L^{1,\infty})(\mathbb{R}^+)$ , then  $g^*(t) \leq C \min(1, 1/t) =$  $C(\chi_{(0,1)}(t) + \frac{1}{t}\chi_{(1,\infty)}(t))$ . Thus, (d3) implies (d4). 

We observe that we only need X to be an r.i. to prove that (d3) implies (d4). Proposition 2.2 shows that the embedding in Proposition 2.3-(a) may be strict. Let us see now an example of an r.i. BFIL space for which the embedding in Proposition 2.3-(b) is also strict (see also Example 4.1).

Proposition 2.4  $\Gamma_{(L^1+L^\infty)(\mathbb{R}^+)} \subsetneq (L^1+L^\infty)(\mathbb{R}^+) \cap [S, (L^1+L^\infty)(\mathbb{R}^+)].$ 

Let us see that S is not bounded on  $(L^1 + L^\infty)(\mathbb{R}^+)$ . In fact, if Proof.

$$g(t) = \frac{1}{t \log^2(\frac{e^2}{t})} \chi_{(0,1)}(t),$$

then g is a decreasing function in  $(L^1 + L^\infty)(\mathbb{R}^+)$ . Now set  $f(t) = g(t-1)\chi_{(1,2)}(t)$ . Then,  $f^* = g$ ,  $Sf \in (L^1 + L^\infty)(\mathbb{R}^+)$  (observe that since  $f \in L^1$  and it is bounded at zero, then  $Sf \in L^\infty$ ), and  $Sf^* \notin (L^1 + L^\infty)(\mathbb{R}^+)$ :

$$\|Sf^*\|_{(L^1+L^{\infty})(\mathbb{R}^+)} = \int_0^1 (Sg)^*(t) \, dt = \int_0^1 \frac{1}{t \log(\frac{e^2}{t})} \, dt = \infty.$$
  
shown that  $\Gamma_{(L^1+L^{\infty})(\mathbb{R}^+)} \subsetneq (L^1+L^{\infty})(\mathbb{R}^+) \cap [S, (L^1+L^{\infty})(\mathbb{R}^+)].$ 

Hence, we have shown that  $\Gamma_{(L^1+L^\infty)(\mathbb{R}^+)} \subsetneq (L^1+L^\infty)(\mathbb{R}^+) \cap [S, (L^1+L^\infty)(\mathbb{R}^+)].$ 

We are going to show that Proposition 2.2 can be extended to any r.i. space:

**Theorem 2.5** If X is an r.i. BFIL Banach space, and  $S: X \to X$ , then  $X \subsetneq [S, X]$ . Hence [S, X] is not r.i. (in fact  $[S, X] \not\subset (L^1 + L^\infty)(\mathbb{R}^+)$ ).

*Proof.* Let us prove that we can find a function in [S, X] which is not in  $(L^1 + L^{\infty})(\mathbb{R}^+)$ , and hence not in X either. We start with the following observation: If  $f \ge 0$ ,

$$f \notin (L^1 + L^\infty)(\mathbb{R}^+) \iff \text{for every } c > 0, \ f\chi_{\{f > c\}} \notin L^1(\mathbb{R}^+).$$
 (2)

It is clear that if for some c > 0,  $f\chi_{\{f>c\}} \in L^1(\mathbb{R}^+)$ , then

$$f = f\chi_{\{f > c\}} + f\chi_{\{f \le c\}} \in (L^1 + L^\infty)(\mathbb{R}^+).$$

Conversely, assume f = g + h,  $h \in L^{\infty}(\mathbb{R}^+)$ . Take  $c = 2 \|h\|_{L^{\infty}(\mathbb{R}^+)} > 0$ . Then,

$$f\chi_{\{f>c\}} = (g+h)\chi_{\{g+h>2\|h\|_{L^{\infty}(\mathbb{R}^{+})}\}} \le (g+h)\chi_{\{|g|>\|h\|_{L^{\infty}(\mathbb{R}^{+})}\}} \le 2|g|.$$

If  $g \in L^1(\mathbb{R}^+)$ , then  $f\chi_{\{f>c\}} \in L^1(\mathbb{R}^+)$ .

If  $X \,\subset L^1(\mathbb{R}^+)$ , we have that  $[S, X] \subset [S, L^1(\mathbb{R}^+)] = \{0\}$ , and so, by Proposition 2.3-(a),  $X = \{0\}$ . Hence,  $X \not\subseteq L^1(\mathbb{R}^+)$ . Thus, we can find a positive and decreasing function  $f \in X$  such that if  $F(t) = \int_0^t f(x) \, dx$ , then F is strictly increasing and not bounded: take  $f_1 \in X \setminus L^1(\mathbb{R}^+)$ ,  $f_1$ decreasing (and hence  $f_1 \geq 0$ ). Choose  $f_2 \in (L^1 \cap L^\infty)(\mathbb{R}^+)$ , decreasing and positive everywhere (e.g.  $f_2(t) = (1 + t^2)^{-1}$ ). Note that, since X is an r.i. BFIL,  $(L^1 \cap L^\infty)(\mathbb{R}^+) \subset X$  (see [8, Theorem II.4.1]) and so  $f_2 \in X$ . Then  $f = f_1 + f_2$  satisfies the required conditions. Now take  $t_1=1$ , and by induction, choose  $t_{k+1} > t_k$  satisfying that  $F(t_{k+1}) = 2F(t_k) = 2^k F(1)$ . We are now going to modify F on each interval  $(t_k, t_{k+1})$  in such a way that we obtain a new absolutely continuous, positive and increasing function G satisfying that  $F(t) \approx G(t)$ , and if g(t) = G'(t), a.e. t > 0, then  $g \notin (L^1 + L^\infty)(\mathbb{R}^+)$ . Hence,  $g \in [S, X]$  (observe that  $S(g) \approx S(f) \in X$ ), and  $g \notin X$ .

On the interval  $[0, t_1)$ , we set G(t) = F(t). Now we observe the following: since

$$\int_{t_k}^{t_{k+1}} f(x) \, dx = F(t_k) \ge F(t_{k-1}) = \int_{t_{k-1}}^{t_k} f(x) \, dx,$$

and f is decreasing, then  $t_{k+1} - t_k \ge t_k - t_{k-1} \ge t_2 - 1$ . Therefore, the right triangle  $T_k$  determined by the vertices  $(t_{k+1} - t_2 + 1, F(t_{k+1}) - F(1)), (t_{k+1}, F(t_{k+1}) - F(1)), \text{ and } (t_{k+1}, F(t_{k+1}))$  (which is congruent to the triangle  $T_1$ :  $(1, F(1)), (t_2, F(1)), \text{ and } (t_2, F(2)))$  is contained in the right triangle  $(t_k, F(t_k)), (t_{k+1}, F(t_k)), \text{ and } (t_{k+1}, F(t_{k+1})), \text{ for each } k \ge 1$  (observe that  $T_k$  has side lengths independent of k).

On the interval  $[t_k, t_{k+1} - t_2 + 1]$ , we define G(t) to be the line joining the points  $(t_k, F(t_k))$ and  $(t_{k+1} - t_2 + 1, F(t_{k+1}) - F(1))$ . To define G on the interval  $(t_{k+1} - t_2 + 1, t_{k+1})$  we use the following argument: fix a convex function h on  $[1, t_2]$ , such that h(1) = F(1),  $h(t_2) = F(t_2)$ , and  $h'(t_2^-) = \infty$  (thus, the graph of h is contained in  $T_1$ ). Now, using the congruence between  $T_1$  and  $T_k$  (call it  $A_k$ , so that  $A_k(T_1) = T_k$ ) we translate the graph of h to  $T_k$ , and define G(t), if  $t \in (t_{k+1} - t_2 + 1, t_{k+1})$ , by means of the equality

$$(t, G(t)) = A_k(t - t_{k+1} + t_2, h(t - t_{k+1} + t_2))$$

(thus, G(t) = h(t) if  $t \in (1, t_2)$ ). We observe that G is a continuous, increasing function on  $[0, \infty)$ . Moreover  $G(t) \leq F(t)$  since, by concavity, the graph of F is above the line through the points  $(t_k, F(t_k))$  and  $(t_{k+1}, F(t_{k+1}))$ , while G is below that line, by construction. On the other hand, if  $t \in (t_k, t_{k+1})$  then

$$G(t) \ge G(t_k) = F(t_k) = F(t_{k+1})/2 \ge F(t)/2$$

and we get the other estimate.

Define now g(t) = G'(t), a.e. t > 0. Let us show that  $g \notin (L^1 + L^\infty)(\mathbb{R}^+)$ : Using (2), if we fix c > 0, and  $k \in \mathbb{N}$ , we can find  $s \in (1, t_2)$  such that g(t) > c, if  $t \in (s, t_2)$  (observe that  $g(t_2^-) = G'(t_2^-) = h'(t_2^-) = \infty$ ). Then,

$$\int_{\{x \in (1,t_{k+1}):g(x) > c\}} g(x) \, dx \ge \sum_{j=2}^{k+1} \int_{s-t_2+t_j}^{t_j} g(x) \, dx = k \int_s^{t_2} h'(x) \, dx \xrightarrow{k \to \infty} \infty \, .$$

**Remark 2.6** We observe that without the hypothesis on X, Theorem 2.5 is false. In fact, as we have proved in Proposition 2.1,  $[S, L^{1,\infty}(\mathbb{R}^+)] = L^1(\mathbb{R}^+)$ , which is an r.i. space.

## **3** Vector integral representation for the Hardy operator

The representation of a linear operator T between function spaces, as an integration operator with respect to a vector measure  $\nu$ , is always interesting since allows to study the properties of T and its domain through the properties of  $\nu$  and the space of integrable functions with respect to  $\nu$ . However, this representation may be not possible. In this section, we give conditions which guarantee that the Hardy operator S has an integral representation.

Associated to S we have the finitely additive set function

$$A \longrightarrow \nu(A) = S(\chi_A)$$
.

Depending on the family of measurable sets  $\mathcal{R}$  on which we define  $\nu$ , and the space X where we want  $\nu$  to take values,  $\nu \colon \mathcal{R} \to X$  may (or may not) be a vector measure (i.e., well defined and countably additive). For instance, if  $X = L^1(\mathbb{R}^+)$  no family of measurable sets  $\mathcal{R}$  satisfies that  $\nu \colon \mathcal{R} \to X$  is a vector measure. Consider another example: the set function  $\nu \colon \mathcal{B}(\mathbb{R}^+) \to$  $(L^1 + L^\infty)(\mathbb{R}^+)$ , where  $\mathcal{B}(\mathbb{R}^+)$  is the  $\sigma$ -algebra of all Borel subsets of  $\mathbb{R}^+$ . This set function is well defined but it is not a vector measure, since taking  $A_j = [j, j+1)$  we have  $\|\nu(\cup_{j\geq k}A_j)\|_{L^1+L^\infty} =$ 1, for all k. Then, for any r.i. *BFIL* X, we have that  $\nu \colon \mathcal{B}(\mathbb{R}^+) \to X$  is not a vector measure, since X is continuously contained in  $(L^1 + L^\infty)(\mathbb{R}^+)$  ([8, Theorem II.4.1]).

We now consider the case when X is a Lorentz space. Recall that for an increasing concave function  $\varphi \colon \mathbb{R}^+ \to \mathbb{R}^+$ , with  $\varphi(0) = 0$ , the Lorentz space  $\Lambda_{\varphi}$  is defined by

$$\Lambda_{\varphi} = \left\{ f \colon \mathbb{R}^+ \to \mathbb{R} \text{ measurable, } \int_0^\infty f^*(t) d\varphi(t) < \infty \right\} \,,$$

where  $f^*$  is the decreasing rearrangement of f. The space  $\Lambda_{\varphi}$  endowed with the norm  $||f||_{\Lambda_{\varphi}} = \int_0^{\infty} f^*(t) d\varphi(t)$ , is an r.i. *BFIL* space. Choosing  $\mathcal{R}$  as the  $\delta$ -ring (ring closed under countable intersections)

$$\mathcal{R} = \{ A \in \mathcal{B}(\mathbb{R}^+) : |A| < \infty \text{ and } \exists \varepsilon > 0, |A \cap [0, \varepsilon]| = 0 \},$$
(3)

where  $|\cdot|$  is the Lebesgue measure on  $\mathbb{R}^+$ , we have the following result.

**Proposition 3.1**  $\nu(A) \in \Lambda_{\varphi}$  for every  $A \in \mathcal{R}$  if and only if

$$\theta_{\varphi}(y) = \int_{y}^{\infty} \frac{\varphi'(t)}{t} \, dt < \infty \,, \quad \text{for all } y > 0 \,, \tag{4}$$

where  $\varphi'$  is the derivative of  $\varphi$ . Moreover, if (4) holds, then  $\nu \colon \mathcal{R} \to \Lambda_{\varphi}$  is a vector measure.

*Proof.* We first observe that (4) is equivalent to saying that  $\theta_{\varphi}$  is integrable near 0, since

$$\int_0^\varepsilon \theta_\varphi(y) \, dy = \varphi(\varepsilon) - \varphi(0^+) + \varepsilon \theta_\varphi(\varepsilon).$$

Now, given  $A \in \mathcal{R}$  we have

$$\int_0^\infty \nu(A)^*(t) \, d\varphi(t) = \varphi(0^+) \, \nu(A)^*(0^+) + \int_0^\infty \nu(A)^*(t) \, \varphi'(t) \, dt \,,$$

where

$$\nu(A)^*(0^+) = \|\nu(A)\|_{\infty} = \sup_{0 < x < \infty} \frac{1}{x} \int_0^x \chi_A(y) \, dy = \sup_{0 < x < \infty} \frac{1}{x} \left| [0, x] \cap A \right| \le 1,$$

and since  $(S|f|)^* \leq Sf^*$ ,

$$\begin{aligned} \int_0^\infty \nu(A)^*(t) \, \varphi'(t) \, dt &\leq \int_0^\infty \frac{\varphi'(t)}{t} \int_0^t \chi_{[0,|A|)}(y) \, dy \, dt \\ &= \int_0^{|A|} \int_y^\infty \frac{\varphi'(t)}{t} \, dt \, dy \, . \end{aligned}$$

Then, if (4) holds,  $\nu(A) \in \Lambda_{\varphi}$ , for all  $A \in \mathcal{R}$ .

Conversely, if  $\nu(A) \in \Lambda_{\varphi}$  for every  $A \in \mathcal{R}$ , then, taking  $A = [\frac{a}{2}, a]$  for any a > 0 we have  $A \in \mathcal{R}$  and

$$\frac{a}{2}\theta_{\varphi}(a) \leq \int_{\frac{a}{2}}^{a}\theta_{\varphi}(y)dy = \int_{0}^{\infty}\nu(A)(t)\varphi'(t)dt \leq \int_{0}^{\infty}\nu(A)^{*}(t)\varphi'(t)dt < \infty,$$

since  $\theta_{\varphi}$  is decreasing. So,  $\theta_{\varphi}(y) < \infty$  for all y > 0. Hence,  $\varphi$  satisfying (4) is equivalent to  $\nu : \mathcal{R} \to \Lambda_{\varphi}$  is well defined. Let us see that in this case  $\nu$  is countably additive:

Given a disjoint sequence  $(A_j) \subset \mathcal{R}$ , with  $A = \bigcup_{j \ge 1} A_j \in \mathcal{R}$ , and taking  $\varepsilon > 0$  such that  $|A \cap [0, \varepsilon]| = 0$ , we have

$$\sup_{0 < x < \infty} \frac{1}{x} \left| [0, x] \cap \bigcup_{j \ge k} A_j \right| \le \frac{1}{\varepsilon} \left| \bigcup_{j \ge k} A_j \right|.$$

Then

$$\|\nu(\cup_{j\geq k}A_j)\|_{\Lambda_{\varphi}} \leq \frac{\varphi(0^+)}{\varepsilon} |\cup_{j\geq k}A_j| + \int_0^{|\cup_{j\geq k}A_j|} \theta_{\varphi}(y) \, dy \longrightarrow 0$$

as  $k \to \infty$ , since  $|A| < \infty$  and condition (4) holds.

From Proposition 3.1 we deduce conditions for a general space X, under which  $\nu \colon \mathcal{R} \to X$ is a vector measure. Let X be an r.i. *BFIL* space and  $\varphi_X$  the fundamental function of X defined by  $\varphi_X(t) = \|\chi_{[0,t]}\|_X$ , for  $t \in \mathbb{R}^+$ . Taking an equivalent norm in X if necessary, we have that  $\varphi_X$  is concave ([1, 8]). Then, since  $\Lambda_{\varphi_X}$  is continuously contained in X (see [8, Theorem II.5.5]), we have that a measure with values in  $\Lambda_{\varphi_X}$  is also a measure with values in X.

**Corollary 3.2** If  $\varphi_X$  satisfies (4), then  $\nu \colon \mathcal{R} \to X$  is a vector measure.

**Remark 3.3** If X has fundamental function  $\varphi_X$  satisfying (4) and  $\varphi_X(0^+) = 0$ , it is sufficient to take  $\tilde{\mathcal{R}} = \{A \in \mathcal{B}(\mathbb{R}^+) : |A| < \infty\}$  for  $\nu : \tilde{\mathcal{R}} \to X$  to be a vector measure.

From now on we will assume that X is an r.i. BFIL, with fundamental function  $\varphi_X$  satisfying (4). Thus,  $\nu : \mathcal{R} \to X$  is a vector measure, which will be denoted by  $\nu_X$  to indicate the space where the values are taken. We will make use of the integration theory for vector measures defined on  $\delta$ -rings, due to Lewis [10] and Masani and Niemi [12, 13]. So, we consider the space  $L^1(\nu_X)$  of integrable functions with respect to  $\nu_X$ , namely, measurable functions  $f : \mathbb{R}^+ \to \mathbb{R}$ such that

- (i) f is integrable with respect to  $|x^*\nu_x|$ , for all  $x^* \in X^*$ , and
- (ii) for each  $A \in \mathcal{B}(\mathbb{R}^+)$ , there is a vector, denoted by  $\int_A f d\nu \in X$ , such that

$$x^*\left(\int_A f d\nu\right) = \int_A f dx^*\nu$$
, for all  $x^* \in X^*$ ,

where  $|x^*\nu_x|$  is defined on  $\mathcal{B}(\mathbb{R}^+)$  as the variation of the real measure  $x^*\nu_x$ . Noting that |A| = 0 if and only if  $\nu(A) = 0$  a.e., the space  $L^1(\nu_x)$  endowed with the norm

$$||f||_{\nu_X} = \sup_{x^* \in B_{X^*}} \int |f| d |x^* \nu_X|,$$

is a *BFIL* space, in which the  $\mathcal{R}$ -simple functions (i.e., simple functions with support in  $\mathcal{R}$ ) are dense. Moreover,  $L^1(\nu_X)$  is order continuous (i.e., order bounded increasing sequences are norm convergent). Since X is a Banach lattice and  $\nu_X$  is a positive vector measure, it can be proved that  $||f||_{\nu_X} = ||\int |f| d\nu_X ||_X$ , for all  $f \in L^1(\nu_X)$  (see the discussion after the proof of [3, Theorem 5.2]). For results concerning the space  $L^1$  of a vector measure defined on a  $\delta$ -ring, see [5].

For every  $f \in L^1(\nu_x)$  it can be proved that  $Sf = \int f d\nu_x \in X$ , see [6, Proposition 3.1.(b)]. Thus, S coincides on  $L^1(\nu_x)$  with the integration operator with respect to  $\nu_x$  and  $L^1(\nu_x) \hookrightarrow$  [S, X], with  $||f||_{[S,X]} = ||f||_{\nu_X}$ . Even more,  $L^1(\nu_X)$  is the largest order continuous BFIL space contained in [S, X]. Let us prove this fact: Let Y be an order continuous BFIL such that Y is continuously contained in [S, X]. Given  $0 \le f \in Y$ , there are simple functions  $\psi_n$  such that  $0 \le \psi_n \uparrow f$ . We take the  $\mathcal{R}$ -simple functions  $\varphi_n = \psi_n \chi_{[\frac{1}{n},n]}$  for which  $0 \le \varphi_n \uparrow f$ . For all  $A \in$  $\mathcal{B}(\mathbb{R}^+)$  we have  $0 \le \varphi_n \chi_A \uparrow f \chi_A \in Y$ . Since Y is order continuous it follows that  $\varphi_n \chi_A \to f \chi_A$ in Y and then  $\varphi_n \chi_A \to f \chi_A$  in [S, X]. So  $||S(f\chi_A) - S(\varphi_n \chi_A)||_X = ||S|f \chi_A - \varphi_n \chi_A||_X \to 0$ as  $n \to \infty$ . Thus,  $S(\varphi_n \chi_A) = \int_A \varphi_n d\nu_X$  converges in X, for every  $A \in \mathcal{B}(\mathbb{R}^+)$ . Using [5, Proposition 2.3], we have that  $f \in L^1(\nu_X)$ . Therefore  $Y \subset L^1(\nu_X)$  and the inclusion is positive and continuous.

If X is order continuous, then it is easy to see that [S, X] is also order continuous, and thus  $L^1(\nu_X) = [S, X].$ 

Now, let us consider the larger space

$$L^1_w(\nu_X) = \left\{ f : \mathbb{R}^+ \to \mathbb{R} \text{ measurable} : \int |f| d| x^* \nu_X| < \infty \text{ for all } x^* \in X^* \right\},$$

which is a *BFIL* space with the norm  $\|\cdot\|_{\nu_X}$ , satisfying the Fatou property (i.e.,  $(f_n) \subset L^1_w(\nu_X)$ ,  $\sup_n \|f_n\|_{\nu_X} < \infty$ ,  $0 \le f_n \uparrow f$  a.e. implies  $f \in L^1_w(\nu_X)$  and  $\|f_n\|_{\nu_X} \uparrow \|f\|_{\nu_X}$ ). Note that  $L^1(\nu_X) \hookrightarrow L^1_w(\nu_X)$ .

In a similar way to [4, Proposition 3.2.(ii)], it can be proved that  $[S, X] \hookrightarrow L^1_w(\nu_X)$  with  $||f||_{\nu_X} \leq ||f||_{[S,X]}$ . Even more,  $L^1_w(\nu_X)$  is the smallest *BFIL* space with the Fatou property containing [S, X].

If X has the Fatou property, then [S, X] also has the Fatou property and thus  $L^1_w(\nu_X) = [S, X]$ .

Summarizing, the following result has been established.

**Proposition 3.4** Let X be an r.i. BFIL space whose fundamental function  $\varphi_X$  satisfies (4). For the  $\delta$ -ring  $\mathcal{R}$  given in (3) we have:

- (a)  $\nu_{\chi} : \mathcal{R} \to X$  is a vector measure, where  $\nu_{\chi}(A) = S(\chi_A)$ .
- (b)  $L^1(\nu_X) \hookrightarrow [S, X] \hookrightarrow L^1_w(\nu_X).$
- (c)  $L^1(\nu_X)$  is the largest order continuous BFIL space contained in [S, X].
- (d)  $L^1_w(\nu_x)$  is the smallest BFIL space with the Fatou property containing [S, X].
- (e) If X is order continuous, then  $L^1(\nu_x) = [S, X]$ .
- (f) If X has the Fatou property, then  $L^1_w(\nu_X) = [S, X]$ .

**Example 3.5** For  $1 , the space <math>X = L^p(\mathbb{R}^+)$  satisfies the hypothesis of Proposition 3.4. Since for  $1 the space <math>L^p$  is order continuous and has the Fatou property, we have

$$[S, L^p] = L^1(\nu_{L^p}) = L^1_w(\nu_{L^p}) .$$

For  $p = \infty$  we have

$$L^1(\nu_{\scriptscriptstyle L^\infty}) \hookrightarrow [S, L^\infty] = L^1_w(\nu_{\scriptscriptstyle L^\infty}) \; ,$$

since  $L^{\infty}$  has the Fatou property. Observe that  $L^{1}(\nu_{L^{\infty}}) \subsetneq [S, L^{\infty}]$ . For instance,  $\chi_{\mathbb{R}^{+}} \in [S, L^{\infty}] \setminus L^{1}(\nu_{L^{\infty}})$ . Indeed, if  $\chi_{\mathbb{R}^{+}} \in L^{1}(\nu_{L^{\infty}})$ , then by [5, Corollary 3.2.b)],  $\nu_{L^{\infty}}$  is strongly additive (i.e.,  $\nu_{L^{\infty}}(A_{n}) \to 0$  whenever  $(A_{n})$  is a disjoint sequence in  $\mathcal{R}$ ), but taking  $A_{n} = [2^{n}, 2^{n+1})$  we obtain  $\|\nu_{L^{\infty}}(A_{n})\|_{\infty} = 1/2$ , for all  $n \ge 1$  and this is a contradiction.

**Example 3.6** Let X be a Lorentz space  $\Lambda_{\varphi}$  with  $\varphi$  satisfying (4); that is, satisfying the hypothesis of Proposition 3.4. Since  $\Lambda_{\varphi}$  has the Fatou property, we have

$$L^1(\nu_{\Lambda_{\varphi}}) \hookrightarrow [S, \Lambda_{\varphi}] = L^1_w(\nu_{\Lambda_{\varphi}})$$
.

In the case when  $\varphi(0^+) = 0$  and  $\varphi(\infty) = \infty$  we have that  $\Lambda_{\varphi}$  is order continuous (see [8, Corollary 1 to Theorem II.5.1]) and so

$$L^{1}(\nu_{\Lambda_{\varphi}}) = [S, \Lambda_{\varphi}] = L^{1}_{w}(\nu_{\Lambda_{\varphi}}) .$$

## 4 Optimal domain for the Lorentz spaces $\Lambda_{\varphi}$

Let X be a *BFIL* space. Recall the definition of the space

$$\Gamma_X = \{ f : \mathbb{R}^+ \to \mathbb{R} \text{ measurable, } Sf^* \in X \}.$$

In general,  $\Gamma_X$  is not a closed subspace of [S, X]. For instance, if we take  $X = L^p$  for 1 , we have (see Proposition 2.2):

$$\mathcal{S}(\mathcal{R}) \subset \Gamma_{L^p} = L^p \subsetneq [S, L^p] = L^1(\nu_{L^p}),$$

where  $\mathcal{S}(\mathcal{R})$  is the space of  $\mathcal{R}$ -simple functions. Then,  $\Gamma_{L^p}$  is not closed in  $[S, L^p]$ , since  $\mathcal{S}(\mathcal{R})$  is dense in  $L^1(\nu_{L^p})$ .

**Example 4.1** Consider the Lorentz space  $\Lambda_{\varphi}$ . For any measurable function f, noting that  $Sf^*$  is decreasing, it follows

$$\begin{split} \int_{0}^{\infty} (Sf^{*})^{*}(t) \, d\varphi(t) &= \int_{0}^{\infty} Sf^{*}(t) \, d\varphi(t) \\ &= \varphi(0^{+})Sf^{*}(0^{+}) + \int_{0}^{\infty} Sf^{*}(t) \, \varphi'(t) \, dt \\ &= \varphi(0^{+}) \|Sf^{*}\|_{\infty} + \int_{0}^{\infty} \frac{\varphi'(t)}{t} \int_{0}^{t} f^{*}(s) \, ds \, dt \\ &= \varphi(0^{+}) \|f\|_{\infty} + \int_{0}^{\infty} f^{*}(s) \int_{s}^{\infty} \frac{\varphi'(t)}{t} \, dt \, ds \\ &= \varphi(0^{+}) \|f\|_{\infty} + \int_{0}^{\infty} f^{*}(s) \, \theta_{\varphi}(s) \, ds \, . \end{split}$$

Therefore,

 $\Gamma_{\Lambda_{\varphi}} = L^{\infty} \cap \Lambda_{\int_0^t \theta_{\varphi}(s) ds} \,.$ 

In the case when  $\varphi(0^+) = 0$ , we have  $\Gamma_{\Lambda_{\varphi}} = \Lambda_{\int_0^t \theta_{\varphi}(s)ds}$ . Moreover, in this case,  $\Gamma_{\Lambda_{\varphi}} = \Lambda_{\varphi}$  if and only if  $\int_0^t \theta_{\varphi}(s) ds$  and  $\varphi$  are equivalent (e.g.  $\varphi(t) = t^{1/p}$ , for 1 ), and this holds ifand only if there exists a constant <math>C > 0 such that

$$t \theta_{\varphi}(t) \le C \varphi(t), \quad \text{for all } t \in (0, \infty),$$
(5)

since

$$\begin{split} \int_0^t \theta_{\varphi}(s) \, ds &= \int_0^t \int_s^\infty \frac{\varphi'(y)}{y} \, dy \, ds = \int_0^\infty \frac{\varphi'(y)}{y} \int_{[0,t] \cap [0,y]} ds \, dy \\ &= \int_0^\infty \frac{\varphi'(y)}{y} \min\{t,y\} \, dy = \int_0^t \varphi'(y) \, dy + t \int_t^\infty \frac{\varphi'(y)}{y} \, dy \\ &= \varphi(t) + t \, \theta_{\varphi}(t) \; . \end{split}$$

Condition (5) is also equivalent to saying that  $\varphi' \in B_1$  (see [2]).

The function  $\varphi(t) = \min\{1, t\}$  (for which  $\Lambda_{\varphi} = L^1 + L^{\infty}$ ) does not satisfy condition (5), so  $\Gamma_{L^1+L^{\infty}} \subsetneq L^1 + L^{\infty}$ . (For more information about this kind of embeddings and the boundedness of the Hardy operator see [2].)

Now we will describe the space  $[S, \Lambda_{\varphi}]$  in the case when  $\varphi(0^+) = 0$ . Observe that

$$\int_0^\infty (S|f|)^*(t)\,\varphi'(t)\,dt \geq \int_0^\infty S|f|(t)\,\varphi'(t)\,dt = \int_0^\infty \frac{\varphi'(t)}{t}\int_0^t |f(s)|\,ds\,dt$$
$$= \int_0^\infty |f(s)|\int_s^\infty \frac{\varphi'(t)}{t}\,dt\,ds = \int_0^\infty |f(s)|\,\theta_\varphi(s)\,ds\,.$$

Then, we always have that

$$[S, \Lambda_{\varphi}] \hookrightarrow L^1(\theta_{\varphi}(t) \, dt), \tag{6}$$

where  $L^1(\theta_{\varphi}(t) dt)$  denotes the space of integrable functions with respect to the Lebesgue measure with density  $\theta_{\varphi}$ .

We will use the following result for an r.i. BFIL X, with the Fatou property. In this case, X' (the Köthe dual of X) is a norming subspace of  $X^*$ , that is

$$||f||_X = \sup_{g \in B_{X'}} |\langle g, f \rangle| = \sup_{g \in B_{X'}} \left| \int_0^\infty g(x) f(x) \, dx \right|,$$

[11, Proposition 1.b.18]. Note that if f is positive, the supremum above can be taken for positive functions in  $B_{X'}$ .

Lemma 4.2 Let X be an r.i. BFIL space, with the Fatou property. Suppose X satisfies

$$h_y \in X \ a.e. \ y > 0 \ , \ where \ h_y(x) := \frac{1}{x} \chi_{[y,\infty)}(x) \,.$$
 (7)

Then  $L^1(\phi_x(t) dt) \hookrightarrow [S, X]$ , for  $\phi_x(y) = \|h_y\|_X$ .

*Proof.* Note that, since X is and r.i., from Proposition 2.3-(d) we have that condition (7) is equivalent to  $\Gamma_X \neq \{0\}$ , and this happens if and only if  $(L^1 \cap L^\infty)(\mathbb{R}^+) \subset [S, X]$ , since  $\Gamma_X$  is the largest r.i. *BFIL* contained in [S, X]. In particular, any simple function f with finite support is in [S, X] and

$$\begin{split} \|f\|_{[S,X]} &= \|S|f|\|_{X} = \sup_{0 \le g \in B_{X'}} \int_{0}^{\infty} g(x) \, S|f|(x) \, dx \\ &= \sup_{0 \le g \in B_{X'}} \int_{0}^{\infty} \frac{g(x)}{x} \int_{0}^{x} |f(y)| \, dy \, dx \\ &= \sup_{0 \le g \in B_{X'}} \int_{0}^{\infty} |f(y)| \int_{y}^{\infty} \frac{g(x)}{x} \, dx \, dy \\ &\le \int_{0}^{\infty} |f(y)| \, \|h_{y}\|_{X} \, dy = \int_{0}^{\infty} |f(y)| \, \phi_{x}(y) \, dy \, . \end{split}$$

For  $f \in L^1(\phi_x(t) dt)$  we can take simple functions  $(f_n)$  with finite support, such that  $0 \leq f_n \uparrow |f|$ . Then

$$\sup_{n \ge 1} \|f_n\|_{[S,X]} \le \sup_{n \ge 1} \int_0^\infty |f_n(y)| \, \phi_X(y) \, dy = \int_0^\infty |f(y)| \, \phi_X(y) \, dy < \infty \, .$$

Thus,  $f \in [S, X]$  and  $||f||_{[S,X]} = \sup_{n \ge 1} ||f_n||_{[S,X]} \le \int_0^\infty |f(y)| \phi_X(y) dy$ . We have used that [S, X] has the Fatou property since X has this property.  $\Box$ 

**Remark 4.3** (a) If X is an r.i. *BFIL* space, with fundamental function satisfying (4), then we have that  $S(\mathcal{R}) \subset [S, X]$ . In particular,  $S\chi_A \in X$  for A = (a, b), with  $0 < a < b < \infty$ . Then, since  $S\chi_A(x) = (1 - \frac{a}{x})\chi_{(a,b)}(x) + (b - a)\frac{1}{x}\chi_{[b,\infty)}(x)$  and  $(1 - \frac{a}{x})\chi_{(a,b)}(x) \in (L^1 \cap L^\infty)(\mathbb{R}^+) \subset X$ , condition (7) holds for X.

(b) Let  $X = \Lambda_{\varphi}$ , with  $\varphi$  satisfying (4) and  $\varphi(0^+) = 0$ . From (a) we have that  $h_y \in \Lambda_{\varphi}$  and

$$\phi_{\Lambda_{\varphi}}(y) = \int_0^\infty h_y^*(s) \, \varphi'(s) \, ds = \int_0^\infty \frac{\varphi'(s)}{y+s} \, ds \, .$$

Actually, in this case, (4) and (7) are equivalent. Then, by Lemma 4.2,  $L^1(\phi_{\Lambda_{\varphi}}(t) dt) \hookrightarrow [S, \Lambda_{\varphi}]$ . Note that  $\phi_{\Lambda_{\varphi}}$  is equivalent to the function given by  $\theta_{\varphi}(t) + \frac{\varphi(t)}{t}$ . Indeed,

$$\phi_{\Lambda_{\varphi}}(t) = \int_{t}^{\infty} \frac{\varphi'(s)}{t+s} \, ds + \int_{0}^{t} \frac{\varphi'(s)}{t+s} \, ds$$

where

$$\frac{1}{2}\theta_{\varphi}(t) = \frac{1}{2}\int_{t}^{\infty}\frac{\varphi'(s)}{s}\,ds \le \int_{t}^{\infty}\frac{\varphi'(s)}{t+s}\,ds \le \int_{t}^{\infty}\frac{\varphi'(s)}{s}\,ds = \theta_{\varphi}(t)$$
$$\frac{1}{2}\frac{\varphi(t)}{t} = \frac{1}{2t}\int_{0}^{t}\varphi'(s)\,ds \le \int_{0}^{t}\frac{\varphi'(s)}{t+s}\,ds \le \frac{1}{t}\int_{0}^{t}\varphi'(s)\,ds = \frac{\varphi(t)}{t}.$$

So,  $\phi_{\Lambda_{\varphi}}(t) \leq \theta_{\varphi}(t) + \frac{\varphi(t)}{t} \leq 2\phi_{\Lambda_{\varphi}}(t).$ 

**Theorem 4.4** A Lorentz space  $\Lambda_{\varphi}$  with  $\varphi$  satisfying (4),  $\varphi(0^+) = 0$  and for which there exists a constant C > 0 such that

$$\frac{\varphi(t)}{t} \le C \,\theta_{\varphi}(t), \quad for \ all \quad t \in (0,\infty) \ , \tag{8}$$

satisfies

$$[S, \Lambda_{\varphi}] = L^1(\theta_{\varphi}(t) dt) = L^1(\phi_{\Lambda_{\varphi}}(t) dt).$$

Proof. Using (6) and Lemma 4.2, we have that  $L^1(\phi_{\Lambda_{\varphi}}(t) dt) \hookrightarrow [S, \Lambda_{\varphi}] \hookrightarrow L^1(\theta_{\varphi}(t) dt)$ . If (8) holds, then  $\theta_{\varphi}$  is equivalent to  $\theta_{\varphi}(t) + \varphi(t)/t$ , which is equivalent (by Remark 4.3-(b)) to  $\phi_{\Lambda_{\varphi}}$ . So,  $L^1(\theta_{\varphi}(t) dt) = L^1(\phi_{\Lambda_{\varphi}}(t) dt) = [S, \Lambda_{\varphi}]$ .

We consider now the special case of the Lorentz spaces  $L^{p,q}$ . We show that for q = 1, the domain coincides with an  $L^1$ -space with respect to an absolutely continuous measure, but this result does not hold if  $1 < q \leq \infty$ :

**Proposition 4.5** (a) For 1 ,

$$[S, L^{p,1}] = L^1(t^{-1/p'}dt).$$
(9)

(b) If  $1 and <math>1 \le q \le \infty$ , then  $L^1(t^{-1/p'}dt) \subset [S, L^{p,q}]$ .

(c) For every  $1 < q \leq \infty$ , there does not exist a nonnegative function  $v \in L^1_{loc}(\mathbb{R}^+)$  for which  $[S, L^{p,q}] = L^1(v(t) dt)$ .

*Proof.* To prove (a), we observe that the function  $\varphi(t) = t^{1/p}$  satisfies (8):

$$\theta_{\varphi}(t) = \frac{1}{p-1}t^{-(1-1/p)} = \frac{1}{p-1}\frac{\varphi(t)}{t}.$$

The result follows from Theorem 4.4, since  $\Lambda_{\varphi} = L^{p,1}$ 

(b) is a consequence of (a) and the fact that  $L^{p,1} \subset L^{p,q}$ .

Suppose now that  $[S, L^{p,q}] = L^1(v(t) dt)$ . Then, using a small modification of the result in [7, p. 316], it follows that, since  $L^1(v(t) dt) \subset [S, L^{p,q}]$ , there exists a constant C > 0 such that  $C \leq t^{1/p'}v(t)$ , and hence  $L^1(v(t) dt) \subset [S, L^{p,1}]$ . Therefore,  $[S, L^{p,q}] = [S, L^{p,1}]$ . But, taking a decreasing function  $f \in L^{p,q} \setminus L^{p,1}$ , we find that  $f \in L^{p,q} \subset [S, L^{p,q}]$ , and  $f \leq Sf \in L^{p,1}$ , which is a contradiction.

**Remark 4.6** Proposition 4.5 shows that  $L^1(t^{-1/p'}dt)$  is the largest  $L^1$ -space contained in  $[S, L^{p,\infty}]$ . If we consider the converse embedding  $[S, L^{p,\infty}] \subset L^1(v(t) dt)$ , then a necessary condition is that

$$\int_0^\infty \frac{v(t)}{t^{1/p}} \, dt < \infty. \tag{10}$$

On the other hand, if (10) holds, then any decreasing function in  $[S, L^{p,\infty}]$  belongs also to  $L^1(v(t) dt)$ .

#### References

- [1] C. Bennett and R. Sharpley, *Interpolation of Operators*, Academic Press, 1988.
- [2] M. J. Carro, J. A. Raposo, and J. Soria, *Recent Developments in the Theory of Lorentz Spaces and Weighted Inequalities*, To appear in Mem. Amer. Math. Soc.
- G. P. Curbera and W. J. Ricker, Optimal domains for kernel operators via interpolation, Math. Nach. 244 (2002), 47–63.
- [4] G. P. Curbera and W. J. Ricker, *Banach lattices with the Fatou property and optimal domains of kernel operators*, (preprint).

- [5] O. Delgado,  $L^1$ -spaces of vector measures defined on  $\delta$ -rings, Arch. Math. 84 (2005), 432–443.
- [6] O. Delgado, Optimal domains for kernel operators on  $[0, \infty) \times [0, \infty)$ , To appear in Studia Math.
- [7] L. V. Kantorovich and G. P. Akilov, Functional Analysis, Second Edition, Pergamon Press, Oxford, 1982.
- [8] S. G. Krein, Ju. I. Petunin, and E. M. Semenov, *Interpolation of Linear Operators*, Translations of Mathematical Monographs, 54, American Mathematical Society, Providence, R.I., 1982.
- [9] A. Kufner and L. E. Persson, *Weighted Inequalities of Hardy Type*, World Scientific Publishing Co, Singapore/New York/London/Hong Kong, 2003.
- [10] D. R. Lewis, On integrability and summability in vector spaces, Illinois J. Math. 16 (1972), 294–307.
- [11] J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces vol. II*, Springer-Verlag, Berlin, 1979.
- [12] P. R. Masani and H. Niemi, The integration theory of Banach space valued measures and the Tonelli–Fubini theorems. I. Scalar–valued measures on δ–rings, Adv. Math. 73 (1989), 204–241.
- [13] P. R. Masani and H. Niemi, The integration theory of Banach space valued measures and the Tonelli–Fubini theorems. II. Pettis integration, Adv. Math. 75 (1989), 121–167.

Olvido Delgado Dept. of Mathematics University of Sevilla E-41080 Sevilla, SPAIN *E-mail:* olvido@us.es Javier Soria

Dept. Appl. Math. and Analysis University of Barcelona E-08007 Barcelona, SPAIN *E-mail:* soria@ub.edu