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Abstract

This work analyzes the effects of temperature (300 oC) on mechanical and fracture

behavior of an ultra-high-performance steel-fiber-reinforced concrete. The deteriora-

tion of the pore structure due to thermal damage of the fiber-reinforced concrete and

its un-reinforced matrix was analyzed by X-ray computed tomography. Complemen-

tary, a thermogravimetric analysis was performed to relate the observed phase changes,

due to dehydration and decomposition, with the deterioration of pore structure. Addi-

tionally, an analysis of their mechanical and fracture properties was also done at room

temperature and 300 oC. Finally, it was established a connection between the damage

within the concrete matrix and its corresponding mechanical behavior. From results,

it has been ascertained that the propagation of thermal damage within the matrix af-

fects in different ways depending on the pore-size. The presence of fibers modifies the

pore structure and consequently the evolution of the thermal damage in the ultra-high-

performance concrete, inferring into its mechanical and fracture behavior.
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1. Introduction

Ultra-high-performance fiber-reinforced concrete (UHPFRC) is characterized by a

water-to-binder ratio usually below 0.2 and by being made from constituents with very

fine particle size to fill the matrix tiny holes and enhance the hydration process [1, 2].

This leads to a high matrix packing density that provides exceptional durability and5

high brittleness[3, 4]. The reinforcement of this type of concrete, commonly with steel

fibers in quantities of more than 2% by volume, infers a significant improvement on

its mechanical properties, especially on the tensile and flexural strength, as well as an

excellent energy absorption capacity and ductility[5, 6]. Nevertheless, several studies

reveal that the addition of fibers can alter the distribution of the pore structure [7, 8], as10

well as increase the porosity in the matrix [9, 10]. Furthermore, the pore morphology is

an important factor on thermal conductivity of concrete [11, 12] and as a consequence,

on generation of the thermal gradients in the concrete matrix at temperature exposure.

The internal stresses generated by the thermal gradients combined with the pore pres-

sure from the water evaporation can reach the tensile strength of concrete and produce15

explosive spalling [11, 13, 14, 15].

The spalling effects produce more severe deterioration in the UHPFRC than those

of normal concrete (NC) or high-strength concrete (HSC) due to its lower porosity

which does not allow that the evaporated water can flow outside through the pore con-

nection of the matrix [15, 16, 17]. Although there are numerous research paper focused20

on the mechanical behavior [18, 19, 20, 21, 22] and fracture properties of UHPFRC

[23, 24, 25, 26, 27], there are no many studies that relate the mechanical or fracture

properties of UHPFRC with the matrix pore structure [20, 28].

On the other hand, most of research related with the influence of temperature on

the behavior of UHPFRC have been focused on fire resistance [29, 30, 31] due to this25

type of concrete is widely applied in civil structures. As UHPFRC contains a high

amount of cement, the shrinkage cracking is similarly of research interest into this

type of concrete [6, 32, 33, 34]. Several studies have been focused on curing or re-

curing processes since the temperature exposure during the curing stage or its useful

life modify the strength evolution [11, 19, 35]. However, in some applications the30
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UHPFRC must be capable of bearing thermal and mechanical loads simultaneously for

long periods of time, like in structures for molten salt or water vapor storage tanks in

solar power plants, as well as in energy storage systems by solid medium, in which,

the concrete material directly stores the thermal energy. In this regard, to know the

evolution of the mechanical and fracture behavior of UHPFRC at moderate temperature35

exposure for long periods of time is worthy of study. This kind of study, relating the

mechanical and fracture properties with the porosity evolution inside the UHPFRC at

room and moderately elevated temperature, are really scarce the literature.

This work is focused on the influence of temperature exposure for significant pe-

riods on the pore structure deterioration and the consequences on the mechanical and40

fracture properties of an UHPFRC. To this, a comprehensive experimental campaign to

determine the mechanical and fracture properties of a UHPFRC and its corresponding

non-reinforced matrix at room temperature and 300 oC was performed. The influence

of porous morphology on the mechanical and fracture behavior at each temperature

was measured through X-ray computed tomography (CT) scan. A post-processing of45

the X-ray CT images allowed for us to obtain a three-dimensional reconstruction of

samples in order to identify the pore distribution in the concrete matrix and to obtain

the main porosity parameters for a wide range of pore sizes. These were determined

for fiber-reinforced concrete (UHPFRC) and its corresponding matrix without any re-

inforcement (UHPC) at room temperature and for exactly the same samples heated to50

300oC. Additionally, a thermogravimetric analyses of the concrete matrix (UHPC) was

conducted from room temperature to 400 oC in order to determine the phase changes

due to dehydration or decomposition at each temperature [16, 36] and an X-ray crys-

tallography analysis to determine the mineral composition of UHPC. Finally, it was

established a connection among the results from thermoanalytic techniques, X-ray CT55

scan and the mechanical and fracture properties at room temperature and 300 oC. In this

way, the mechanisms by which the changes in microstructure of the matrix, originated

by the presence of fibers and the increase of the temperature, determine the mechanical

and fracture properties of concrete has been thoroughly analyzed.

This paper is structured in the following manner: A description of experimental60

procedure and thermal analyses techniques are presented in Section 2, the results of the
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tests are exposed and discussed in Section 3 and finally the conclusions are found in

Section 4.

2. Experimental procedure

In this section, a summary of the materials, TG analyses, X-ray CT scan and exper-65

imental tests performed are shown.

2.1. Materials and mix design

In this work, two different ultra-high-performance concrete mixes were manufac-

tured. The former was a non fiber-reinforced concrete (UHPC) used as control mix and

the latter was a fiber-reinforced concrete (UHPFRC). The concrete matrix was exactly70

the same for both mixes and following the proportions shown in Table 1. The mix de-

sign was done in accordance with the recommendations postulated by Deeb et al. [37].

Three constituents comprise the binder materials: the type I cement of 52.5 R/SR, the

silica fume S-92-D from SIKA company and the ground granulated blast-furnace slag

(ggbs) provided by Arcelor company. Two quartz sands were added as aggregate: the75

former with a maximum size of 315 µm and the latter with 800 µm. The superplas-

ticizer, used as reducer of water, was a third generation polycarboxylic ether-based

type (Master-Glenium ACE 325) with a specific gravity of 1.05 provided by BASF

Company.
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Table 1: Nomenclature and mix proportions

Constituent UHPC (kg/m3) UHPFRC (kg/m3)

cement 544 544

silica fume 214 214

ggbs 312 312

water 188 188

fine sand (< 315 µm) 470 470

coarse sand (< 800 µm) 470 470

superplasticizer (BASF ACE 325) 42 42

steel fiber OL 13/0.2 - 98

steel fiber C80/30BP - 98

w/c ratio 0.34 0.34

w/binder ratio 0.17 0.17

In the UHPFRC, the reinforcement was exclusively using micro and macro steel80

fibers. The shortest smooth micro-fibers were the OL 13/0.2 model manufactured by

the Bekaert company and with 13 mm in length, 0.20 mm in diameter and straight

ends. The macrofibers were the C80/30BP model by the same company, measuring

30 mm in length, 0.38 mm in diameter and fitted with hooked ends. The UHPFRC

mix has a fiber content of 2.5% by volume fraction which means 196 kg/m3 in a 50%85

ratio of each type of fiber. The nomenclature of concrete and fiber proportions can

be also seen in Table 1. The mineral composition of UHPC after 28 days obtained

by X-ray diffraction technique is shown in Figure 1. The main mineral compounds at

room temperature were fundamentally quartz, C3S: Ca3SiO5 and Ca2FeAlO5. The

pozzolanic reaction between the large amount of active SiO2 (siica fume) in the high-90

strength admixture and Ca(OH)2 generated during the cement hydration, has formed

a lot of C-S-H gel and reducing Ca(OH)2 and CaCO3 content, as it can be seen in

Figure 1 [16].
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Figure 1: Mineral composition of UHPC

2.2. Thermoanalytic tests

Simultaneous thermogravimetric analyses (TA), differential thermal analyses (DTA)95

and differential scanning calorimetric (DSC) measurements were performed at the

Functional Characterization Service (University of Seville, Spain) on a TA (model

Q600-SDT) instrument, using alumina as reference material. The specimens were

placed into crucibles in a chamber within ambient air during the entire heating period.

The temperature was increased at a constant rate of 10 oC/min from room temperature100

to 400 oC.

2.3. Mechanical and fracture tests

Cubic specimens with 100 mm in length, cylindrical with 100 mm in diameter and

200 mm in height and 440 × 100 × 100 mm3 prismatic specimens were casted for

measuring standardized mechanical and fracture properties at room temperature and105

300 oC.

2.3.1. Testing at room temperature

The compressive strength was measured on four cubic specimens in accordance

with the EN 12390-3 standard [38]. The tests were performed in a servo-hydraulic

testing machine equipped with a load capacity of 3000 kN. The Young’s modulus was110

experimentally determined by four cylindrical specimens for every mixture according
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to the EN 12390-13 standard [39]. This test was performed by gradually loading, with

the same servo-hydraulic machine used for compression, until a third of its failure

load and measuring the relative strain by two linear variable differential transformer

(LVDT) sensors, 25 mm in length, one in front of the other, surrounding the cylinder.115

Four notched prismatic specimens were subjected to three-point bending tests for the

determination of the fracture energy in accordance with the RILEM work-of-fracture

method [40] and with the corrections proposed by Guinea et al. [41, 42, 43]. An in-

verse analyses based on the non-linear hinge model [44, 45, 46, 47] in order to obtain

the values of the bilinear tension softening diagram (Figure 2) was also performed.120

The bilinear softening diagram allows for the numerical simulation of concrete in real

applications [48]. Every specimen was sawn with a notch to depth ratio of one sixth.

The specimens were set up with a LVDT, 30 mm in length, mounted on a rigid frame

to avoid torsional effects, for both UHPC and UHPFRC to measure the mid-span de-

flection and a clip gage to measure the crack mouth opening displacement (CMOD).125

The utilization of the high range LVDT transducer allows the recording of the complete

load-displacement curve even for the fiber-reinforced mix.
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Figure 2: Bilinear tension softening diagram

2.3.2. Testing at 300 oC

The kind of tests and the number of specimens tested were the same as at room

temperature. Nevertheless, some modifications had to be carried out owing to the tem-130

perature. The main drawback of high temperature tests is the impossibility of set the
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sensors on specimens. The three-point bending tests were done during entire testing

within a furnace at 300 oC. In this way, the tests were performed on hot specimens with

the fracture energy reaching lower values than in case of residual cooled specimens

[49]. All specimens were heating for at least 24 hours before testing to ensure an ho-135

mogeneous temperature in the material. The testing equipment of the aforementioned

servo-hydraulic machine was specifically designed to be settled in a furnace. Thus,

the actuator and supporting framework can be entered inside the chamber. Notwith-

standing the foregoing, only load and actuator position data can be reported due to the

transducers cannot bear such high temperatures.140

For the estimation of the load-deflection curves from three point bending tests at

300 oC, this procedure was followed:

• It is assumed that the difference between the mid-span deflection and the actuator

displacement is due to the machine appliance strain during the loading process.

• From the room temperature tests, it is established a mid-span to deflection-145

actuator displacement ratio, Ω, for each load applied.

Ω =
Xdef

i

Xpos
i

, (1)

whereXpos
i andXdef

i are the actuator displacement and the mid-span deflection

at RT respectively.

• At 300 oC tests, it is estimated the mid-span deflection data from the Ω ratio for

each load recorded as follows:150

X ′defi300
= ΩXpos

i300
(2)

where the Xpos
i300

and X ′defi300
are the actuator position and the estimated mid-span

deflection at 300 oC respectively.

For the estimation of the stress-strain curves on the Young’s modulus tests the same

procedure was followed but using LVDT data where the mid-span deflection.
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2.4. X-ray computed tomography and image analyses155

The micro X-ray computed tomography technique was used to measure the porosity

by air entrapped during manufacturing and thermal damage generated as result of the

temperature exposure within the concrete matrix when the specimens reach 300 oC.

The X-ray inspection equipment, model Y.Cougar SMT of the YXLON company, from

the X-ray Characterization Service of the University of Seville, Spain was used. It160

consists of a multi-focus tube and wolframio target which allows the inspection in the

range between 25-160 kV and 0.01-1 mA intensity. The equipment let generate 2D and

3D images with a maximum geometric magnification of 2000×. The post-processing

of reconstruction and treatment of images were carried out using the VGStudio MAX

2.2.3 software of the X-ray Service of the University of Seville. The X-ray CT samples165

analyzed were sawn from the prismatic specimens similar to those of the three-point

bending tests (440 × 100 × 100 mm3) to avoid boundary effects in fiber distribution

and their dimensions were approximately 100 × 25 × 25 mm3. A schematic overview

of the dimensions and the zone from where every sample was extracted is shown in

Figure 3.a. Eight samples, four of each mix (UHPC and UHPFRC) were analyzed,170

each sample was extracted from a different prismatic specimen. The same four samples

were scanned at RT and after being subjected at 300 oC.

100

100

440

(a)

pores

�bers

(b)

Figure 3: (a) Extraction of the sawn core from prismatic specimens (b) pores and fibers in grey-scale image
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The X-ray CT analyses scans multiple 2D X-ray radiographs (Figure 3.b), in this

case of 1024x1024 pixels, which finally are digitally reconstructed (Figure 4) into 3D

absorption contrast image of the sample providing 3D information about the different175

density areas in the concrete matrix. The results, for these specific samples and materi-

als, provided a resolution around 40 µm in the three cartesian directions. The reduction

of the artificial defects such as beam hardening and ring effects [50, 51] was done by

post-processing. One of the multiple 2D images is shown in Figure 3.b, in which can

be observed: the darkest area, display the least density area (voids); the whitest area,180

the most density part (steel fibers) and the concrete matrix in the intermediate grey-tone

values.
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(a) (b)

(c) (d)

Figure 4: Pore distribution in specimens after 3D reconstruction (a) UHPC at RT (b) UHPC at 300 oC (c)

UHPFRC at RT (d) UHPFRC at 300 oC

The definition of the accurate grey-scale threshold which determines the interesting

areas (matrix, pores and steel fibers) is essential for obtaining accurate and reliable data

for analyzing [50]. For the segmentation into different phases according to grey-scale185

thresholds and post-processing analyses was used the AVIZO software. Figure 5 shows

the sensitivity curves, proposed by Qsymah et al. [50], for the determination of the pore

volume fraction according to grey-scale threshold values.
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Figure 5: Sensitivity curve of pore volume fraction versus grey-scale threshold

The form of the sensitivity curves corresponds to an approximated linear progres-

sion within the lowest grey-scale threshold values. As can be seen in Figure 6.a,190

only part of the pores is selected (red zone) when grey-scale threshold values are low.

Whether the threshold value is increased, the selected pore area (red zone) rises fol-

lowing an approximated linear progression [50]. Nonetheless, whether all of pores are

closed to be completely selected, the darkest pixels within matrix area start to be filled

and as a consequence, the linear progression becomes onto exponential form, as can be195

seen in Figure 5. In this study, the optimum threshold value has been chosen, for all

samples analyzed, as the volume fraction value (circle points in Figure 5) that differs

less than 0.1 from the linear regression line (dash line in Figure 5). That deviation was

considered the most appropriate value which does not affect the solution.
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(a) (b)

Figure 6: Pore segmentation areas for different grey-scale threshold values: a) 4000 b) 12000

3. Results and discussion200

In this section, the results of the experimental tests for the determination of the

phase changes by means of thermogravimetric curves, the X-Ray CT analyses of sam-

ples and the mechanical and fracture properties at room temperature and 300 oC are

shown. The average value and the standard deviation are reported for each mixture.

3.1. Thermal analyses205

The thermal equipment used to analyze the UHPFRC sample provides the thermo-

gravimetric analyses (TG), the differential scanning calorimetry (DSC) and the differ-

ential thermal analyses (DTA) curves simultaneously for each sample. The informa-

tion about the phase transitions and transformations were determined by the inflection

points (peaks) in DTA diagrams [11, 52] (dash-point curve in Figure 7).210

From the thermal analysis diagrams (Figure 7) different temperature ranges can

be defined. The first observed effect is the evaporation of moisture and the water in

capillary pores in the range from 20 to 250 oC (4.5% wt of mass loss) [36, 53, 54]. The

second, in the range of 250 and 400 oC, dehydration of C-S-H gel is observed, with a

total loss mass of 2.5% wt [52, 54].215
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Figure 7: Plots of the TG, DTA and DSC curves of UHPC sample from room temperature to 400 oC

3.2. Analyses of the porosity by X-ray CT images

The interpretation of X-ray CT data was performed using Avizo software, which

is specialized in X-ray CT treatments. The porosity, φ, their average and maximum

equivalent diameter, daveq and dmax
eq , and the average sphericity Ψav are shown in Table 2

at room temperature and 300 oC for each mixture, UHPC and UHPFRC. The porosity220

parameters in Table 2 have been determined as display below:

φ =
Vpores

Vsample − Vfibers
, (3)

deq =
3

√
6Vpore
π

, (4)

Ψ =
π1/36V

2/3
pore

Apore
, (5)

where Vpore is the volume of pore analyzed, Vsample is the total volume of sample,

Vfibers is the volume occupied by fibers within the sample analyzed and Apore is the
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surface area of a pore.

225

Table 2: Porosity parameters of mixes at room temperature (RT) and 300 oC

Parameters RT 300 oC

φ (%) for UHPC 3.9 ± 0.1 5.0 ± 0.3

daveq (mm) for UHPC 0.29 ± 0.03 0.29 ± 0.02

dmax
eq (mm) for UHPC 2.36 ± 0.29 2.40 ± 0.27

Ψav for UHPC 0.97 ± 0.01 0.96 ± 0.01

φ (%) for UHPFRC 1.9 ± 0.1 2.6 ± 0.1

daveq (mm) for UHPFRC 0.38 ± 0.08 0.27 ± 0.01

dmax
eq (mm) for UHPFRC 2.67 ± 0.50 2.69 ± 0.49

Ψav for UHPFRC 0.92 ± 0.02 0.92 ± 0.02

From values of the porosity and cumulative pore volume of each pore, their evo-

lution with regard to the equivalent diameter is presented in Figure 8. At room tem-

perature, it is observed as the addition of steel fibers (UHPFRC) significantly reduces

the porosity, φ (Figure 8.a), from 3.9% to 1.9% in the concrete matrix in comparison

to non-reinforced concrete (UHPC), as also can been confirmed in Table 2 results. Al-230

though some authors have obtained that the fiber addition distorts the concrete matrix

and the pore volume can increases [9, 10], other authors have obtained a decrease in the

pore volume for high contents of fiber as occurred to Wang et al. [55] and Ponikiewski

et al. [8] in their porosity studies of concrete mixes with different fiber volume content.
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Figure 8: Equivalent diameter distribution: (a) porosity and (b) cumulative pore volume

The heating of the material to 300 oC increases its porosity (Figure 8.a), from 3.9%235

to 5.0% for UHPC and from 1.9% to 2.6% for UHPFRC (Table 2), which implies a ther-

mal damage generated within the material. The heating of UHPC samples causes high

internal pressure as a result of two processes: the evaporation of free water, between 20

and 250 oC [54], and dehydration of C-S-H gel [53, 54], between 250 and 400 oC, as

additionally was confirmed for these mixes from the thermogravimetric analyses (Fig-240

ure 7), as described in the previous subsection. These effects in conjunction with the

lower porosity of the matrix in UHPC with respect to ordinary concrete [1, 56], leads to

high internal stresses that infer into the propagation of thermal damage. If the damage

is significantly high, might lead to an explosive spalling [11, 13, 14, 15]. Figure 8.b

reveals that the UHPC shows an almost identical pore-size distribution curve at RT and245

300 oC. However, the UHPFRC shows a wider difference on the pore-size distribution

by thermal effect that infer no homogenization with regard to damage propagation.

3.2.1. Diagrams of equivalent diameter

Using the geometrical data of each pore, the diagrams of equivalent diameter at RT

and 300 oC have been performed for each mixture, UHPC in Figure 9 and UHPFRC in250

Figure 10, from the division of the entire range of values into intervals. These diagrams

(Figure 9 or Figure 10) represent pore density, which is defined as the number of pores

per cubic millimeter.
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In Figure 9, it is observed that the maximum concentration of pores is in the inter-

val range 0.15-0.20 mm of the equivalent diameter and more than 50% of pore den-255

sity is between 0.10-0.25 mm. That implies a high packing density of matrix in a

UHPC as was expected [57]. The amount of pores with an equivalent diameter higher

than 0.6 mm is almost nonexistent. When the UHPC is heated at 300 oC, the gener-

ated thermal damage in the matrix of concrete clearly increased pore density in every

pore-diameter interval. It is worth noting that as the damage affected more severely260

to the lowest equivalent diameter and the interval range most influenced was the 0.15-

0.20 mm range which is the interval of the highest pore density at RT.
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Figure 9: Equivalent diameter distribution of UHPC at RT and 300 oC represented by pore density

Regarding the UHPFRC equivalent diameter results (Figure 10), it is shown a de-

crease of porosity at RT, always below the UHPC values (Figure 9), so that the ad-

dition of steel fibers decrease the porosity of matrix, as demonstrated in Table 2 and265

Figure 8. The interval range of equivalent diameter with higher pore density is between
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0.15-0.30 mm and the higher value 0.04 pores/mm3. The pore density diagram is re-

markably flat which infers a significant low porosity and a uniform distribution of pore

size in comparison with UHPC (Figure 9). When the UHPFRC concrete is heated to

300 oC (Figure 10), it is observed as the thermal damage modifies the pore distribution270

in the concrete matrix due to an increase of pore density specially in the interval range

0.10-0.25 mm, as shown in Figure 10.
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Figure 10: Equivalent diameter distribution of UHPFRC at RT and 300 oC

The maximum interval range of pore density is 0.15-0.20 mm, as occurred in UHPC

at any temperature although the pore density value is lower than those cases (0.16

pores/mm3).275

3.2.2. Diagrams of pore volume

Diagrams of pore volume for each mixture, UHPC in Figure 11 and UHPFRC in

Figure 12, are represented from the division of the entire range of values into intervals.
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The x-axis represents the range of pore volume (in mm3) and the y-axis displays pore

density.280

Regarding the UHPC, the Figure 11 shows that the most significant concentration

of pores is contained in the 0.001-0.002 mm3 interval range with pore density value of

0.14 pores/mm3. There is a higher pore concentration (more than 50%) in the range

below 0.009 mm3 that confirms the low porosity of matrix expected for this type of

concrete. When the temperature in the UHPC reaches 300 oC, the thermal damage in285

the matrix is derived into a higher pore density in the interval range of pore volume

below 0.017 mm3. It is interesting remark as the biggest pores are not influences by

the thermal damage. The maximum pore density occurs in the same maximum interval

range (0.001-0.002 mm3), yet the value rises into 0.18 pores/mm3.
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Figure 11: Pore volume distribution of UHPC at RT and 300 oC: (a) pore density and (b) percentage of pores

In the UHPFRC at RT (Figure 12), it is observed a significant decrease of pore290

density in all interval range leading to a greatly low porosity due to the addition of
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steel fibers. The maximum pore density is between 0.001-0.002 mm3 with a value of

0.018 pores/mm3. The effects of thermal damage at 300 oC in the pore density diagram

(Figure 12) showed a sizeable increment in the pore volume range below 0.005 mm3

(50% of pore volume) but not a significant influence for higher pore volume. The295

maximum pore density is generated in the interval range 0.001-0.002 mm3. This is in

accordance with that results observed for equivalent diameter diagrams.
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Figure 12: Pore volume distribution of UHPFRC at RT and 300 oC: (a) pore density and (b) percentage of

pores

Table 3 summaries pore density (in pores/cm3) and outlines the pore volume inter-

vals higher than 0.1 mm3, in which the amount of pores are less numerous and as a

consequence they were not included in Figure 11 and Figure 12. Regarding the ther-300

mal effect in the UHPC in comparison to the UHPFRC, it is shown as the porosity with

pore volume higher than 0.5 mm3 is not affected, as it is inferred of the invariability of

pore density for any type of mixture (UHPC and UHPFRC) and temperature (RT and
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300 oC). Nevertheless, pore density lower than 0.5 mm3 rises due to the thermal dam-

age. In that interval, there is a slight increase of pores in the range 0.5-0.1 mm3 which305

is still more significant in the range below 0.1 mm3 as was observed in the diagrams. In

the UHPFRC clearly the number of pores is centralized in the smallest interval (below

0.1 mm3), with a 162% of increment, because of the bridging effect of the fibers that

avoid the free crack propagation [58, 59] in comparison with the UHPC with a 64% of

increment in the same interval.310

Table 3: Pore density results organized by pore volume ranges at RT and 300 oC

Pore density (pores/cm3 )

> 1 mm3 1 − 0.5 mm3 0.5 − 0.1 mm3 < 0.1 mm3

UHPC RT 3 ± 1 6 ± 2 67 ± 13 1020 ± 254

UHPC 300 oC 3 ± 1 6 ± 3 90 ± 7 1680 ± 625

UHPFRC RT 3 ± 1 4 ± 1 26 ± 7 245 ± 115

UHPFRC 300 oC 3 ± 0 4 ± 0 31 ± 3 644 ± 40

From the sphericity results for each pore, the average value is shown in Table 2

for each mixture and temperature. As observed, the thermal effect has not significant

influence on the sphericity of both mixes (UHPC or UHPFRC) because only the small-

est pore-size, whose Vpore/Apore ratio is higher, are deteriorated by thermal damage.

Thus, the sphericity does not suffer significant variations in their values, as can be seen315

in Table 2. Regarding the UHPC in comparison with UHPFRC, it is observed as the

fiber addition infers a slight reduction on the sphericity due to air bubbles generated in

the casting of fresh concrete that are positioned around steel fiber and it produces the

pore structure deformation [9, 10], as can be observed in Figure 13.
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Figure 13: Pores around fibers with sphericity lower than 0.4

At 300 oC, it is concluded that small pores are the most numerous in concrete, both320

in equivalent diameter and in volume in any type of concrete, UHPC or UHPFRC. The

internal pressure produced by the temperature exposure affects more strongly to the

smallest pores but the damage propagation in the concrete matrix by heating depends

on the mix, UHPC or UHPFRC. In the UHPC, the absent of steel fibers, which act

like barriers avoiding the damage propagation, generates higher total porosity and a325

more uniformly pore-size distribution in the concrete matrix. In the UHPFRC, the total

porosity is reduced by the presence of an elevated amount of fibers, yet the pore-size

is slightly higher due to the air bubbles concentration around fibers, as can be seen in

daveq and dmax
eq at RT (Table 2). Furthermore, the thermal damage propagation leads to

a clear concentration of porosity in the smallest pore-size range due to the bridge effect330

of fibers that prevent damage propagation. This is in accordance with daveq in Table 2

whereby this is practically constant for UHPC and lower for UHPFRC at 300 oC.

3.3. Mechanical and fracture properties

In this section, the mechanical and fracture properties of UHPC and UHPFRC are

shown. All results correspond to the average of four specimens tested for each mixture335

and temperature with indication of the standard deviation.
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3.3.1. Mechanical properties

From the mechanical property tests, the compressive strength, fc, and Young’s

modulus,Ec, of each mix and temperature are shown in Table 4. Comparing the UHPC

and the UHPFRC at RT, the compressive strength in the UHPFRC is higher due to the340

presence of fibers reducing the total porosity of the material, as shown in the porosity

values in Table 2 and the bridge effect of fibers which difficult the crack propagation.

The Young’s modulus slightly increased, showing that the fiber reinforcement does not

provide remarkable enhancement, as obtained by other authors [60]. Regarding the

UHPC and UHPFRC at 300 oC, both materials led to a lower compressive strength and345

Young’s modulus due to the higher porosity generated by thermal damage within the

concrete matrix. The main difference was that the decreasing in UHPFRC was signifi-

cantly higher than UHPC, in 15% and 8% respectively because the pore density change

is higher in UHPFRC, as shown in Figure 12.

Table 4: Mechanical properties of UHPC and UHPFRC at room temperature and 300 oC

room temperature 300 oC

UHPC UHPFRC UHPC UHPFRC

fc (MPa) 124.6 ± 7.7% 147.4 ± 6.4% 114.1 ± 19.0% 125.5 ± 13.9%

Ec (GPa)∗ 47.7 ± 3.2% 49.2 ± 2.9% 28.2 ± 5.4% 30.4 ± 4.2%

∗ Measured on cooled specimens (residual property)

3.3.2. Fracture properties350

The fracture properties of UHPC and UHPFRC at RT and 300 oC are shown in

Table 5. The tensile strength, ft, was determined from the bilinear softening diagram

parameters in the UHPFRC and from the splitting test in the UHPC because is not

possible to obtain a softening behavior at 300 oC. To identify the parameters of the

bilinear tension softening diagrams of the mixes an inverse procedure was used based355

on the non-linear hinge concept [44, 45, 46]. The size-independent fracture energy was

determined according to the work-of-fracture method of RILEM with the corrections

proposed by Guinea et al. [41, 42, 43]. The fracture energy and the characteristic
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length are defined as follows:

GF =
WF.M +WF.NM

Alig
, (6)

lch =
GFEc

f2t
, (7)

where WF.M is the measured work-of-fracture (area under the measured load-360

displacement curve), WF.NM is the non-measured work-of-fracture and Alig is the

ligament area.

Regarding the room temperature tests, as the tensile strength results, ft, of UHPC

were determined by splitting tensile tests and of UHPFRC by bilinear inverse analyses.

This leads to cannot compare the results of UHPC with UHPFRC although it is pos-365

sible to do a qualitative comparison. In both mixes, it is showed a significant increase

of tensile strength due to the fiber-reinforcement, as expected. The steel fibers have

a bridge effect on the crack front that avoid any eventual micro-cracking. The frac-

ture energy, GF , and characteristic length, lch, are extremely higher in UHPFRC than

UHPC due to the presence of fibers. In the UHPC and UHPFRC at 300 oC, the tensile370

strength greatly decreased due to the same reasons that the thermal damage affected

the compressive strength. The fracture energy was reduced to 40% on UHPFRC. For

UHPC it could not be determined because the CMOD and LVDT transducers does not

support that temperature. The characteristic length was strongly increased up to 64%

due to having greater porosity in the matrix.375
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Table 5: Fracture properties of UHPC and UHPFRC at room temperature and 300 oC

room temperature 300 oC

UHPC UHPFRC UHPC UHPFRC

ft (MPa) 5.9 ± 16.3% 16.3 ± 25.0% 3.7∗ ± 7.4% 9.4 ± 19.6%

GF (N/m) 63.36 ± 5.3% 54973 ± 8.1% − 26919 ± 18.6%

lch (mm) − 3315 ± 8.1% − 9339 ± 18.6%

∗ This property was determined by splitting tensile tests on cooled cylindrical speci-

mens.

3.3.3. Bilinear softening diagrams

Figure 14 shows the result of the non-linear hinge model method over the load-

deflection curves. The experimental load-deflection curve (continuous line) is the av-

erage of four tests. The hinge model method was applied on the mean load-deflection

curves of UHPFRC at RT (Figure 14.a) and 300 oC (Figure 14.b). As observed, the380

maximum bearing capacity and the work-of-fracture corresponding to the total area

below the load-deflection curve decreases caused by the thermal damage in accordance

with the fracture energy results shown in Table 5.
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Figure 14: Average experimental load-deflection curves and fitted hinge model (a) at room temperature and

(b) at 300 oC

The bilinear tension softening diagrams are shown in Figure 15. The area below the

bilinear diagram decreased coherently with the fracture energy results shown in Table 4385
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and the load-deflection curves (Figure 14). Table 6 shows the values of the parameters

of the bilinear tension softening diagram corresponding to Figure 15.
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Figure 15: The average bilinear stress-crack opening width diagram for UHPFRC at room temperature and

300 oC

Table 6: Parameters of the bilinear softening diagram corresponding to the size-independent specific fracture

energy at room temperature and 300 oC

UHPFC a1 (mm−1) a2 (mm−1) w1 (mm) wc (mm) σ1 (MPa)

room temperature 2.755 0.563 4.79 10.29 3.10

300 oC 2.043 0.395 3.45 9.11 2.35

Additionally, Table 7 shows the values of the toughness indices according to the

ASTM standard [61] for UHPFRC at RT and 300 oC, which were determined from the

experimental average load-deflection curves in Figure 14. As it is shown, the thermal390

damage at 300 oC rises the toughness of concrete in any interval (I5, I10 and I30) as

shown in Table 7. On the other hand, as all specimens had the same size, a ductility

analyses can be performed from the characteristic length values in Table 5 [62]. The

ductility on the UHPFRC at 300 oC increased (Table 5) due to the greater quantity of
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pores in its matrix (Table 2), as expected. The evolution of toughness and ductility395

values shown to be in accordance.

Table 7: Toughness indices of UHPFC specimens at room temperature and 300 oC

UHPFC I5 I10 I30

room temperature 4.08 8.98 29.06

300 oC 5.46 11.93 39.86

3.4. Effects of matrix microstructure on mechanical and fracture behavior

In this section, a more detailed discussion regarding the influence of the observed

changes in the microstructure of the matrix (porosity) on the mechanical and fracture

properties of concrete.400

3.4.1. Effect on compression strength and Young’s modulus

The dependence of the compressive strength of concrete with the porosity of its ma-

trix has been widely studied by several authors in the past [63, 64, 65]. Obviously, an

increase of the porosity leads to a reduction of compressive strength [63] and the studies

have been mainly focused on the determination of the relationship between compres-405

sive strength and porosity (or internal structure) of the matrix. Thus, the increase of

compressive strength obtained in this work for the UHPFRC, at room temperature, with

respect to the non-reinforced mix is due to the crack bridging effect of fibers and the

reduction of porosity in the matrix originated by the fiber’s addition. At 300 oC the

increase of porosity, originated by the steam pressure generated in the heated matrix,410

leads to a decrease in compressive strength (Table 4). The heating causes an increase

in porosity of 37%, which produces a reduction in the compressive strength of 15%.

With regard to the Young’s modulus of the studied concretes, the addition of steel

fibers did not show a clear influence on this parameter (Table 4), as had been obtained

by other authors [60]. However, the damage of the microstructure of the matrix, caused415

by the increase in temperature, clearly reduce this property. Some authors [66] obtained

that this parameter is influenced fundamentally by the existence of a large number of
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pores with sizes in the order of nanometers, rather than by the existence of a smaller

number of pores with sizes in the order of millimeters. As can be observed from re-

sults (Table 3), the addition of steel fibers especially modifies the pore structure of420

the matrix at the microscale so it is not observed any remarkable improvement of the

Young’s modulus for the fiber-reinforced mix with respect to the non-reinforced one

(Table 4). Nonetheless, the thermal damage generated by the vapour pressure affect

to the smallest pores at the nanoscale, reducing significantly the value of the Young’s

modulus (41% and 38% for the UHPC and UHPFRC mixes respectively).425

3.4.2. Effect of porosity on fracture behavior

The fracture of concrete requires the development of the well-known Fracture Pro-

cess Zone (FPZ) [67], which include the processes of micro-cracking, coalescence,

crack branching and frictional interlocking inferred through the weak interfacial tran-

sition zone (ITZ) between aggregates and the cement paste [68]. According to the ficti-430

tious crack model of Hillerborg [69], cohesive normal stresses are developed within the

FPZ ahead of a pre-existing crack, with a value equal to the tensile strength of concrete

at the crack tip, followed by a descending part (softening) until the stresses reach zero

at the end of the FPZ. The distribution of these cohesive stresses is usually modeled

by a bilinear softening diagram [70] in which the normal stress, σ, is a function of the435

crack opening width, w, in the FPZ (Figure 2). The first linear branch of the softening

diagram is mainly related to the micro-cracking, while the second linear branch is a

result of the frictional aggregate interlock [71].

In case of the concrete mixes studied in this work, the mechanisms involve in their

fracture behavior are substantially different than those of normal plain concrete for two440

main reasons: the absence of coarse aggregate and the presence of steel fibers in the

reinforced mixes. When steel fibers are added to the concrete matrix they produced

a remarkable increase of its fracture properties (fracture energy and tensile strength)

mainly due to the crack bridging effect of fibers [72], which greatly increases the en-

ergy absorption capacity of the fiber-reinforced concrete. Cohesive models are also445

applicable for the study of the fracture behavior of this type of concrete [73] when a

pre-existing crack (or notch) exists. Some authors have proposed bi-linear [74, 75] tri-
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linear [73, 76] and polylinear [34] tension softening diagrams for the FPZ ahead of the

crack tip in fiber-reinforced concrete.

In this work, a highly respectable agreement has been obtained between the ex-450

perimental P − δ curves and the fitted ones by using the non-linear hinge model with

bi-linear cohesive laws, as shown in Figure 14. The entire σ−w diagram is influenced

by the presence of fibers but the initial linear branch is more related with the internal

microstructure of the matrix [71] and the toughening and bridging effects of fibers [77],

whereas the second linear branch is mainly governed by the pull out of fibers [73]. As455

can be observed in Figure 15, the initial fracture energy (Gf ) for the analyzed UH-

PFRC represents a high value with respect to total energy (GF ), essentially motivated

by its dense microstructure as well as by the reinforcement of the matrix that the fibers

provide. The values of Gf = 1/2ftw1 (see Figure 2) obtained at room temperature

and 300 oC are 48248 and 22043 N/m, respectively.460

As has been described beforehand, heating up to 300 oC generates a high steam

pressure in the concrete matrix which infers internal damage and increases the total

porosity (Table 2). The most affected pores were those with a volume lower than

0.009 mm3, as observed in Figure12. The increase in temperature generates a deterio-

ration of the microstructure of the matrix, mainly increasing the small-size pores and465

subsequently, causing greater initial micro-cracking. The effects of this initial deterio-

ration are felt in the lowest values of the mechanical properties (Table 4), as well as of

the fracture parameters (fracture energy and bi-linear softening diagrams) obtained for

the hot concrete (Tables 5 and 6).

The obtained value of the specific fracture energy was lower at 300 oC than at room470

temperature, due to the deterioration experienced by the matrix. This effect was also

evidenced by the higher value of the characteristic length obtained at 300 oC (Table 5)

and originated by the weakening of the material [62].

With regard to the bi-linear cohesive laws, it is observed that at 300 oC the slope

of the initial linear branch, a1, and the area under it ,Gf , decreases with respect to the475

values obtained at RT, as a consequence of the increase in the porosity of the matrix

and its lower resistance to crack propagation. Likewise, the value of the slope of the

second linear branch, a2, also decreases with temperature due to the deterioration of the
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internal structure of the matrix as well as the effect of concentration of small-size pores

around the fibers (Figure13), which leads to a reduction in the adherence of the fibers.480

According to the results, the effect of the lower resistance to the propagation of cracks

of the matrix originated by the change of its internal structure at high temperature is

more remarkable than the loss of adhesion of the fibers, since the ratio of the initial

fracture energy with respect to total energy (Gf/GF ) at 300 oC is lower (0.82) than

that obtained at room temperature (0.88).485

4. Conclusions

In this work, the results of the thermogravimetric analyses and X-ray computed to-

mography techniques have been compared in order to find a direct relationship between

phase changes and pore structure in the concrete matrix due to temperature exposure.

Furthermore, the work interrelates the mechanical and fracture properties of UHPFRC490

with the pore structure deterioration due to the thermal damage. This issue has not

been dealt with up to the present using UHPFRC and by using the X-ray CT technique.

From results the following conclusions can be drawn:

• The reduction of the compressive, tensile strength and fracture energy by ther-

mal damage is more abrupt, in relative terms, in UHPFRC due to its low initial495

porosity at room temperature, determined by X-ray CT scan, in comparison with

UHPC.

• The internal stresses generated by thermal gradient, evaporation of moisture and

dehydration process only affected to those pores smaller than 0.5 mm3 in both500

mixes. Nevertheless, the thermal damage within the reference UHPC matrix

was propagated freely and predominantly affected to wider pore-size (below

0.04 mm3) than in UHPFRC matrix (below 0.01 mm3) where the steel fibers

formed barriers to avoid the free propagation of the thermal damage.

505
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• The addition of steel fibers decreased the initial porosity at room temperature,

improving the mechanical and fracture properties, though these deformed the

porosity shown by the lower average sphericity. The lower porosity of UHPFRC

leads to a more significant loss of strength by thermal damage since the internal

pressure does not have any means of evacuation.510

• The presence of steel fibers infers a slightly higher average pore diameter due to

the known process that air bubbles in fresh concrete are preferentially positioned

around fibers, which is duly confirmed with this work.

515

• In relative terms, the temperature effect at 300 oC damaged more significantly

to UHPFRC but the mechanical properties and especially the fracture properties

were still higher than UHPC because the total porosity was lower and especially

affected to the smallest pore-size.

520

• The increase of porosity caused by the thermal damage improved the toughness

and ductility of UHPFRC since the fibers, with high toughness and ductility,

work more actively conducting to a higher deformation capacity.
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