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Abstract

Some results concerning a stochastic 2D Navier-Stokes system when the external forces contain hered-
itary characteristics are established. The existence and uniqueness of solutions in the case of unbounded
(infinite) delay are first proved by using the classical technique of Galerkin approximations. The local sta-
bility analysis of constant solutions (equilibria) is also carried out by exploiting two approaches. Namely,
the Lyapunov function method and by constructing appropriate Lyapunov functionals. The asymptotic sta-
bility and hence, the uniqueness of equilibrium solution are obtained by constructing Lyapunov functionals.
Moreover, some sufficient conditions ensuring the polynomial stability of the equilibrium solution in a par-
ticular case of unbounded variable delay will be provided. Exponential stability for other special cases of
infinite delay remains as an open problem.
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1. Introduction

In this paper we will analyze the following stochastic 2D-Navier-Stokes equation with infinite delay

du
dt
− ν∆u + (u · ∇)u + ∇p = f (t) + g1(t, ut) + g2(t, ut)

dW(t)
dt

, in (τ,T ) × O, (1.1)

div u ≡ 0, in (τ,T ) × O, (1.2)

u = 0, on (τ,T ) × ∂O, (1.3)

u(τ + θ, x) = φ(θ, x), θ ∈ (−∞, 0], x ∈ O, (1.4)

where O ⊂ R2 is a bounded open set with regular boundary ∂O, ν > 0 is the kinematic viscosity, u is the
velocity field of the fluid, p is the pressure, φ is the initial datum, f is a nondelayed external force field,
and g1, g2 are external forces containing some hereditary characteristics (memory, unbounded variable or
distributed delay, etc), and W(t) is a Wiener process on a suitable probability space to be described below.

As it is well known, Navier-Stokes equations (and its variants) are considered suitable models to de-
scribe the motion of many important fluids, like water, oil, air, etc, and its long-time behavior is considered
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as an interesting and important problem in the theory of fluid dynamics, and has been receiving much atten-
tion over the last decades (see [2, 3, 4, 18, 19, 36] and references therein).

Due to the importance of considering some delay terms in the models (for instance, in control prob-
lems, or when some memory is present in the real phenomenon), Caraballo and his collaborators have been
investigating on delay versions of Navier-Stokes systems and its variants in the case of bounded delay. For
instance, in the papers [5, 6, 7, 8, 10, 11, 14, 15] it has been developed an extensive theory for Navier-Stokes
equations (and some variants) with bounded delay, considering the phase space CH of continuous functions
in a bounded interval with values in the Hilbert space H. In the case of unbounded or infinite delay, Marı́n-
Rubio and his collaborators investigated their asymptotic behavior in the papers [20, 21, 29, 30, 31], by
considering the phase space Cγ(H) defined as

Cγ(H) =
{
φ ∈ C((−∞, 0]; H) : lim

θ→−∞
eγθφ(θ) exists in H

}
(γ > 0).

We would like to mention [22, 23, 24] as general references for the existence of solutions to finite dimen-
sional systems with infinite delay.

However, it is sensible to admit that the real phenomenon can be better described if some stochasticity
or randomness are included in the equations, since uncertainty and noise are present almost everywhere in
the real world. Therefore, it is very interesting to investigate about stochastic and delay versions of the
Navier-Stokes equations. It is worth mentioning that, as far as we know, the literature on this topic is not
very extensive. For instance, in [17, 37] the authors established some sufficient conditions for the expo-
nential stability to stochastic Navier-Stokes equations with bounded variable delay, assuming the existence
of solutions, and Taniguchi proved, in [35], the existence and asymptotic behavior of energy solutions to
Navier-Stokes equations driven by Levy processes and external forcing terms with finite delay.

Up to date, we do not know any published work on stochastic Navier-Stokes equations with infinite
delay, neither with distributed delay nor with unbounded variable delay. It is also worth mentioning that
many authors used the phase space Cγ(H) when dealt with differential equations with infinite delay in the
deterministic framework, and proved exponential stability and convergence. Nevertheless, the methods that
are used to prove exponential stability and the sufficient conditions stated in the literature only work for
differential equations with distributed delay, and cannot be applied to the case of unbounded variable delay
case, such as for example, the stochastic pantograph equation. Fortunately, Liu et al. [28] solved this
problem, in the deterministic framework, by choosing

BCL−∞(H) =
{
φ ∈ C((−∞, 0]; H) : lim

θ→−∞
φ(θ) exists in H

}
,

as the phase space, although only stability was established, but not asymptotic stability in general. However,
in some special unbounded variable delay cases, it was proved the polynomial stability of steady-state
solutions. Motivated by these previous results from the deterministic field, we will analyze a stochastic 2D-
Navier-Stokes model with infinite delay. More precisely, we will first prove the existence and uniqueness of
solution to Eq. (1.1), then focus on the stability analysis with unbounded variable delay, and will establish
some stability results. The asymptotic stability with polynomial decay will be proved in some particular and
special situation, for instance, in the case of proportional delay.

The stability results of stochastic Navier-Stokes equation with unbounded variable delay are new. Be-
sides, enlightened by [13], which studied the exponential behavior and stability of stochastic Navier-Stokes
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equations, in the present work, we will weaken the conditions on the nonlinear stochastic term g2(t, ut), but
still ensuring the local stability.

The contents of the paper are as follows. In Section 2, we recall some notations, abstract spaces and
operators which will be used along this paper. We will also establish the assumptions to be imposed on the
delay terms and introduce some auxiliary lemmas. The existence and uniqueness of solutions to Eq. (1.1)
will be carried out in Section 3. The main technique to prove the existence of solutions will be the classical
Galerkin approximation. However, to establish the uniqueness of solution the already known technique
and the Gronwall Lemma are not enough in the stochastic case because we cannot bound the trilinear term
directly as it is usually done in the deterministic case. Therefore, new nontrivial technical lemmas are
proved in order to overcome this difficulty. Two methods to analyze the asymptotic behavior of solutions to
the problem are exploited in Section 4. Finally, some comments are included in Section 5.

2. Preliminaries

Although the notation and results included in this section may seem somehow repetitive, since they can
be found in several already published references, we prefer to recall them for the sake of completeness and
to make easier the reading of the paper.

Let us first consider the following usual abstract spaces:

V =
{
u ∈ (C∞0 (O))2 : div u = 0

}
,

H = the closure ofV in (L2(O))2 with norm | · |, and inner product (·, ·), where for u, v ∈ (L2(O))2,

(u, v) =

2∑
j=1

∫
O

u j(x)v j(x)dx,

V = the closure ofV in (H1
0(O))2 with norm ‖ · ‖, and inner product ((·, ·)), where for u, v ∈ (H1

0(O))2,

((u, v)) =

2∑
i, j=1

∫
O

∂u j

∂xi

∂v j

∂xi
dx.

It follows that V ⊂ H ≡ H′ ⊂ V ′, where the injections are dense and compact. We will use ‖ · ‖∗ for the norm
in V ′, and 〈·, ·〉 for the duality pairing between V and V ′. Now we define A : V → V ′ by 〈Au, v〉 = ((u, v)),
and the trilinear form b on V × V × V by

b(u, v,w) =

2∑
i, j=1

∫
O

ui
∂v j

∂xi
w jdx, ∀ u, v,w ∈ V.

Note that the trilinear form b satisfies the following inequalities which will be used later in proofs (see
[31, p. 2015])

|b(u, v, u)| ≤ |u|24‖v‖ ≤ 2−1/2|u|‖u‖‖v‖, ∀ u, v ∈ V. (2.1)

Let (Ω,F, P) be a probability space on which an increasing and right continuous family {Ft}t∈[0,∞)

of complete sub-σ−algebra of F is defined. Let βn(t)(n = 1, 2, 3, · · · ) be a sequence of real valued one-
dimensional standard Brownian motions mutually independent on (Ω,F, P). Set

W(t) =

∞∑
n=1

√
λ′nβn(t)en, t ≥ 0,
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where λ′n (n = 1, 2, 3, · · · ) are nonnegative real numbers such that
∞∑

n=1
λ′n < +∞, and {en} (n = 1, 2, 3, · · · ) is

a complete orthonormal basis in the real and separable Hilbert space K. Let Q ∈ L(K,K) be the operator
defined by Qen = λ′nen. The above K−valued stochastic process W(t) is called a Q−Wiener process. Given
real numbers a < b, and a separable Hilbert spaceH , we will denote by I2(a, b;H) the space of all processes
X ∈ L2(Ω × (a, b),F ⊗ B((a, b)), dP ⊗ dt;H) (where B((a, b)) denotes the Borel σ−algebra on (a, b)) such
that X(t) is Ft−measurable a.e. t ∈ (a, b). The space I2(a, b;H) is a closed subspace of L2(Ω × (a, b),F ⊗
B((a, b)), dP ⊗ dt;H).

We will denote by C(a, b;H) the Banach space of all continuous functions from [a, b] intoH equipped
with sup norm. We will write L2(Ω; C(a, b;H)) instead of L2(Ω,F, dP; C(a, b;H)).

Let us also consider a real number T > 0. If we consider a function x ∈ C(−∞,T ;H), for each t ∈ [0,T ]
we will denote xt ∈ C(−∞, 0;H) the function defined by xt(θ) = x(t + θ), ∀θ ∈ (−∞, 0]. Moreover, if y ∈
L2(−∞,T ;H), we will also denote yt ∈ L2(−∞, 0;H), for a.e. t ∈ (0,T ), by yt(θ) = y(t + θ) a.e. θ ∈ (−∞, 0].

Let us consider now the phase space

BCL−∞(H) =

{
φ ∈ C((−∞, 0]; H) : lim

θ→−∞
φ(θ) exists in H

}
,

which is a Banach space with the norm

‖φ‖BCL−∞(H) = sup
θ∈(−∞,0]

|φ(θ)|.

We now enumerate the assumptions on the delay terms g1, g2. For gi : [τ,T ]× BCL−∞(H)→ (L2(O))2,
i = 1, 2, we may assume:

(g1) For any ξ ∈ BCL−∞(H), the mappings [τ,T ] 3 t 7→ gi(t, ξ) ∈ (L2(O))2 are measurable.

(g2) gi(·, 0) = 0.

(g3) For i = 1, 2, there exist Lgi > 0 such that, for any t ∈ [τ,T ] and all ξ, η ∈ BCL−∞(H),

|gi(t, ξ) − gi(t, η)| ≤ Lgi‖ξ − η‖BCL−∞(H).

Remark 2.1. (i) As pointed out in [31], condition (g2) is not a restriction. Indeed, if |gi(·, 0)| ∈ L2(τ,T ),
we could redefine f̂i(t) = fi(t) + gi(t, 0) and ĝi(t, ·) = gi(t, ·) − gi(t, 0). In this way the problem is exactly the
same, f̂ and ĝ satisfy the required assumptions.
(ii) Conditions (g2) and (g3) imply that

|gi(t, ξ)| ≤ Lgi‖ξ‖BCL−∞(H), i = 1, 2,

whence |gi(t, ξ)| ∈ L∞(τ,T ).

Here, we exhibit two examples of delay forcing terms which satisfy (g1) − (g3). Later on, to illustrate
the different methods for the stability analysis, we focus on the unbounded variable delay case. Readers are
referred to [28] for detailed proofs ensuring that these two examples satisfy (g1) − (g3).
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Example 1. A forcing term with unbounded variable delay
Let G : [τ,T ] × R2 → R2 be a measurable function satisfying G(t, 0) = 0 for all t ∈ [τ,T ], and assume that
there exists M > 0 such that

|G(t, u) −G(t, v)|R2 ≤ M|u − v|R2 , ∀u, v ∈ R2.

Consider a function ρ(·) : [0,+∞)→ [0,+∞), which is going to play the role of the variable delay. Assume
that ρ(·) is measurable and define g(t, ξ)(x) = G(t, ξ(−ρ(t))(x)) for each ξ ∈ BCL−∞(H), x ∈ O and t ∈ [τ,T ].
Notice that, in this case, the delayed term g in our problem becomes

g(t, ξ) = G(t, ξ(−ρ(t))).

Examples 2. A forcing term with infinite distributed delay
Let G : [τ,T ]×R−×R2 → R2 be measurable function satisfying G(t, s, 0) = 0 for all (t, s) ∈ [τ,T ]× (−∞, 0],
and there exists a function α(s) ∈ L1(−∞, 0) such that

|G(t, s, u) −G(t, s, v)|R2 ≤ α(s)|u − v|R2 , ∀u, v ∈ R2, ∀(t, s) ∈ [τ,T ] × (−∞, 0].

Define g(t, ξ)(x) =
∫ 0
−∞

G(t, s, ξ(s)(x))ds for each ξ ∈ BCL−∞(H), t ∈ [τ,T ], and x ∈ O. Then the delayed
term g in our problem becomes

g(t, ξ) =

∫ 0

−∞

G(t, s, ξ(s))ds.

Next we state the definition of weak solution for problem (1.1).

Definition 2.2. Let φ ∈ I2(−∞, 0; V) ∩ L2(Ω; BCL−∞(H)) be an initial process where Ft = F0 for t ≤ 0. A
stochastic process u(t), t ∈ (−∞,T ], is said to be a weak solution of Eq.(1.1), if

(1a) u(t) is Ft-adapted, for t ≤ T,

(1b) u(·) ∈ I2(−∞,T ; V) ∩ L2(Ω; C(−∞,T ; H)),

(1c) The following equation holds as an identity in V ′, a.s.

u(t) = φ(0) − ν
∫ t

0
Au(s)ds −

∫ t

0
B(u(s))ds +

∫ t

0
( f (s) + g1(s, us)) ds +

∫ t

0
g2(s, us)dW(s), t ∈ [0,T ].

(1d) u(t) = φ(t), t ∈ (−∞, 0], a.s.

The following lemma (see Sritharan and Sundar [34]) will play a crucial role in the proof of uniqueness
of solution.

Lemma 2.3. There exists λ > 0 such that for any u, v ∈ V,

−2(B(u) − B(v), u − v) − ν(A(u − v), u − v) ≤ λ|v|44|u − v|2.

Finally, λ1 will denote the number defined by

λ1 = inf
v∈V\{0}

‖v‖2

|v|2
> 0.
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3. Existence and uniqueness of solutions

In this section we establish existence and uniqueness of weak solutions for Eq. (1.1). We begin with
the uniqueness.

Lemma 3.1. Let φ ∈ I2(−∞, 0; V) ∩ L2(Ω; BCL−∞(H)) be an initial function with E[ sup
−∞<s≤0

|φ(s)|4] < ∞. If

(g1) − (g3) are fulfilled, then there exists at most one weak solution to (1.1).

Proof. Let u(t) and v(t) be two solutions to (1.1) with the same initial value u(s) = v(s) = φ(s), s ≤ 0. Let
N > 1 be any fixed integer and

τN := inf
{

t ≤ T :
∫ t

0
|v(s)|44ds ≥ N

}
.

Without loss of generality we may assume that E
∫ T

0 |v(s)|44ds < ∞. Actually, this is a direct consequence of
Lemma 3.4. Set

r(t) := exp
(
−λ

∫ t

0
|v(s)|44ds

)
,

where λ > 0 is the one in Lemma 2.3. Hence,

r(t ∧ τN) ≥ exp(−λN).

Applying Itô’s formula to the function r(t)|u(t) − v(t)|2, we have that

r(t)|u(t) − v(t)|2 = −λ

∫ t

0
r(s)|v(s)|44|u(s) − v(s)|2ds

+ 2
∫ t

0
r(s) (u(s) − v(s),−νA(u(s) − v(s)) − B(u(s)) + B(v(s))) ds

+ 2
∫ t

0
r(s) (u(s) − v(s), g1(s, us) − g1(s, vs)) ds

+ 2
∫ t

0
r(s) (u(s) − v(s), g2(s, us) − g2(s, vs)) dW(s)

+

∫ t

0
r(s)|g2(s, us) − g2(s, vs)|2ds.

Thanks to Lemma 2.3, taking the supremum (w.r.t. t) and then taking expectation.

E
 sup
0≤l≤t∧τN

r(l)|u(l) − v(l)|2
 + νE

∫ t∧τN

0
r(s)‖u(s) − v(s)‖2ds

≤ 2E
 sup
0≤l≤t∧τN

|

∫ l

0
r(s)(u(s) − v(s), g1(s, us) − g1(s, vs))ds|


+ 2E

 sup
0≤l≤t∧τN

|

∫ l

0
r(s)(u(s) − v(s), g2(s, us) − g2(s, vs))dW(s)|


+ E

 sup
0≤l≤t∧τN

∫ l

0
r(s)|g2(s, us) − g2(s, vs)|2ds

 .
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The first term on the right-hand side of the above inequality can be bounded by

2E
 sup
0≤l≤t∧τN

|

∫ l

0
r(s)(u(s) − v(s), g1(s, us) − g1(s, vs))ds|


≤

1
4

E
 sup
0≤l≤t∧τN

r(l)|u(l) − v(l)|2
 + 4L2

g1

∫ t

0
Er(s ∧ τN)|u(s ∧ τN) − v(s ∧ τN)|2ds.

On the other hand, Burkholder-Davis-Gundy’s inequality yields

2E
 sup
0≤l≤t∧τN

|

∫ l

0
r(s)(u(s) − v(s), g2(s, us) − g2(s, vs))dW(s)|


≤ 8E

 sup
0≤l≤t∧τN

r1/2(l)|u(l) − v(l)| · [
∫ t

0
r(s)|g2(s, us) − g2(s, vs)|2L0

2
ds]1/2


≤

1
4

E[ sup
0≤l≤t∧τN

r(l)|u(l) − v(l)|2] + 64L2
g2

∫ t

0
Er(s ∧ τN)|u(s ∧ τN) − v(s ∧ τN)|2ds.

And

E
 sup
0≤l≤t∧τN

∫ l

0
r(s)|g2(s, us) − g2(s, vs)|2ds

 ≤ L2
g2

∫ t

0
Er(s ∧ τN)|u(s ∧ τN) − v(s ∧ τN)|2ds.

From the previous inequalities we have

E[ sup
0≤s≤t

|u(s ∧ τN) − v(s ∧ τN)|2] + 2νE
∫ t

0
r(s ∧ τN)‖u(s ∧ τN) − v(s ∧ τN)‖2ds

≤ (8L2
g1

+ 130L2
g2

)eλN
∫ t

0
E sup

0≤τ≤s
|u(τ ∧ τN) − v(τ ∧ τN)|2ds.

By the Gronwall Lemma,

E[ sup
0≤s≤t

|u(s ∧ τN) − v(s ∧ τN)|2] = 0.

Thus, for any fixed N > 1,

u(t ∧ τN) = v(t ∧ τN), a.e., ω ∈ Ω.

By Markov’s inequality,

P(τN < T ) = P
(∫ t

0
|v(s)|44ds ≥ N

)
≤

E
∫ t

0 |v(s)|44ds

N
,

since E
∫ t

0 |v(s)|44ds < ∞, we obtain that τN → T as N → ∞. Consequently, u(t) = v(t), a.e., ω ∈ Ω, for all
t ≤ T . The proof is completed.

Remark 3.2. In the previous proof, we used Markov’s inequality, and that is why we need the fourth moment
of solutions be finite, see [32] for more details about Markov’s inequality.

�
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Let 0 < T ≤ ∞ and thus T = ∞ means [0,T ] = [0,∞). Let {w j}
∞
j=1 ⊂ D(A) be a complete orthonormal

basis in (L2(O))2. Now we use the Galerkin approximation method to prove the existence of weak solutions
to Eq. (1.1). Set

un(t) =

n∑
j=1

αn j(t)w j,

where αn j(t) are determined by the following ordinary differential stochastic systems:

(un(t),w j) = (u0n,w j) +

∫ t

0
(−νAun(s) + PnB(un(s)) + Pn f (s),w j)ds

+

∫ t

0
(Png1(s, uns),w j)ds +

∫ t

0
(Png2(s, uns)dW(s),w j), j = 1, 2, · · · , n,

with an initial value un(t) = Pnφ(t), t ∈ (−∞, 0], where u0n = un(0) = Pnφ(0) =
n∑

j=1
(u0,w j)w j, and u0 = φ(0).

Consider the next stochastic equation

un(t) = u0n +

∫ t

0
(−νAun(s) + B(un(s)) + Pn f (s))ds +

∫ t

0
Png1(s, uns)ds +

∫ t

0
Png2(s, uns)dW(s).

un(t) = Pnφ(t), t ∈ (−∞, 0],

where u0n = un(0) = Pnφ(0).

Lemma 3.3. Let φ ∈ I2(−∞, 0; V) ∩ L2(Ω; BCL−∞(H)) be an initial function with E[ sup
−∞<s≤0

|φ(s)|4] < ∞,

with u0 = φ(0). Assume that (g1) − (g3) are satisfied. Then, if f ∈ I2(0,T ; H), there exists a constant c0 > 0
such that

E[ sup
0≤s≤t

|un(s)|2] +

∫ t

0
E‖un(s)‖2ds ≤ c0, uniformly in n ≥ 1.

Proof. By Itô’s formula for |un(t)|2,

|un(t)|2 = |Pnu0|
2 + 2

∫ t

0
(−νAun(s) − B(un(s)), un(s))ds + 2

∫ t

0
( f (s) + g1(s, uns), un(s))ds

+ 2
∫ t

0
(g2(s, uns), un(s))dW(s) +

∫ t

0
|g2(s, uns)|2ds.

(3.1)

Note that (un(t),−B(un(t))) = 0. Taking supremum w.r.t t in (3.1) and expectation, we obtain

E[ sup
0≤s≤t

|un(s)|2] + 2ν
∫ t

0
E‖un(s)‖2ds

≤ E|u0|
2 + 2E[ sup

0≤τ≤t

∫ τ

0
|un(s)|| f (s)|ds] + 2E[ sup

0≤τ≤t

∫ τ

0
|un(s)||g1(s, uns)|ds]

+ 2E[ sup
0≤τ≤t

|

∫ τ

0
(un(s), g2(s, uns))dW(s)|] + E[ sup

0≤τ≤t

∫ τ

0
|g2(s, uns)|2ds]

= E|u0|
2 + J1 + J2 + J3 + J4.

J1 = 2E[ sup
0≤τ≤t

∫ τ

0
|un(s)|| f (s)|ds] ≤

∫ t

0
E[ sup

0≤τ≤s
|un(τ)|2]ds + E

∫ t

0
| f (s)|2ds.
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J2 = 2E[ sup
0≤τ≤t

∫ τ

0
|un(s)||g1(s, uns)|ds] ≤

1
4

E[ sup
0≤s≤t

|un(s)|2]

+ 4L2
g1

∫ t

0
E[ sup

0≤τ≤s
|un(τ)|2]ds + 4L2

g1
E[ sup
−∞<s≤0

|φ(s)|4].

By Burkholder-Davis-Gundy’s inequality,

J3 = 2E[ sup
0≤τ≤t

|

∫ τ

0
(un(s), g2(s, uns))dW(s)|]

≤ 8E[(
∫ t

0
|un(s)|2|g2(s, uns)|2ds)1/2]

≤
1
4

E[ sup
0≤s≤t

|un(s)|2] + 64L2
g2

∫ t

0
E[ sup

0≤τ≤s
|un(τ)|2]ds + 64L2

g2
E[ sup
−∞<s≤0

|φ(s)|4].

J4 = E[ sup
0≤τ≤t

|

∫ τ

0
|g2(s, uns)|2ds] ≤ L2

g2

∫ t

0
E[ sup

0≤τ≤s
|un(τ)|2]ds + L2

g2
E[ sup
−∞<s≤0

|φ(s)|4].

1
2

E[ sup
0≤s≤t

|un(s)|2] + 2ν
∫ t

0
E‖un(s)‖2ds

≤ E|u0|
2 + E

∫ t

0
| f (s)|2ds + (4L2

g1
+ 65L2

g2
)E[ sup
−∞<s≤0

|φ(s)|4] + (1 + 4L2
g1

+ 65L2
g2

)
∫ t

0
E[ sup

0≤τ≤s
|un(τ)|2]ds.

Then the conclusion follows directly from the Gronwall Lemma.
�

Lemma 3.4. Let φ ∈ I2(−∞, 0; V) ∩ L2(Ω; BCL−∞(H)) be an initial function with E[ sup
−∞<s≤0

|φ(s)|4] < ∞,

and u0 = φ(0). Assume that (g1) − (g3) are satisfied. If f ∈ I4(0,T ; H), then there exists δ > 0, which is
independent of n and will be specified later, such that E

∫ t
0 |un(s)|44ds < δ.

Proof. Applying the Itô formula to |un(t)|4,

|un(t)|4 = |Pnu0|
4 + 4

∫ t

0
|un(s)|2(un(s),−νAun(s) − B(un(s)))ds + 4

∫ t

0
|un(s)|2( f (s) + g1(s, uns), un(s))ds

+ 4
∫ t

0
|un(s)|2(un(s), g2(s, uns))dW(s) + 6

∫ t

0
|un(s)|2|g2(s, uns)|2L0

2
ds.

Taking supremum and expectation,

E
[

sup
0≤τ≤t

|un(τ)|4
]

+ 4νE
[∫ t

0
|un(s)|2‖un(s)‖2ds

]
≤ E|u0|

4 + 2E
[

sup
0≤τ≤t

∫ τ

0
|un(s)|2(| f |2 + |un(s)|2)ds

]
+ 2E

[
sup

0≤τ≤t

∫ τ

0
|un(s)|2(L2

g1
|uns|

2 + |un(s)|2)ds
]

+ 4E
[

sup
0≤τ≤t

∫ τ

0
|un(s)|2(un(s), g2(s, uns))dW(s)

]
+ 6L2

g2
E

[
sup

0≤τ≤t

∫ τ

0
|un(s)|2|uns|

2ds
]

= E|u0|
4 + I1 + I2 + I3 + I4.

Now we estimate Ii, i = 1, 2, 3, 4, one by one.

I1 = 2E
[

sup
0≤τ≤t

∫ τ

0
|un(s)|2(| f |2 + |un(s)|2)ds

]
≤ 3

∫ t

0
E[ sup

0≤τ≤s
|un(τ)|4]ds + E

∫ t

0
| f (s)|4ds.
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I2 = 2E
[

sup
0≤τ≤t

∫ τ

0
|un(s)|2(L2

g1
|uns|

2 + |un(s)|2)ds
]
≤ 2(1 + L2

g1
)
∫ t

0
E[ sup

0≤τ≤s
|un(τ)|4]ds + L2

g1
E[ sup
−∞<s≤0

|φ(s)|4].

Using Burkholder-Davis-Gundy’s inequality,

I3 ≤
1
2

E[ sup
0≤τ≤t

|un(τ)|4] + 256L2
g2

∫ t

0
E[ sup

0≤τ≤s
|un(τ)|4]ds + 256L2

g2
E[ sup
−∞<s≤0

|φ(s)|4].

I4 ≤ 6L2
g2

∫ t

0
E[ sup

0≤τ≤s
|un(τ)|4]ds + 6L2

g2
E[ sup
−∞<s≤0

|φ(s)|4].

Consequently,

1
2

E
[

sup
0≤τ≤t

|un(τ)|4
]

+ 4νE
[∫ t

0
|un(s)|2‖u(s)‖2ds

]
≤ c f + cg

∫ t

0
E[ sup

0≤τ≤s
|un(τ)|4]ds.

By the Gronwall Lemma, there exists a C0 > 0 such that

E
[

sup
0≤τ≤t

|un(τ)|4
]

+ 8νE
[∫ t

0
|un(s)|2‖u(s)‖2ds

]
≤ C0.

From inequality (2.1), we obtain that

|un(s)|4 ≤ 2−
1
4 |un(s)|1/2‖un(s)‖1/2.

Thus, there exists a constant δ =
C0
16ν such that

E
∫ t

0
|un(s)|44ds ≤

1
2

E
∫ t

0
|un(s)|2‖un(s)‖2ds < δ.

The proof is completed. �

Under more suitable assumption, we can prove the existence and uniqueness of solutions of our prob-
lem. There is a positive constant λ (the same as the one in Lemma 2.3) such that for all u, v ∈ L2(−∞,T ; V)
and for all t ∈ [0,T ], it holds∫ t

0
|g2(s, us) − g2(s, vs)|2ds − ν

∫ t

0
‖u(s) − v(s)‖2ds

≤ λ

∫ t

0
|v(s)|44|u(s) − v(s)|2ds + 2

∫ t

0
(B(u) − B(v), u(s) − v(s))ds

+ ν

∫ t

0
(Au(s) − Av(s), u(s) − v(s))ds − 2

∫ t

0
(g1(s, us) − g1(s, vs), u(s) − v(s))ds.

(3.2)

We have the next theorem:

Theorem 3.5. Let φ ∈ I2(−∞, 0; V)∩ L2(Ω; BCL−∞(H)) be an initial function such that E[ sup
−∞<s≤0

|φ(s)|4] <

∞, and u0 = φ(0). Assume that E
∫ t

0 | f (s)|4ds < ∞ and that (g1) − (g3) and (3.2) are fulfilled. Then, there
exists a unique solution u to the problem

u(t) = φ(0) − ν
∫ t

0
Au(s)ds −

∫ t

0
B(u(s))ds +

∫ t

0
( f (s) + g1(s, us)) ds +

∫ t

0
g2(s, us)dW(s),

u(t) = φ(t), t ∈ (−∞, 0],
(3.3)

where the equation holds as an identity in V ′ almost surely for every t ∈ [0,T ].
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Proof. By lemmas 3.3 and 3.4, there exists a subsequence un(t) (relabeled the same) which converges weakly
to u(t) ∈ L2(Ω; L∞(0,T ; H)) ∩ L2(Ω × [0,T ]; V) ∩ L4(Ω × [0,T ]; (L4(O))2). Moreover,

−νAun − B(un) ⇀ χ weakly in L2(Ω × [0,T ]; V ′),

g1(t, unt) ⇀ ζ weakly in L2(Ω × [0,T ]; H),

g2(t, unt) ⇀ σ weakly in L2(Ω × [0,T ]; H).

We use the absolutely continuous function ϕk on [0,T ] with ϕ′k ∈ L2(0,T ) and ϕk(T ) = 0 defined as follows

ϕk(s) =


1 0 ≤ s ≤ t − 1

2k ,

1
2 + k(t − s) t − 1

2k < s ≤ t + 1
2k ,

0 t + 1
2k < s ≤ T.

Applying Itô’s formula to (un(s), ξ)ϕk(s), ξ ∈ (H1
0(O))2, we deduce

0 = (un0, ξ)ϕk(0) − k
∫ t+ 1

2k

t− 1
2k

(un(s), ξ)ds +

∫ T

0
(−νAun(s) − B(un(s)), ξ)ϕk(s)ds

+

∫ T

0
(g1(s, uns), ξ)ϕk(s)ds +

∫ T

0
(g2(s, uns), ξ)ϕk(s)dW(s) +

∫ T

0
( f (s), ξ)ϕk(s)ds.

Let k → ∞ in the previous inequality, then

(un(t), ξ) = (un0, ξ) +

∫ T

0
(−νAun(s) − B(un(s)), ξ)ds

+

∫ T

0
(g1(s, uns), ξ)ds +

∫ T

0
(g2(s, uns), ξ)dW(s) +

∫ T

0
( f (s), ξ)ds.

Taking limits when n→ ∞,

u(t) = u0 +

∫ T

0
(χ(s) + f (s) + ζ)ds +

∫ T

0
σdW(s).

Define ρ(t) =
∫ t

0 |z(s)|44ds, z ∈ L4(Ω × [0,T ]; (L4(O))2) and z(s) = φ(s), s ≤ 0. Using the Itô formula with
exp(−λρ(t))|u(t)|2 and exp(−λρ(t))|un(t)|2, respectively,

Ee−λρ(t)|u(t)|2 = E|u0|
2 − E

∫ t

0
λe−λρ(s)|z(s)|44|u(s)|2ds + 2E

∫ t

0
e−λρ(s)(χ(s) + f (s) + ζ, u(s))ds

+ E
∫ t

0
e−λρ(s)|σ|2ds,

and

Ee−λρ(t)|un(t)|2 = E|un0|
2 − E

∫ t

0
λe−λρ(s)|z(s)|44|un(s)|2ds + 2E

∫ t

0
e−λρ(s)(−νAun(s) − B(un(s)) + f (s), un(s))ds

+ 2E
∫ t

0
e−λρ(s)(g1(s, uns), un(s))ds + E

∫ t

0
e−λρ(s)|g2(s, uns)|2ds.
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Define αn, βn and γn as follows

αn = −E
∫ t

0
λe−λρ(s)|z(s)|44|un(s) − z(s)|2ds + 2E

∫ t

0
e−λρ(s)(−νAun(s) − B(un(s)), un(s) − z(s))ds

− 2E
∫ t

0
e−λρ(s)(−νAz − B(z), un(s) − z(s))ds + 2E

∫ t

0
e−λρ(s)(g1(s, uns) − g1(s, zs), un(s) − z(s))ds

+ E
∫ t

0
e−λρ(s)|g2(s, uns) − g2(s, zs)|2ds.

βn = −E
∫ t

0
λe−λρ(s)|z(s)|44|un(s)|2ds + 2E

∫ t

0
e−λρ(s)(−νAun(s) − B(un(s)), un(s))ds

+ 2E
∫ t

0
e−λρ(s)(g1(s, uns), un(s))ds + E

∫ t

0
e−λρ(s)|g2(s, uns)|2ds.

γn = −E
∫ t

0
λe−λρ(s)|z(s)|44(|z(s)|2 − 2(un(s), z(s)))ds

+ 2E
∫ t

0
e−λρ(s)(−νAun(s) − B(un(s)),−z(s))ds − 2E

∫ t

0
e−λρ(s)(−νAz − B(z(s)) + g1(s, zs), un(s) − z(s))ds

+ 2E
∫ t

0
e−λρ(s)(g1(s, uns),−z(s))ds + E

∫ t

0
e−λρ(s)(g2(s, zs) − 2g2(s, uns), g2(s, zs))ds.

Obviously,
αn = βn + γn.

By Lemma 2.3 and (3.2), we have αn ≤ 0.

0 ≥ lim inf
n→∞

αn

≥ −E
∫ t

0
λe−λρ(s)|z(s)|44|u(s) − z(s)|2ds + 2E

∫ t

0
e−λρ(s)(χ, u(s) − z(s))ds

− 2E
∫ t

0
e−λρ(s)(−νAz − B(z), u(s) − z(s))ds + 2E

∫ t

0
e−λρ(s)(ζ − g1(s, zs), u(s) − z(s))ds

+ E
∫ t

0
e−λρ(s)|σ − g2(s, zs)|2ds.

Take z(t) = u(t) in the previous inequality, it follows that σ = g2(t, ut), t ∈ [0,T ], where we use the fact that
e−λρ(t) is bounded for t ∈ [0,T ]. On the other hand, notice that

βn = Ee−λρ(t)|un(t)|2 − E|un(0)|2 − 2E
∫ t

0
e−λρ(s)( f (s), un(s))ds.

lim inf
n→∞

βn ≥ Ee−λρ(t)|u(t)|2 − E|u(0)|2 − 2E
∫ t

0
e−λρ(s)( f (s), u(s))ds

= −E
∫ t

0
λe−λρ(s)|z(s)|44|u(s)|2ds + 2E

∫ t

0
e−λρ(s)(χ + ζ, u(s))ds

+ E
∫ t

0
e−λρ(s)|g2(s, us)|2ds.
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lim inf
n→∞

γn ≥ −E
∫ t

0
λe−λρ(s)|z(s)|44(|z(s)|2 − 2(u(s), z(s)))ds + 2E

∫ t

0
e−λρ(s)(χ,−z(s))ds

− 2E
∫ t

0
e−λρ(s)(−νAz − B(z), u(s) − z(s))ds − 2E

∫ t

0
e−λρ(s)(g1(s, zs), u(s) − z(s))ds

+ 2E
∫ t

0
e−λρ(s)(ζ,−z(s))ds + E

∫ t

0
e−λρ(s)(g2(s, zs) − 2g2(s, us), g2(s, zs))ds.

0 ≥ lim inf
n→∞

αn = lim inf
n→∞

βn + lim inf
n→∞

γn

≥ −E
∫ t

0
λe−λρ(s)|z(s)|44|u(s) − z(s)|2ds + 2E

∫ t

0
e−λρ(s)(χ + ζ, u(s) − z(s))ds

− 2E
∫ t

0
e−λρ(s)(−νAz − B(z), u(s) − z(s))ds − 2E

∫ t

0
e−λρ(s)(g1(s, zs), u(s) − z(s))ds

+ E
∫ t

0
e−λρ(s)|g2(s, zs) − g2(s, us)|2ds.

Thus

0 ≤ E
∫ t

0
e−λρ(s)|g2(s, zs) − g2(s, us)|2ds

≤ 2E
∫ t

0
e−λρ(s)(−νAz − B(z) + g1(s, zs), u(s) − z(s))ds − 2E

∫ t

0
e−λρ(s)(χ + ζ, u(s) − z(s))ds

+ λE
∫ t

0
e−λρ(s)|z(s)|44|u(s) − z(s)|2ds.

For any fixed w ∈ L2(Ω × [0,T ]; V) ∩ L4(Ω × [0,T ]; (L4(O))2), set z(t) = u(t) − θw(t), then

0 ≤ 2E
∫ t

0
e−λρ(s)(−νA(u − θw) − B(u − θw) + g1(s, us − θw),w)ds

− 2E
∫ t

0
e−λρ(s)(χ + ζ,w)ds + θλE

∫ t

0
e−λρ(s)|z(s)|44|w|

2ds.

Let θ → 0, for any w ∈ L2(Ω × [0,T ]; V) ∩ L4(Ω × [0,T ]; (L4(O))2), we obtain

E
∫ t

0
e−λρ(s)(χ + ζ + νAu(s) + B(u(s)) − g1(s, us),w)ds≤0.

Since L2(Ω × [0,T ]; V) ∩ L4(Ω × [0,T ]; (L4(O))2) is dense in L2(Ω × [0,T ]; H),

e−λρ(t) (χ + ζ + νAu(t) + B(u(t)) − g1(t, ut)) = 0, a.e. t ∈ [0,T ], ω ∈ Ω.

Hence,

u(t) = u0 −

∫ t

0
(νAu(s) + B(u(s)))ds +

∫ t

0
f (s)ds +

∫ t

0
g1(s, us)ds +

∫ t

0
g2(s, us)dW(s), a.e. ω ∈ Ω.

Therefore, there exists a unique weak solution to (1.1) on [0,T ]. This completes the proof. �

Corollary 3.6. Assume that (g1) − (g3) hold and E
∫ t

0 | f (s)|4ds < ∞. If

νλ1 > 2Lg1 + L2
g2
,

then, for every φ ∈ I2(−∞, 0; V) ∩ L2(Ω; BCL−∞(H)) such that E[ sup
−∞<s≤0

|φ(s)|4] < ∞ and φ(0) = u0, there

exists a unique solution u to Eq.(3.3) with initial value φ.

Proof. It is not difficulty to verify that assumption νλ1 > 2Lg1 + L2
g2

implies (3.2). Therefore, the proof is
finished thanks to Theorem 3.5. �
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4. Asymptotic behavior of solutions

In this section, we analyze the long time behavior of solutions in a neighborhood of an (steady-state)
equilibrium solution to (1.1). It is worth mentioning that the concept usually used as “equilibrium” in the
context of stochastic differential equations is the so called “stationary solution”, i.e., a stochastic process
(solution) whose distribution is time-independent and generally is not a constant stochastic process. For
instance, in reference [12], it is analyzed the existence and uniqueness of exponentially stable stationary
solution that are stochastic solutions, where the finite-dimensional distributions are invariant under a suitable
action of R+ on Ω. In some cases dealing with the theory of random dynamical systems, as it is the case in
[12], when the random attractor becomes a single point, then it is a stationary solution in the previous sense.
However it is our first objective in this paper, to analyze first the deterministic stationary solutions which are
nothing but equilibria or steady-state solutions. We will call them equilibrium points or solutions. In future
works we will analyze the existence and stability properties of stationary solutions not necessarily constant,
as in the paper [12].

First, we state a general result ensuring the existence and uniqueness of equilibrium solutions. Then
we show two methods that can be used to study the stability properties: the Lyapunov function method as
well as the another one based on the construction of Lyapunov functionals. Both cases will be related to the
model considered in Example 1, namely, the unbounded variable delay case. We also would like to point
out that, although we will provide some sufficient condition ensuring the asymptotic stability of equilibrium
solutions, to prove that this stability is indeed exponential remains as an open problem in general in the
unbounded variable delay case. Nevertheless we will be able to prove polynomial asymptotic stability in
some particular cases which have some relevance in applications.

4.1. Existence and uniqueness of equilibrium solutions

To investigate the existence and properties of equilibrium solutions to (4.1), we need to impose some
extra assumptions. Namely, we assume that f is independent of time, i.e., f (t) ≡ f ∈ V ′, and gi, i = 1, 2,
defined now for all positive times, also is somehow autonomous. Indeed, if we assume directly gi, i = 1, 2
to be autonomous, then the delay should have a distributed or fixed (constant) form, but an infinite variable
delay would not be possible to be considered within our functional setting. Therefore the explicit presence
of t in the operator cannot be removed if we wish to keep the variable delay case within our set-up. Namely,
we introduce a new assumption for gi, i = 1, 2. Denote by j the trivial immersion j : H → BCL−∞(H) given
by j(u) = û with û(θ) = u for all θ ≤ 0. We require now that gi fulfills

(g4) gi(s, ξ) = gi(t, ξ) i = 1, 2 for any s, t ∈ R+ and ξ ∈ j(H).

If (g2)−(g4) holds, we trivially have that g̃i : H → (L2(O))2 defined as g̃i(u) = gi(0, j(u)), i.e., g̃i = gi|R+× j(H),

is of course autonomous, Lipschitz (with the same Lipschitz constant Lgi) and g̃i(0) = 0, i = 1, 2.
For convenience, we consider our model in an abstract formulation as

du
dt

+ νAu + B(u) = f + g1(t, ut) + g2(t, ut)
dW
dt

, (4.1)

A equilibrium solution u∞ to (4.1) must satisfy, almost surely,

νAu∞ + B(u∞) = f + g1(t, u∞) + g2(t, u∞)
dW
dt

,
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By using (g4) and then integral above equation on [0, t], we have

(νAu∞ + B(u∞) − f − g̃1(u∞)) t =

∫ t

0
g̃2(u∞) dW(s), ∀t > 0, (4.2)

and, according to [13, Remark 3.1], this means that u∞ must be a equilibrium solution of the deterministic
equation as t → +∞, in other words

νAu∞ + B(u∞) = f + g̃1(u∞), P − almost surely, (4.3)

which is an equality in V ′ and is a deterministic case of equation (4.2).
Thus, to discuss the stability of weak solutions to stochastic (4.1), we first need to consider the existence

of equilibrium solutions to equation (4.3).
To carry out our analysis, we assume that the forcing terms g1, g2 are defined by

gi(t, û) = Gi(u), i = 1, 2, for all u ∈ H,

where Gi : R2 → R2, i = 1, 2 are functions satisfying

G1(0) = 0, (4.4)

and there exists Mi > 0, i = 1, 2 for which

|Gi(u) −Gi(v)|R2 ≤ Mi|u − v|R2 , ∀u, v ∈ R2, i = 1, 2. (4.5)

Recall that by Gi(u) we denote the element in H defined by Gi(u)(x) = Gi(u(x)) for all x ∈ O.
Then equation (4.2) and equation (4.3) can be rewritten respectively as

νAu∞ + B(u∞) − f −G1(u∞) = G2(u∞)
W(t)

t
, ∀t > 0, (4.6)

and
νAu∞ + B(u∞) = f + G1(u∞). (4.7)

Remark 4.1. As it is pointed out in [13, Remark 3.1], any equilibrium solution, for instance u∞, to (4.6) is
also a equilibrium solution to equation (4.7) , but it is possible that equation (4.7) possesses more than one
equilibrium solution, for example u1, and u1 , u∞. However, if we assume that equation (4.7) has a unique
equilibrium solution u1, then u1 = u∞, and in this case it must hold G2(u∞) = 0 since (4.6) must be fulfilled
for all t > 0.

Now we present a sufficient condition which ensures the existence and uniqueness of a equilibrium
solution to equation (4.7).

Theorem 4.2. Suppose that (4.4)-(4.5) hold true and ν > λ−1
1 M1. Then,

(a) for all f ∈ V ′ there exists at least one equilibrium solution to (4.7);
(b) if f ∈ (L2(O))2, the equilibrium solutions belong to D(A);
(c) if (ν − λ−1

1 M1)2 > (2λ1)−
1
2 ‖ f ‖∗, then the equilibrium solution to (4.7) is unique.

Proof. The proof can be carried out by a similar method to that of [13, Lemma 3.1, p.720] and this is why
we omit the proof. Readers are also referred to [11, Theorem 4.1, p.1087] for more details. �

From now on, we always suppose that the stochastic equation (4.1) has a time-independent solution
u∞, which satisfies equation (4.6). Actually, this can happen when we take g2 in such a way that g2 vanishes
at an equilibrium point, for instance, g2(t, u) = G2(u − u∞). See [13, Remark 4.3] for more details.
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4.2. Local stability: A direct approach

In this subsection, we prove the local stability of equilibrium solution by a straightforward way. Sup-
pose that ρ ∈ C1([0,+∞)), ρ(t) ≥ 0 for all t ≥ 0 and ρ∗ = sup

t≥0
ρ′(t) < 1.

Theorem 4.3. Assume that the forcing term gi(t, ut) are given by gi(t, ut) = Gi(u(t − ρ(t))), i = 1, 2, which
satisfy (4.4)-(4.5). Assume that there exists c1 > 0, depending only on O, such that if f ∈ (L2(O))2 and
ν > λ−1

1 M1 + (2λ1)−
1
4 ‖ f ‖

1
2
∗ satisfies in addition

2ν >
(2 − ρ∗)M1 + M2

2

λ1(1 − ρ∗)
+

c1| f |
λ1(ν − λ−1

1 M1)
. (4.8)

Then there exists a unique equilibrium solution u∞ ∈ D(A) of (4.7), and for all φ ∈ I2(−∞, 0; V) ∩
L2(Ω; BCL−∞(H)), the corresponding solution u of (1.1) with f (t) ≡ f satisfies

E|u(t) − u∞|2 ≤ E|u0 − u∞|2 +
M1 + M2

2

(1 − ρ∗)

∫ 0

−∞

E[|φ(s) − u∞|2]ds. (4.9)

Proof. Let f ∈ (L2(O))2 be fixed. Consider u the solution of (1.1) for f (t) ≡ f . By Theorem 4.2 (c),
we obtain that equation (4.7) has a unique equilibrium solution u∞ ∈ D(A). Apply now Itô’s formula to
|u(t) − u∞|2,

|u(t) − u∞|2 = |u0 − u∞|2 + 2
∫ t

0
(−νA(u − u∞) − B(u) + B(u∞), u − u∞)ds

+ 2
∫ t

0
(G1(u(s − ρ(s))) −G1(u∞), u − u∞)ds

+ 2
∫ t

0
(G2(u(s − ρ(s))) −G2(u∞), u − u∞)dW(s)

+

∫ t

0
|G2(u(s − ρ(s))) −G2(u∞)|2

L0
2
ds,

(4.10)

and take then expectation,

E|u(t) − u∞|2 = E|u0 − u∞|2 − 2ν
∫ t

0
E[‖u − u∞‖2]ds − 2

∫ t

0
E(B(u) − B(u∞), u − u∞)ds

+ 2
∫ t

0
E(G1(u(s − ρ(s))) −G1(u∞), u − u∞)ds

+

∫ t

0
E|G2(u(s − ρ(s))) −G2(u∞)|2

L0
2
ds.

(4.11)

Observe that

2(B(u) − B(u∞), u − u∞) = 2b(u − u∞, u∞, u − u∞) ≤
c1
√
λ1
‖u − u∞‖2‖u∞‖,

and since,

νAu∞ + B(u∞) = f + G1(u∞),

‖u∞‖ ≤
| f |

√
λ1(ν − λ−1

1 M1)
.
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On the other hand,

2
∫ t

0
E(G1(u(s − ρ(s))) −G1(u∞), u − u∞)ds

≤
(2 − ρ∗)M1

λ1(1 − ρ∗)

∫ t

0
E[‖u − u∞‖2]ds +

M1

(1 − ρ∗)

∫ 0

−∞

E[ sup
−∞<s≤0

|φ(s) − u∞|2]ds.

The last term on the right-hand side of (4.11) is bounded by∫ t

0
E|G2(u(s − ρ(s))) −G2(u∞)|2

L0
2
ds ≤

M2
2

λ1(1 − ρ∗)

∫ t

0
E[‖u − u∞‖2]ds +

M2
2

(1 − ρ∗)

∫ t

0
E[ sup
−∞<s≤0

|φ(s) − u∞|2]ds.

Hence,

E|u(t) − u∞|2 ≤ E|u0 − u∞|2 +

−2ν +
c1| f |

λ1(ν − λ−1
1 M1)

+
(2 − ρ∗)M1

λ1(1 − ρ∗)
+

M2
2

λ1(1 − ρ∗)

 · ∫ t

0
E[‖u − u∞‖2]ds

+
M1 + M2

2

(1 − ρ∗)

∫ 0

−∞

E[ sup
−∞<s≤0

|φ(s) − u∞|2]ds.

Therefore, by (4.8) we have

E|u(t) − u∞|2 ≤ E|u0 − u∞|2 +
M1 + M2

2

(1 − ρ∗)
E[|φ(s) − u∞|2L2(−∞,0;H)].

The proof is complete. �

Remark 4.4. In order to obtain that the weak solution to Eq.(4.1) converges exponentially to u∞ and thus
u∞ is exponentially stable in the mean square by this technique, we need that ρ(t) be bounded. See [28] for
details.

4.3. Asymptotic stability via Lyapunov method

In this subsection, we aim to show first the asymptotic stability of trivial solution by constructing
suitable Lyapunov functionals of the following class of nonlinear stochastic partial differential equations,
and later we will apply these abstract results to our Navier-Stokes model. See [16, 33] for more details.

Let us consider the following problem

du(t) = (A(t, u(t)) + f (t, ut))dt + g(t, ut)dW(t), t ∈ [0,T ],

u(t) = φ(t), t ∈ (−∞, 0],
(4.12)

where A(t, ·) : V → V ′ with 〈A(t, u), u〉 ≤ 0, for all v ∈ V , f (t, ·) : BCL−∞(H) → H and g(t, ·) :
BCL−∞(H) → L(K,H) satisfy the following Lipschitz conditions: there exist L f , Lg such that for all t ≥ 0
and all ξ, η ∈ BCL−∞(H),

| f (t, ξ) − f (t, η)| ≤ L f ‖ξ − η‖BCL−∞(H),

|g(t, ξ) − g(t, η)| ≤ Lg‖ξ − η‖BCL−∞(H).
(4.13)

The existence and uniqueness of solution to (4.12) can be proved by a similar process as we did in Section
3. For a fixed T > 0, given an initial value φ ∈ I2(−∞, 0; V) ∩ L2(Ω; BCL−∞(H)), a solution to (4.12) is a
process u(·) ∈ I2(−∞,T ; V) ∩ L2(Ω; C(−∞,T ; H)) such that

u(t) = φ(0) +

∫ t

0
A(s, u(s))ds +

∫ t

0
f (s, us)ds +

∫ t

0
g(s, us)dW(s), t ∈ [0,T ], P − a.s.

u(t) = φ(t), t ∈ (−∞, 0],
(4.14)
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where the first equality is defined in V ′.
From now on, we are interested in the long-time behavior of the solutions to (4.12). To this end, we

need the Itô formula for the solutions of (4.14). We define an associate operator L which is usually called
the ”generator” of equation (4.14). To deal with the stochastic differential of the process σ(t) = v(t, u(t)),
where u(t) is a solution of equation (4.12), and the function v(t, u) : [0,∞) × V → R+ has continuous partial
derivatives

v′t(t, u) =
∂v(t, u)
∂t

, v′u(t, u) =
∂v(t, u)
∂u

, v′′uu(t, u) =
∂2v(t, u)
∂u2 ,

the Itô formula for σ(t) reads

dσ(t) = Lv(t, u(t))dt + 〈v′u(t, u(t)), g(t, ut)dW(t)〉,

where the generator L is defined in the following way

Lv(t, u(t)) = v′t(t, u(t)) + 〈v′u(t, u(t)), A(t, ut) + f (t, ut)〉 +
1
2

Tr[v′′uu(t, u(t))g(t, ut)Qg∗(t, ut)].

The generator L can be applied also for some functionals V(t, φ) : [0,∞) × L2(Ω; BCL−∞(H)) → R+.
Indeed, assume that a functional V(t, φ) can be represented in the form V(t, φ) = W(t, φ(0), (φ(θ))θ<0). When
we particularize for fixed φ̄ = ūt, where ū(·) is a solution to (4.12), then we can define a function v :
[0,∞) × H → R+ as v(t, u) = W(t, u, (ūt(θ))θ<0), the terms appearing in the generator L for this function can
be calculated as

v′t(t, u) =
∂

∂t
[W(t, u, (ūt(θ))θ<0)] , v′u(t, u) =

∂

∂u
[W(t, u, (ūt(θ))θ<0)] , v′′uu(t, u) =

∂2

∂u2 [W(t, u, (ūt(θ))θ<0)] .

Denoting by D be the set of functionals V(t, φ) which can be written as described above (i.e. V(t, φ) =

W(t, φ(0), (φ(θ))θ<0)), and which have a continuous derivative with respect to the variable t and two contin-
uous derivatives with respect to the variable u, then the generator for the solution ū(·) of (4.12), according
to the functional V(t, φ) above, reads as

LV(t, ūt) = v′t(t, ū(t)) + 〈v′u(t, ū(t)), A(t, ū(t)) + f (t, ūt)〉 +
1
2

Tr[v′′uu(t, ū(t))g(t, ūt)Qg∗(t, ūt)].

For functionals from D, the Itô formula implies

E[V(t, ut) − V(s, us)] =

∫ t

s
ELV(r, ur)dr, t ≥ s. (4.15)

Next proposition is a generalization of Theorem 2.1 in [33, p. 34] to an infinite dimensional framework.
More precisely, Theorem 2.1 in [33] was stated and proved for stochastic ordinary differential equations with
finite delays while we will prove it for stochastic partial differential equations with unbounded delays.

Proposition 4.5. Let V(t, φ) : [0,∞) × L2(Ω; BCL−∞(H)) → R+ be a continuous functional such that for
any solution u(t) of problem (4.12) with p ≥ 2, the following inequalities hold:

EV(t, ut) ≥ γ1E|u(t)|p, ∀t ≥ 0,

EV(0, φ) ≤ γ2‖φ‖
p
1 ,

E[V(t, ut) − V(0, φ)] ≤ −γ3

∫ t

0
E|u(s)|pds, t ≥ 0,

18



where ‖φ‖p1 := sup
θ≤0

E|φ(θ)|p. Then the trivial solution of (4.12) is asymptotically p-stable (i.e. asymptotically

stable in the pth-moment).

Proof. For simplicity, we only prove the case when p = 2, although the proof for p , 2 can be obtained in
a similar way. By the assumption, we know that for any φ ∈ L2(Ω; BCL−∞(H)),

γ1E|u(t)|2 ≤ EV(t, ut) ≤ EV(0, φ) ≤ γ2‖φ‖
2
1 = γ2 sup

θ≤0
E|φ(θ)|2, (4.16)

which implies that the trivial solution is stable.
Notice that, by (4.16), we have

sup
t≥0

E|u(t)|2 ≤
γ2

γ1
‖φ‖21. (4.17)

On the other hand, it follows from the condition of this proposition, we find∫ ∞

0
E|u(s)|2ds ≤

1
γ3

EV(0, φ) ≤
γ2

γ3
‖φ‖21 < ∞, (4.18)

Estimating the generator L to U(t, ut) = |u(t)|2 and using (4.13), we obtain

ELU(t, ut) = EL|u(t)|2 = 2E(u(t), A(t, u(t)) + f (t, ut)) + E|g2(t, ut)|2

≤ 2E(u(t), f (t, ut)) + E|g2(t, ut)|2

≤ E|u(t)|2 + (L2
f + L2

g)E|ut|
2
BCL∞(H)

= E|u(t)|2 + (L2
f + L2

g)E sup
θ≤0
|u(t + θ)|2

≤ E|u(t)|2 + (L2
f + L2

g)E sup
θ≤−t
|u(t + θ)|2 + (L2

f + L2
g)E sup

θ>−t
|u(t + θ)|2

≤ E|u(t)|2 + (L2
f + L2

g)‖φ‖21 + (L2
f + L2

g) sup
t≥0

E|u(t)|2

≤ γ4,

(4.19)

where γ4 is a positive constant. Since from (4.15),

E[U(t, ut) − U(s, us)] =

∫ t

s
ELU(r, ur)dr,

then by (4.19), we have for any t2 ≥ t1 ≥ 0,

|E|u(t2)|2 − E|u(t1)|2| ≤ γ4(t2 − t1),

which means that the function E|u(t)|2 is Lipschitz, and on account of (4.17)-(4.18), we obtain that lim
t→+∞

E|u(t)|2 = 0.
Therefore, the proof is finished. �

Theorem 4.6. Assume that the forcing terms gi(t, ut) are given by gi(t, ut) = Gi(u(t − ρ(t))), i = 1, 2, which
satisfy (4.4)-(4.5). Let f = 0 and

2ν >
(2 − ρ∗)M1 + M2

2

λ1(1 − ρ∗)
,

then there exists a unique equilibrium solution u∞ = 0 to the problem (4.7), and any weak solution u(t) to
(4.1) converges to zero in mean square. Then zero is asymptotically mean-square stable.
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Proof. We prove this theorem by constructing a Lyapunov functional following the general method of con-
struction described in [9, 16, 27]. Set

V(t, φ) = |φ(0)|2 +
M1 + M2

2

1 − ρ∗

∫ 0

−ρ(t)
|φ(s)|2ds.

Then we replace φ by ut, and obtain

V(t, ut) = |φ(0)|2 +
M1 + M2

2

1 − ρ∗

∫ 0

−ρ(t)
|φ(s)|2ds

= |u(t)|2 +
M1 + M2

2

1 − ρ∗

∫ t

t−ρ(t)
|u(s)|2ds.

Therefore,

LV(t, ut) ≤ 2(−νAu(t) − B(u(t)) + G1(u(t − ρ(t))), u(t)) + |G2(u(t − ρ(t)))|2

+
M1 + M2

2

1 − ρ∗
|u(t)|2 − (M1 + M2

2)|u(t − ρ(t))|2

≤ −2ν‖u(t)‖2 + 2(G1(u(t − ρ(t))), u(t)) + |G2(u(t − ρ(t)))|2

+
M1 + M2

2

1 − ρ∗
|u(t)|2 − (M1 + M2

2)|u(t − ρ(t))|2

≤ (−2νλ1 + M1)|u(t)|2 + (M1 + M2
2)|u(t − ρ(t))|2 +

M1 + M2
2

1 − ρ∗
|u(t)|2 − (M1 + M2

2)|u(t − ρ(t))|2.

Thanks to the above inequalities and the fact that 2ν >
(2−ρ∗)M1+M2

2
λ1(1−ρ∗)

, we obtain that there exists a positive
constant γ, such that the Lyapunov functional V(t, ut) fulfills

LV(t, ut) ≤ (−2νλ1 +
(2 − ρ∗)M1 + M2

2

(1 − ρ∗)
)|u(t)|2 ≤ −γ|u(t)|2 ≤ 0.

Therefore, the functional V(t, ut) = |u(t)|2 +
M1+M2

2
1−ρ∗

∫ t
t−ρ(t) |u(s)|2ds satisfies the conditions in Proposition 4.5,

thus the trivial solution of (4.7) is asymptotically mean-square stable, which also means that the equilibrium
solution to (4.7) is unique. �

Remark 4.7. As we can see from this proposition, by constructing appropriate Lyapunov functionals, we
obtain the asymptotic stability of the trivial solution to (4.7), which moreover ensures the uniqueness of this
(steady-state) equilibrium solution. In this sense, the result we obtain by constructing Lyapunov function-
als improves the former local stability of equilibrium solution by a direct approach. Notice that we have
developed the result in the case that the unique equilibrium solution is u∞ = 0. The general case can be
considered by the classical shift of the equilibrium solution to the origin.

4.4. Polynomial asymptotic stability for a special case

Up to now, two different methods have been used to study the stability of the solution to (1.1). However,
instead of exponential stability, only local stability and asymptotical stability of equilibrium solution have
been obtained. Actually, even for a very simple differential equation with unbounded variable delay, for
example, the stochastic pantograph equation, in which the delay is given by ρ(t) = (1 − λ)t with 0 < λ < 1,
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the exponential stability cannot be achieved. However, in this case, the polynomial decay to the equilibrium
solution can be ensured. In fact, the polynomial stability is the best result we could obtain for this case,
see [1, 25, 26] for details. In [1] authors studies the asymptotic growth and decay properties of solutions
of the stochastic pantograph equation with multiplicative noise. Under appropriate conditions the solutions
of stochastic pantograph equation decay to equilibrium solution with a polynomial rate in p-th mean and
in the almost sure sense, which means that the equilibrium solution to the stochastic pantograph equation
is polynomially stable . For more relevant references, readers are referred to references mentioned in [1]
equilibrium solution

At light of the results in [1], in this subsection, we prove the polynomial stability of equilibrium solution
to (1.1) with proportional delay. To do this, we need to introduce the following stochastic pantograph
equation and some technical lemmas that are needed later.

An example of the deterministic pantograph equation reads

x′(t) = āx(t) + b̄x(λt), ∀t ≥ 0, x(0) = x0, λ ∈ (0, 1), (4.20)

which has been studied in [1, 25, 26]. Recall that, for a continuous real-valued function h of a real variable,
the Dini derivative D+h is defined as

D+h = lim sup
δ↓0

h(t + δ) − h(t)
δ

.

The following lemma will be useful later.

Lemma 4.8. (See [1, Lemma 3.4]) Let ā ∈ R, b̄ > 0, λ ∈ (0, 1). Assume x satisfies

x′(t) = āx(t) + b̄x(λt), t ≥ 0, (4.21)

where x(0) > 0 and suppose t 7→ p(t) is a continuous non-negative function defined on R+ satisfying

D+ p(t) ≤ āp(t) + b̄p(λt), t ≥ 0 (4.22)

with 0 < p(0) < x(0). Then p(t) ≤ x(t) for all t ≥ 0.

Lemma 4.9. (See [1, Lemma 3.5]) Let x be the solution of (4.20). If ā < 0, b̄ ∈ R there exits C1 =

C1(ā, b̄, λ) > 0 such that

lim sup
t→+∞

|x(t)|
tµ

= C1|x(0)|

where µ ∈ R obeys
0 = ā + |b̄|λµ. (4.23)

Then, for some C = C(ā, b̄, λ) > 0, we have

|x(t)| ≤ C|x(0)|(1 + t)µ, t ≥ 0. (4.24)

Notice that if µ < 0, then (4.24) implies polynomial stability of the zero solution of (4.20). Now we
use this idea to prove the polynomial stability of equilibrium solution of (1.1).
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Theorem 4.10. Consider (1.1) with f = 0, g1(t, ut) = Lg1u(qt), g2(t, ut) = Lg2u(qt) with 0 < q < 1 and
λ1ν > 2|Lg1 | + L2

g2
, then there exists a unique trivial solution u = 0 of (1.1), and all the solutions of (1.1)

converge to zero polynomially, namely, there exist C > 0 and µ < 0 such that

E|u(t)|2 < CE|u(0)|2(1 + t)µ, for all t ≥ 0 (4.25)

where µ satisfies |Lg1 | − 2νλ1 + (|Lg1 | + L2
g2

)qµ = 0 .

Proof. Applying Itô’s formula to |u(t)|2, using a similar scheme as in Theorem 4.1 in [1], we obtain

E[|u(t + h)|2] − E[|u(t)|2] ≤ (−2νλ1 + |Lg1 |)E
∫ t+h

t
|u(s)|2ds + (|Lg1 | + L2

g2
)E

∫ t+h

t
|u(qs)|2ds.

Denote by w(t) = E|u(t)|2,

w′(t) ≤ (−2λ1ν + |Lg1 |)w(t) + (|Lg1 | + L2
g2

)w(qt). (4.26)

By Lemma 4.8-4.9, there exist C = C(Lg1 , Lg2 , λ1, ν) > 0 and µ ∈ R such that

w(t) ≤ Cw(0)(1 + t)µ, (4.27)

Since −2λ1ν + 2|Lg1 | + L2
g2
< 0, it holds that µ < 0, and

E|u(t)|2 ≤ CE|u(0)|2(1 + t)µ.

Then the polynomial decay of solutions follows directly. �

Remark 4.11. (i) In this special case, gi(t, ut) = Lgiu(qt), i = 1, 2 with 0 < q < 1 and f ≡ 0.
As long as we have λ1ν > 2|Lg1 |+L2

g2
, then we can prove that the solution converges polynomially to zero.

In this sense, this result improves the stability results we established previously.

(ii) In fact, our result can be extended to a more general case, namely, if the delay term g(t, φ) is defined as
g(t, φ) = G(φ(−(1 − λ)t)), with G satisfying a Lipschitz condition with Lipschitz constant Lg.

5. Comments

In this work, we analyzed the existence and uniqueness of solutions of a 2D stochastic Navier-Stokes
equation with infinite delay. We proved stability and asymptotic stability of the equilibrium solutions but
were not able to obtain any result on the exponential stability, but on asymptotic stability and with polyno-
mial decay in some particular case. These results are in concordance with what was pointed in [1], precisely,
that convergence to equilibria need not be at an exponential rate for equations with unbounded delay. Actu-
ally, for unbounded variable delay, even in the simplest case, i.e., the stochastic pantograph equation, only
polynomial stability can be obtained because the solutions behave in such polynomial way. Consequently, it
is still an open problem to obtain sufficient conditions for the exponential stability of solutions for equations
with other types of unbounded variable delay. We plan to investigate this direction in future.

Acknowledgements. We would like to thank the referee for the helpful and valuable comments, re-
marks and suggestions which allowed us to greatly improve the presentation of our paper.
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