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ABSTRACT

This paper presents a fast procedure for the system-level evaluation of noise and distortion in continuous-time integrated
filters. The presented approach is based on Volterra’s series theory and matrix algebra manipulation. This procedure has
been integrated in a constrained optimization routine to improve the dynamic range of the filter while keeping the area and
power consumption at a minimum.
The proposed approach is demonstrated with the design, from system- to physical-level, of a seventh-order low-pass con-
tinuous-time elliptic filter for a high-performance broadband power-line communication receiver. The filter shows a nom-
inal cut-off frequency of , less than  ripple in the pass-band, and a maximum stop-band rejection of

. Additionally, the filter features  programmable boost in the pass-band to counteract high frequency compo-
nents attenuation. Taking into account its wideband transfer characteristic, the filter has been implemented using Gm-C
techniques. The basic building block of its structure, the transconductor, uses a source degeneration topology with local
feedback for linearity improving and shows a worst-case intermodulation distortion of -70 dB for two tones close to the
passband edge, separated by , with  of amplitude.
The filter combines very low noise (peak root spectral noise density below ) and high linearity (more than

 of MTPR for a DMT signal of  amplitude) properties. The filter has been designed in a 0.18µm CMOS tech-
nology and it is compliant with industrial operation conditions (-40 to 85ºC temperature variation and ±5% power supply
deviation). The filter occupies 13mm2 and exhibits a typical power consumption of 450 mW from a 1.8V voltage supply.

Keywords: Low-noise, Continuous-Time Filters, Gm-C Filters, CAD tools for VLSI

1.  INTRODUCTION

Filters are essential blocks in communications systems to reject undesired signals which may be orders of magnitude
larger than the desired one. Hence, the design of these filters need a special attention in the design of such communication
systems. There are many factors which degrade the behaviour of monolithic filters. One key figure of merit which measures
such degradation is the dynamic range (DR) of the circuit, which can be defined as the ratio among the maximum signal
power level (for a given distortion at the output) which can be processed by the filter and the in-band integrated noise
power1,2. It can be demonstrated that the DR is directly related with the power consumption of the filter3. Thus, from a
design perspective, the availability of fast procedures for the early system-level evaluation of noise and distortion in filters
which takes into account imperfections of circuit elements is essential.

In this paper, we present a simple procedure for the evaluation of noise and distortion of continuous-time Gm-C filters,
with no need of lengthy transient analysis. In particular, distortion is measured using Volterra’s series theory4, and the eval-
uation of dynamic range can be done by simple matrix algebra, amenable for computer programming. Taking advantage of
this fact, a constrained optimization routine has been implemented in MATLAB® which maximizes the dynamic range of
a given topology while reducing the area and power consumptions of the filter5.

As a demonstration of the proposed approach, the design, from system- to physical-level, of a seventh-order low-pass
continuous-time elliptic filter for a high-performance broadband power-line communication receiver is also described.
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Main specifications of the filter are  of cut-off frequency, more than  of stopband rejection (corner at
), less than  ripple in the passband, and programmable boosting from 0 to  at  steps. Together,

severe specifications on noise and distortion performance are also demanded. Namely, the filter must exhibit less than
 of peak root spectral density in the passband, and more than 60dB of MTPR for different patterns of DMT

signals of  amplitude.
The paper is structured as follows. In Sec. 2, a general representation of Gm-C filters using matrices, which is at the

basis of the aforementioned approach, is first described. Then, the procedures to compute the harmonic and/or inter-mod-
ulation distortion of weakly non-linear systems, as well as their noise contributions are detailed. Next, Sec. 3 describes the
approach for the optimization of the dynamic range of Gm-C filters. Sec. 4 shows the system-level design of the filter used
as demonstration vehicle of the proposed procedure. Sec. 5 focuses on the transconductor block, as the main building ele-
ment of the architecture, and Sec. 6 shows the circuitry used for tuning. Finally, Sec. 7 presents simulations of the filter and
transconductor block, and Sec. 8 gives some concluding remarks.

2. Gm-C FILTER REPRESENTATION AND EVALUATION TECHNIQUES

As noted above, in order to estimate the dynamic range of a filter, both distortion and noise must be properly evaluated.
In this section, the mathematical rudiments for a fast estimation of such performances are presented.

In general, any linear continuous-time filter can be formulated by the following extended state-space representation,

(1)

where A, B, C and E are matrices, D is a scalar,  is the input signal  is the output signal and  is the
vector which represents the internal nodes. Expressing (1) in the frequency domain, the transfer function of the filter takes
the form,

(2)

In the case of Gm-C filter structures based on simple integrators (as those in Fig.1), matrix E in (1) represents capacitances,
and matrix A and B transconductances. These matrices can be built-up from LC ladder equivalent filters as shown in 5,6.

Now assume that the filter is composed by weakly non-linear fully-differential transconductors. In this case the transfer
characteristic of the transconductor (neglecting second-order terms) can be described as

(3)

where  is a third-order non linearity coefficient. Using (3), equation (1) becomes

(4)
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From this expression, and using Volterra’s series theory, the response of the intermediate nodes to an input can be
expressed as 4

(5)

where

(6)

is the i-th order Volterra operator and  is the i-th Volterra Kernel. The Laplace transformation of such multidimensional
kernel is defined by

(7)

where  is the Laplace variable in the i-th dimension. Thus for example  describes the third-order behaviour
of the system. These transformed Kernels can be evaluated using the following expressions 

(8)

(9)

Thus the distortion or inter-modulation of the filter can be computed at the system level, with no need of transient analysis,
using

(10)

where  is the amplitude of the tones at the input of the system. Note from (9) that the distortion depends on the magnitude
of the internal nodes of the filter and, hence, it can be reduced by decreasing the voltage level of such nodes.

On the other hand, the noise contribution of a transconductor with transconductance  can be modelled by an output
referred current source with power spectral density , where  is the noise excess factor of the
transconductor3. From this, the noise spectral density of a filter can be expressed as3

(11)

where  is the transfer function from the output of transconductor  to the output of the filter, and i and l denote the
output and input nodes of the transconductor, respectively. By grouping the transfer functions  in a vector G,

(12)

it can be easily found that,

(13)

Thus, the output referred mean-squared noise of the filter can be evaluated as
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(14)

where  represents the noise contribution from the i-th internal node to the output. Note that  depends inversely on
the total transconductance connected at the corresponding node and, hence, it can be reduced increasing the total transcon-
ductance and, hence, the capacitance connected at this node.

3. Gm-C FILTER OPTIMIZATION

Filter optimization can be seen as a constrained minimization problem in which the current consumption of the structure
must be reduced as much as possible while satisfying both the objective transfer characteristic of the filter and its prescribed
dynamic range, which can be estimated from (10) and (14). This implies to modifying the system representation in (1) by
an optimum scaling of the filter. By means of scaling, the original matrix representation of the filter is transformed accord-
ing to the algebraic mappings

(15)

where  is a similarity matrix which scales the magnitude level of the internal nodes of the filter, and  is a matrix which
modifies the noise contribution from each internal node of the circuit to the output. An optimizer based on the simulated-
annealing algorithm has been used to identify the optima  and  matrices. As initial guess for the  matrix in the sim-
ulated annealing algorithm, the  or  scaling norm can be used1. Similarly, the initial point for the  matrix can be
that which obtains the same noise contributions from the internal nodes to the filter output per unit bias current7.

Both the filter performance evaluation routines and the optimization engine have been integrated in the MATLAB/
SIMULINK® platform. This brings numerous advantages in terms of signal processing, high flexibility for tool expansion
and simulation with other electronic subsystems.

4. FILTER DESIGN

Using the approach and tools described above, a seventh order elliptic low pass Gm-C filter has been designed. Owing
to the superior performance of doubly terminated LC ladder filter structures with regard to its low sensitivity to components
variation, their emulation by active circuits very often constitute the candidates of choice for silicon realization3, so this
emulation has been chosen to design the filter. 

In the optimization process the transconductor has been assumed to have a third-order non-linearity coefficient of
, a noise excess factor of  and a power efficiency  at a voltage supply of .

The optimization problem has consisted on minimizing the cost function.

(16)

where  is the third-order intermodulation of the filter and  is the total output-referred noise power, under the
constrain of keeping the power consumption below 350mW.

Fig.2 shows the comparison of the intermodulation ( ), the third order distortion ( ) and the spectral
noise density of filter before and after the optimization process. It also illustrates that the method based on transient analysis
(circles) match up with the Volterra’s one. For the distortion estimation it has been considered that the tones have an ampli-
tude of  and are separated 1 MHz.
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Table 1 summarizes the results obtained before and after the optimization process. It shows that for the same power
consumption, the total noise and capacitance have been reduced a 9% and 18% respectively.

Fig.3 shows the simplified schematic of the filter, where transconductors  provide the required boosting to correct
the high frequencies attenuation of the transmission channel. Table 2 and Table 3 show the number of unitary transconduc-
tors and the value of capacitors of the optimized filter.

Figure 2. Intermodulation, third order distortion and noise of the non optimized filter for: (a-c) non optimized filter and (d-f) opti-
mized filter
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 Table 1: characteristics of the system level filter before and after the optimization

Total
capacitance (pF)

Noise 

Non optimized -68 dB -99 dB 270 160

Optimized -66 dB -102dB 195 147

IM3 HD3 µVrms

GB
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5. TRANSCONDUCTOR

Fig.4(a) shows the schematic of the transconductor employed in the filter. Transistors M1, M3 and M2, M4 (enhanced
by the feedback action of M5, M7 and M6, M8, respectively) ideally transfer with unity gain the input voltage of the
transconductor to the pair of nominally identical degeneration resistors R1 and R2. The generated incremental current,
which is ideally proportional to the input voltage as long as resistors R1 and R2 are perfectly linear, flows through the loop
formed by transistors M5-M8 and it is replicated at the output by M9-M12. It can be found that the transconductance
amounts

(17)

 Table 2: Number of unitary elements per transconductor.

16 16 16 16 10 16 24 12

9 18 18 9 6 12 4

Table 3: Filter capacitances.

34.9 pF 26.1pF 59.7pF 44.2pF 29.6pF

29.6pF 31.2pF 3.68pF 14.02pF 13.85pF

Figure 3. Simplified schematic of the filter. Programmable feedforward transconductors  at the insets provide transfer boosting at
high frequencies.
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where  is the transconductance of transistor Mj,  is the resistance of R1 and R2, and  is the gain of the amplifier
composed by M1 and M3

(18)

and  is the output conductance of transistor Mj. Approximation in (17) applies for large enough  values and reveals
that the transconductance is inversely proportional to the degeneration resistance and can be scaled by the aspect ratio of
transistors M9-M5 (or M10-M4). On the other hand, the non-linearity of the transconductor can be modelled, assuming
perfect matching among equivalent elements, by a third order non-linearity coefficient given by

(19)

where  is the current provided by the tail transistor Mp. According to (19), in order to reduce  for a given transcon-
ductance,  and/or  must be increased. Whatever design strategy is used for improving linearity care must be taken to
not severely degrade the current efficiency of the transconductor or its high-frequency performance (parasitics at nodes 
must be kept low). Taking into account those parasitics (18) is transformed as follows

(20)

where  and  are the capacitance and the pole associated to the nodes  and  is the low frequency gain of the
amplifier. On the other hand, considering the frequency characteristics of such amplifier, the third order non-linearity coef-
ficient becomes

 (21)

Resistors R1 and R2 are implemented as shown in Fig.4(b), where transistors MR1 and MR2 are operated in the ohmic
region by means of the analogue control signal . This allows to continuously vary the resistance  (and thereafter, the
transconductance ), what is exploited to correct variations in the cut-off frequency of the filter, as explained later on.

In the structure of the Fig.4 (a), the noise excess factor  is given by,

(22)

and, hence, it can be reduced, for a given  value, by lowering the transconductances of M5, M9 and M13. This can be
done by increasing their overhead voltages, taking into account the limited power supply (1.8V) and speed requirements.

A small-signal analysis of Fig.4 (a) reveals that the structure presents poles and zeros approximately given by

(23)

where  are the capacitances associated to corresponding nodes in Fig.4 (a), and  is a compensation capacitor
which aims to counteract the phase lag produced by the poles. Note from (22) and (23), that by decreasing  the noise
excess factor is reduced but the frequency response of the transconductor worsens. Thus, there is a trade-off between speed
and noise. Phase response of the transconductor can be modified (Q-tuned) by controlling the current through transistors
M1, M3 (and M2, M4), using terminal .

Fig.4 (c) shows the common-mode feedback circuit of the transconductor. Indeed, this circuit is shared by all the par-
alleled transconductors connected to the same nodes of the filter in Fig.3. To avoid stability problems, two compensation
capacitors connect the output nodes of the transconductors to the control node, . These capacitors must be subtracted
from the integrating node.
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6. TUNING CIRCUIT

Fig.5 shows the circuitry used to tune the cut-off frequency and quality factor of the (slave) filter of Fig.3. It is based
on a voltage-controlled biquad (master) externally driven by a precise clock reference. Transconductors in the master and
slave filter are matched and controlled by the same tuning variables obtained from the circuit of Fig.5. At the angular fre-
quency , the band-pass output voltage of the biquad (labelled obp in Fig.5) is in phase with the input and
have the same amplitudes. At the same frequency, the low-pass output voltage of the biquad (labelled olp in Fig.5) also
shows the same amplitude than the external reference, but they are in quadrature. By comparing the phase of olp with that
of the external clock, and integrating the error signal in a capacitor, the feedback loop determines a control voltage  such
that the transconductance becomes , where  is the frequency of the external reference. Because
integrating capacitors in the biquad and the slave filter are also matched, the feedback loop allows to define the cut-off fre-
quency of the filter in terms of . Similarly, by comparing the amplitude of obp and the external reference and integrating
the errors in a capacitor, the feedback loop determines a control voltage  that tunes the quality factor of the slave filter.
The biquad has a quality factor , which is close to the worst case of the poles of the filter. 

7. SIMULATIONS RESULTS

Fig.6 (a) shows the AC characteristics of the filter in the main corners of the technological process. Fig.6 (b) shows its
programmability (changing the cut-off frequency and providing boost) and Fig.6 (c) shows its spectral density of noise.

To simulate the distortion of the filter, it has been excited with two tones of 140 mVpp of amplitude separated 1 MHz.
Fig.7 shows its HD3 and IM3 when the frequency is swept in the range of interest. Also shows that the simulated results fit
with the theoretic ones predicted by Volterra’s series theory using the third order non linearity coefficient described in   (21)
and using the model in (14) and (15). Fig.8 (a) shows the intermodulation of the transconductor in the same conditions like
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the filter. It shows that the linearity decreases when the frequency increases like predicts (21). Fig.8 (b) shows the response
of the filter to a digital multi-tone (DMT) input of 500 mVpp of amplitude and bandwidth from 2 to 34 MHz. As can be
seen, the multi-tone power ratio (MTPR) is 64 dB. 

In order to compare the filter with others in the literature, the third order distortion (HD3) has been simulated with an
input frequency of 5 MHz to have the same conditions of simulations that theirs, i.e with an input frequency approximately
a sixth of the cut-off frequency. In this conditions the filter achieves a HD3 of -49 dB @ 1.2 Vpp differential input thus
showing a DR of 69 dB. Table 4 shows the main characteristics of the compared filters where FOM denotes the power per
pole per edge frequency 3. Fig. 8 (c) shows the FOM vs DR of those filters where the filter proposed is in the best adjust-
ment line.

8. CONCLUSIONS

Design considerations and simulated results of a seventh order elliptic, low-pass Gm-C filter have been presented. The
filter has low noise (less than  power spectral density of noise) and high linearity (-49 dB for a 1.2 Vpp @ 5
MHz input). It consumes 450 mW and occupies 13 mm2 in a 0.18 CMOS technology @ 1.8 V.

Also, techniques to evaluate and minimize the noise and distortion at the system level have been presented. This tech-
niques allow to maximize the DR and are based on simple matrix manipulation and Volterra’s series theory.
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Figure 8.  a) Intermodulation of the transconductor vs frequency. b) Response of the filter to a DMT signal. and c) Comparison of
several filter design.
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 Table 4: Comparison of several filter designs

Reference Silva 8 Chen 9 Mehr 10 Yang 11 Rezzi 12 This work

Technology 0.35 CMOS 0.35 CMOS 0.6 CMOS BiCMOS BiCMOS 0.18 CMOS

Order 7 4 7 7 7 7

Power supply (V) 3.3 2.3 5 2.5 5 1.8

Edge frequency 200 MHz 150 MHz 25 MHz 600 KHz 50 MHz 34 MHz

HD3 (dB) -44 @ 500 mVpp 
fin=30 MHz

-44 @ 2 Vpp
fin=20 MHz

-40 @ 640 mVpp
fin=2 MHz

-49 @ 2 Vpp
fin=100 KHz

-40 @ 700 mVpp -49 @ 1.2 Vpp
fin= 5 MHz

Noise rms 397 µV 1.69 mV - 198 µV 650 µV 155 µV

DR (dB) 51 52 60 77 52 69

Power (mW) 60 90 60 26 40 450

FOM (J)
4 29x10 11–, 1 50x10 10–, 5 14x10 10–, 6 19x10 9–, 1 14x10 10–, 1 89x10 9–,
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