
Received November 25, 2018, accepted January 23, 2019, date of publication January 29, 2019, date of current version February 14, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2895913

A Study on the Suitability of Visual Languages
for Non-Expert Robot Programmers
JOSÉ MARÍA RODRÍGUEZ CORRAL 1, IVÁN RUÍZ-RUBE 1, ANTÓN CIVIT BALCELLS2,
JOSÉ MIGUEL MOTA-MACÍAS1, ARTURO MORGADO-ESTÉVEZ1,
AND JUAN MANUEL DODERO 1
1School of Engineering, University of Cádiz, 11519 Cádiz, Spain
2Technical School of Computer Engineering, University of Seville, 41012 Seville, Spain

Corresponding author: José María Rodríguez Corral (josemaria.rodriguez@uca.es)

This work was supported by the Spanish National Research Agency (AEI), under developed in the framework of the VISAIGLE Project
with ERDF funds under Grant TIN2017-85797-R.

ABSTRACT A visual programming language allows users and developers to create programs by manipulat-
ing program elements graphically. Several studies have shown the benefits of visual languages for learning
purposes and their applicability to robot programming. However, at present, there are not enough comparative
studies on the suitability of textual and visual languages for this purpose. In this paper, we study if, as with
a textual language, the use of a visual language could also be suitable in the context of robot programming
and, if so, what the main advantages of using a visual language would be. For our experiments, we selected
a sample of 60 individuals among students with adequate knowledge of procedural programming, that was
divided into three groups. For the first group of 20 students, a learning scenario based on a textual object-
oriented language was used for programming a specific commercial robotic ball with sensing, wireless
communication, and output capabilities, whereas for the second and the third group, two learning scenarios
based on visual languages were used for programming the robot. After taking a course for programming the
robot in the corresponding learning scenario, each group was evaluated by completing three programming
exercises related to the robot features (i.e. motion, lighting, and collision detection). Our results show that
the students that worked with visual languages perceived a higher clarity level in their understanding of the
course exposition, and a higher enjoyment level in the use of the programming environment. Moreover, they
also achieved an overall better mark.

INDEX TERMS Authoring systems, educational robots, engineering education, interdisciplinary projects,
visual programming.

I. INTRODUCTION
In order to make the creation of new applications easier for
people without programming skills, recent software develop-
ments include programming tools that hide much of the com-
plexity of traditional languages. On the other hand, it has been
noted that students frequently experiment difficulties when
learning traditional programming languages [1], [2] - such as
C, C++ and Java - and abstract programming concepts [3].

A Visual Programming Language (VPL) [4] is any pro-
gramming language that lets users create programs by manip-
ulating program elements (variables, conditional statements,
loops, functions, . . .) graphically rather than by defining

The associate editor coordinating the review of this manuscript and
approving it for publication was Bora Onat.

them textually. They are systemswhere icons, symbols, charts
and forms are used to specify a program [5]. Also, authoring
tools allow a person to develop an application simply by
linking together objects, such as a picture, a sound or a text
paragraph. Authors can create useful and attractive graphics
applications by simply describing the object’s relationship
among themselves and by sequencing them in an appropriate
order [6].

In this sense, we can mention two tools: Scratch [7]–[9]
for developing interactive stories, games, and animations, and
App Inventor [10]–[12] for developing Android mobile appli-
cations. Both use a visual language based on interlocking
visual elements which have to be assembled for specifying
the behavior of the new applications. Those tools whereby
programs are created by assembling visual blocks like the

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

17535

https://orcid.org/0000-0003-1988-5702
https://orcid.org/0000-0002-9012-700X
https://orcid.org/0000-0002-4105-5679


J. M. Rodríguez Corral et al.: Study on the Suitability of Visual Languages for Non-Expert Robot Programmers

pieces of a puzzle would be suitable for novice program-
mers [13], including those students in the first years whose
university degrees are not directly related to the computer
science discipline, such as sciences or industrial engineering.

VEDILS [14] stands for Visual Environment for Design-
ing Interactive Learning Scenarios. It extends App Inventor
allowing users to develop interactive, contextual and ubiq-
uitous learning scenarios based on virtual and augmented
reality technologies, as well as human-computer interface
devices [15]. Recently, learning analytics techniques have
been added to VEDILS [16], which provide the opportu-
nity of developing applications for learning with monitoring
capacities.

Currently, the use of robots for educative purposes is
widely extended: Robotics is a multidisciplinary study
field [17] which provides a learning environment that allows
students to consolidate their knowledge in Mathematics,
Physics, Electronic Engineering and Computer Science,
among other disciplines [18], [19]. Also, there are a variety
of development environments based on textual and visual
languages for programming educational robots [20].

In particular, Sphero [21], [22] is a very attractive small
robot which, in addition to its mobile capabilities, has internal
lighting and also incorporates sensors for detecting colli-
sions and orientation changes. It can be controlled using a
computer or a smartphone, and its programming capabilities
make this device a suitable tool for teaching programming
languages [23].

Event-based programming [24] is the prevailing paradigm
used in GUIs and other applications (e.g. JavaScript web
applications), which perform specific actions in response to
user input. In this paradigm, the program flow is driven by
events such as user actions (key presses and mouse clicks),
messages from other threads or programs, or sensor outputs.
In this vein, a collision detection by a Sphero robot or the
press of a button in a VEDILS application raises events
that can be detected and handled by programs written in
textual/visual programming languages with event-based pro-
gramming features.

In view of the above, it is possible to think that VPLs make
program understanding easier and program developing more
enjoyable and intuitive because of their use of visual informa-
tion. However, it is necessary to perform the corresponding
experiments and obtain empirical and quantitative results that
confirm such assumptions. In fact, Navarro-Prieto and Cañas
[5] conduct an experiment to explain why and under what
conditions VPLs would be easier to understand than tex-
tual programming languages. In such experiment, the mental
models of spreadsheet and C programmers are evaluated in
diverse program understanding situations, in order to con-
clude if VPLs enable a faster construction of a mental repre-
sentation based on data flow relationships of a program than
imperative languages.

An empirical study was carried out in [25] about the use by
adult end-user programmers of a visual programming envi-
ronment (Modkit Alpha Editor) for the Arduino open source

hardware-software platform in comparison with its default
textual environment. The authors concluded that visual envi-
ronments help to create and modify programs, and provide a
more positive user experience along with the perception of a
reduced workload and a higher success.

In another work [26], Weintrop and Wilensky study high
school students’ perceptions about the blocks-based pro-
gramming approach. Students in three sections of an intro-
ductory programming course took part in the experimental
tests for the first ten weeks of the school year. The three
classes participating in the study used different modified
versions of the Snap! programming environment during the
first five weeks of the course, and then transitioned to Java
for the next five weeks of the study.

Students reported that several factors, such as the natural
language labels on the blocks, their shapes and colors, the
drag-and-drop composition interaction and the ease of brows-
ing the blocks library contribute to making blocks-based
programming easy. Moreover, they also identified drawbacks
to blocks-based programming compared to the conventional
text-based approach, including challenges in authoring larger
and more sophisticated programs, issues of expressive power
and a perceived lack of authenticity (i.e. to what extent the
programming environment and practices conform to non-
educational and conventional programming contexts).

Also, in [27] an analysis is performed about the com-
pletion of a simple programming activity by two groups of
novice students, in order to compare the block interface of a
programming environment with its textual counterpart. As a
result, the students that used the block interface were able
to meet a greater number of the activity goals in less time.
Likewise, in another study [28] comparing block-based and
text-based programming environments, the authors stated that
no difference was found between students with regard to
confidence in programming ability. However, students work-
ing with a block-based environment showed greater learn-
ing gains and a higher level of interest in future computing
courses.

In addition, another work [29] analyzes how blocks impact
the learnability of programming in contrast to textual lan-
guages. After reviewing studies on the effectiveness of block
languages, the authors discuss their key features and how they
relate to learning. Block programming rely on recognition
instead of recall, reduce the cognitive load by chunking code
into a smaller number of meaningful elements and provide
constrained direct manipulation of structures, that help users
assemble code without basic errors.

Moreover, various studies show the applicability of VPLs
to robot programming [30]–[32]. However, at present, there
are not enough comparative studies on the suitability of tex-
tual languages and VPLs for robot programming, although
some research has already been conducted on this [33]. On the
other hand, the lack of quantitative research on robot uses in
education has been criticized in the past [34], [35].

The educational approach proposed in this work aims to
introduce the students to the fields of robotics and visual

17536 VOLUME 7, 2019



J. M. Rodríguez Corral et al.: Study on the Suitability of Visual Languages for Non-Expert Robot Programmers

programming [4], [5] from an eminently practical point of
view, and also to familiarize them with event-based pro-
gramming [24], thus leading to a learning experience in an
interdisciplinary context. More precisely, we will try to
answer - using quantitative and qualitative results - the fol-
lowing question:
Could the use of a VPL also be suitable in the context

of robot programming as a ‘‘traditional’’ textual language
(imperative or object-oriented) is? And, if so, What would be
the main advantages of using a VPL?

This study aims to answer the questions raised above.
In particular, the study performed in [33] compares a block-
based interface developed by the authors (CoBlox) for
programming a one-armed industrial robot with two devel-
opment environments. The first one is based on a textual
programming language (RAPID), where the programs are
created and edited using the ABB’s Flex Pendant, whereas
the second is a menu-based programming tool (Universal
Robots’ Polyscope), where the programs are represented as a
series of nodes in a hierarchical tree and written used a tree-
based dialog driven strategy.

In this study, the participants were adults with little or no
prior robotics programming experience. For the three envi-
ronments, the participants used a simulated robot that per-
formed the programmed instructions. They were asked to
program the robot in order to accomplish a set of typical tasks
of real-world robots, all of them based on a ‘‘pick and place’’
routine.

The main results of this work show that participants using
CoBlox successfully completed more tasks and more quickly
compared to those who used the other two environments.
Moreover, participants using CoBlox reported greater levels
of satisfaction, ease-of-learning and ease-of-use.

For our study, we have used a physical mobile robot, so that
the cost of the device could be considered a disadvantage
of our approach. However, the Sphero educational robot has
an affordable price. Moreover, the capability of this type
of robot for moving around in its environment allows us to
design programming exercises of different nature to those
designed for a robotic manipulator. In this sense, we can
consider that our study is complementary to a certain extent.
Also, the collision detection feature of the Sphero robotic ball
allows us to design event-based programming exercises.

After stating the learning principles (Section II) and the
technological foundations (Section III) on which this work
is based, we describe those aspects related to the experi-
mental tests: participants, design and procedure (Section IV).
We started by developing three courses for programming
the Sphero robot in three learning scenarios: Object-oriented
Programming (OOP) in C# using theAPI for Sphero designed
in [23], visual programming using the Sphero Edu app [36]
and visual programming using the VEDILS authoring tool.

Next, we designed three programming exercises to be
resolved in every learning scenario: the first one deals with
Sphero mobile capabilities, the second exercise makes use
of the robot internal lighting, and the last uses its sensing

capabilities to detect collisions and execute an event handler
method in order to provide a response to the collision events.

Once the three student groups - corresponding to the three
learning scenarios - which participated in the experiment
completed the three programming exercises, we proceeded
to discuss the obtained results (Sections V and VI) and draw
the conclusions according to them.

II. LEARNING PRINCIPLES
In this section, we discuss two principles that underlie the
learning process of the students of the three experimental
groups: motivation and interdisciplinarity. First, the students’
motivation in their learning process is an essential aspect to
be considered:
‘‘Robotics has an inherent appeal on both emotional and

intellectual level that makes it attractive to a broad range
of learners across multiple dimensions, such as age, gen-
der or academic interest’’ [18].

Also, App Inventor have turned students from consumers
to developers of apps [10]. They have found enjoyable and
stimulating to create apps for their phones or tablets. Like-
wise, a workshop in design of mobile apps using App Inven-
tor [11] have helped participants to realize that they can build
their own apps in order to fit their needs.

Moreover, these students participated in a learning activ-
ity where they had to apply, using an integrated approach,
knowledge and skills from these disciplines: Robotics,
Object-oriented Programming, Visual Programming and
Event-based Programming [24]. A statistical analysis per-
formed in [19] shows the increase of the perception in the
relationship among robotics, mobile computing and many
other related disciplines - computer vision, electrical engi-
neering, embedded systems, mathematics, mechanical engi-
neering, physics, computer architecture, human-computer
interaction and operating systems - of a group of students
who took part in a Systems Programming course combining
mobile computing and robotics. Thus, interdisciplinarity is
also a relevant learning principle in the context of this work:
‘‘New thinking and innovation often occurs in the intersec-

tion between existing competencies and knowledge, and in the
encounter between persons with different professional back-
grounds. Firms are therefore seeking out knowledge workers
who possess the ability to think across disciplines and to work
together with others on common goals and tasks’’ [37].

III. TECHNOLOGICAL FOUNDATIONS
This section introduces the technological foundations this
work is based on: the Sphero robot, the SpherOOP
C# API [23], the Sphero Edu Android app [36] and the
VEDILS authoring tool [14]). Sphero [21], [22], [38] is a ball-
shaped robot [39] developed by Sphero (formerly Orbotix) to
be controlled by a smartphone, a tablet or a computer through
a Bluetooth link [40], [41]. In addition to its internal lighting,
it can roll at a speed of about two meters per second. Its
internal technology provides precision control and automatic
stabilization capabilities, with a low center of mass in order

VOLUME 7, 2019 17537



J. M. Rodríguez Corral et al.: Study on the Suitability of Visual Languages for Non-Expert Robot Programmers

to improve drivability and power efficiency. The purchased
article includes an inductive charger providing a charge-and-
go capability.
Sphero can stream data from the gyroscope for measuring

the angular velocity rate, the inertial measurement unit in
order to determine the orientation, and the accelerometer for
detecting shake gestures and collisions [42]. This information
can be used, for example, for enabling a Sphero device to act
as a controller of other smart devices with network-available
APIs which allow them to be controlled remotely [43].

The SpherOOP API developed in [23] provides a
derived class that inherits all the features of the original
SpheroNET [44] objects, but it adds new functionalities relat-
ing to motion and collision detection. SpheroNET consists of
a wrapper for the Sphero low level API [45], [46] and it is
based on the transmission of commands to a Sphero robot
over a Bluetooth link.

FIGURE 1. Inside Sphero SPRK edition.

Sphero SPRK Edition (Fig. 1) [38] is an educational ver-
sion of the robot with the same electronics and sensors as
Sphero 2.0. However, its transparent shell allows students
to see all the internal mechanisms. The in-box accessories
include a ‘‘genius kit’’ with pencil, notebook and protrac-
tor, instead of the ramps its predecessor came with. Also,
Sphero SPRK+ Edition uses Bluetooth Smart technology,
which makes the device connection process nearly instant,
and comeswith a strong scratch-resistant polycarbonate shell.
Sphero Edu [36] is the Sphero app for programming Sphero

robots. Its block-based drag and drop interface for building
apps allows students to learn the basic principles of program-
ming in an easy and fun way (Fig. 2). This app also allows
them to write JavaScript text programs that can directly con-
trol a Sphero device. Thus, once a program has been built as
a block sequence, the equivalent JavaScript code can then be
viewed.

App Inventor is a block-based visual programming tool
developed by Google which allows everyone, even beginners,
to start programming and create apps for Android devices.
Currently, App Inventor is maintained by the Massachusetts
Institute of Technology (MIT). Teachers and people in gen-
eral can develop apps for running on smartphones and tablets
using this authoring tool [10]. These apps can use the func-
tionalities provided by Android devices: multimedia features

(microphone, photo camera, video player,...), drawing and
animation, sensors (accelerometer, gyroscope, GPS loca-
tor,...), web services, sharing data with social networks, etc.

The App Inventor tool structure consists of various
elements: a Google Web Toolkit (GWT) application for
designing the user interface of the apps, a block editor for pro-
gramming their behavior by putting blocks together, a build
server to pack the design and the logic into an Android
Application Package (∗.apk), an interpreter that runs on the
mobile device for debugging the apps and a module with all
the built-in components (visuals and non-visuals), which are
needed by the other modules and are available to the end users
for developing their apps.

VEDILS project [14] (Fig. 3 and Fig. 4) has been built
on top of App Inventor, extending it with modules that give
teachers and educators the opportunity of including gestural
interaction, augmented reality capabilities [15], robotics and
learning analytics [16] in their mobile apps.

Fig. 3 and Fig. 4 show an example of use of the Leap
Motion controller [47]. When the sensor detects a movement
of any of the user’s fingers, the corresponding Android device
sends a command to the Sphero robot in order tomake it roll at
a certain speed in the direction of the finger movement. If the
user taps the Leap Motion controller with any of his or her
fingers, the robot stops rolling.

Also, when the user puts his or her left hand (hand 0)
over the LeapMotion controller, the robot vibrates/shakes ten
times with a pause of four seconds between two consecutive
vibrations. If the user takes his or her hand off the Leap
Motion controller, the robot stops vibrating. Finally, when the
user draws circles with any of his or her fingers over the Leap
Motion controller, the Sphero device spins as many times as
circles has been drawn by the user.

In order to integrate the control of the Sphero robot into
the VEDILS tool, we have used the API [48] for Android
devices developed by Sphero. A new non visible compo-
nent (SpheroControler) has been developed, consisting of
a Java wrapper class for the methods provided by the API
(ConvenienceRobot [49]). Fig. 5 shows the class diagram
corresponding to the implementation. It is important to note
the use of the ResponseListener interface for handling the
asynchronous messages sent by the Sphero device.

IV. EXPERIMENTAL TESTS
In order to provide answers to the questions that underlie
our research, posed in Section I, we carried out a set of
experimental tests about robot programming in three learning
scenarios based on textual and visual programming. Finally,
we made a comparative study of the results obtained with the
purpose of drawing some conclusions.

A. PARTICIPANTS
The students of Fundamentals of Computer Science, imparted
in the first year of the Degrees in Industrial Electronic,
Industrial Technology, Electrical and Mechanical Engi-
neering (University of Cadiz, School of Engineering), are

17538 VOLUME 7, 2019



J. M. Rodríguez Corral et al.: Study on the Suitability of Visual Languages for Non-Expert Robot Programmers

FIGURE 2. ‘‘SquareRoll’’ program developed with Sphero Edu Android app.

FIGURE 3. Designer view.

introduced to the C imperative programming language [50].
Thus, these students have been initiated in computer pro-
gramming but they still do not have an in-depth knowledge
about it. This starting condition makes them a suitable popu-
lation for our research.

As a sample for our study, we selected those students who
had a positive attitude toward learning and a high and similar
performance level during the Fundamentals of Computer

Science course. In this way, we can ensure that they were
really interested in computer programming. We selected a
sample of sixty students aged 18-19. All of them were men
as the percentage of women studying Industrial Engineering
(at least, in the University of Cadiz) is usually very low. None
of these students had a previous contact with object-oriented
programming, visual programming or robotics.

During the course and before the experiments were con-
ducted, the students took an assessment test on C language
programming. The selected students obtained an average
mark of 8.2 points (out of 10) with a standard deviation
of 0.7 points. These data show that the participants had a
similar and relatively high programming skill level.

Considering that, in our case, the participants had already a
basic knowledge of computer programming (use of constants
and variables, conditional and iterative statements, etc.), the
intended learning objectives were related to robot program-
ming (the Sphero robotic ball in this case) and event-based
programming.

Thus, at the end of the robot programming course the stu-
dents should know and be able to use the necessary elements
of the programming language used - textual or visual - in
order to:
• Send angle and speed data to the robot so that it executes
a specific trajectory (e.g. a circular trajectory).

• Send color data to the robot so that it changes the color
of its internal RGB LED (e.g. to make the robot change
successively its color every second among red, green and
blue).

• Make the robot perform a specific task when its
accelerometer detects a collision (e.g. to start rolling in
the opposite direction to the original one).

VOLUME 7, 2019 17539



J. M. Rodríguez Corral et al.: Study on the Suitability of Visual Languages for Non-Expert Robot Programmers

FIGURE 4. Block view.

FIGURE 5. Class diagram of the SpheroController VEDILS non visible component.

B. DESIGN
In this subsection, we will describe briefly the three
courses for programming the Sphero robot referred in the

introductory section of this article, which give raise to the
three learning scenarios. Next, we will explain the program-
ming exercises to be solved by the participants. Finally, we

17540 VOLUME 7, 2019



J. M. Rodríguez Corral et al.: Study on the Suitability of Visual Languages for Non-Expert Robot Programmers

will define the variables used in the experimental tests.
In order to carry out them, the total sample was divided into
three groups of twenty students. A simple random criterion
was used to distribute the sixty students among the groups.
Each group attended a different course:
• Object-oriented programming: The students in the first
group took part in a C# [51]–[53] OOP course using
the SpherOOPAPI developed in [23] for controlling the
Sphero robot through a PC.

• Visual programming using a mobile device: The
students in the second group participated in a visual
programming course using the Sphero Edu app for
mobile devices [36] in order to control the robot from
a tablet or an smartphone.

• Visual programming using an authoring tool: The stu-
dents in the third group took part in a visual program-
ming course using the VEDILS authoring tool for PCs in
order to control the Sphero device through a tablet or an
smartphone.

Each of the three groups of students had to solve, using the
programming resources available in the specific learning sce-
nario, the same three programming exercises: ‘‘SquareRoll’’,
‘‘RGBLed’’ and ‘‘MovingCollision’’. These exercises were
related to the functionalities of the Sphero robot: motion,
internal lighting and sensing capabilities.

The ‘‘SquareRoll’’ exercise uses the Sphero robot moving
capabilities in order to describe a squared path. After the
program (Fig. 2) has set Sphero back LED to its maxi-
mum intensity (255), the robot rolls at the maximum speed
(255) during 0.75 seconds. Then, the robot stops and, after
a delay of 1.5 seconds, the angle trajectory is incremented
by 90 degrees and the robot starts rolling again. This cycle
repeats indefinitely until the user stops the program exe-
cution. The direction of the trajectory is controlled by the
‘‘angle’’ variable, which successively takes the values 0, 90,
180 and 270.

The ‘‘RGBLed’’ exercise uses the Sphero internal lighting.
After initializing the variables and the Bluetooth connec-
tion to the robot, the program changes its color to white
for two seconds. Then, the main loop changes periodically
the color of the robot - red, green and blue - and plays a
different sound - ‘‘whistle’’, ‘‘ping’’ and ‘‘doorbell’’ - every
two seconds. Fig. 6 shows the solution to the exercise written
in C# using the SpherOOP API [23].

The ‘‘MovingCollision’’ exercise uses the Sphero capabil-
ity of sending an asynchronous message when its accelerom-
eter detects a collision. First, the program initializes the
Bluetooth connection to the robot, as well as its color to
red and the angle trajectory to zero degrees. Then, the pro-
gram configures the Sphero device to raise an event when
it detects an impact, and makes the robot roll at full
speed.

The event handling method plays a sound and updates the
robot color to the next one in a sequence composed by the
colors red, green and blue, as well as the angle trajectory, that
changes between 0 and 180 degrees. Finally, the robot is made

roll in the opposite direction to the previous one. Fig. 7 shows
the solution to the exercise implemented using VEDILS.

A ZIP package containing the material used for the
experimental tests is available through the link https://
goo.gl/7SJm6z. This material consists of the PDF presen-
tations (in Spanish) for the three courses - a standard C#
OOP course with example programs, an introduction to the
use of the Sphero Edu app and a presentation about the
VEDILS authoring tool -, the SpherOOPC# API source code
for controlling the Sphero robot, the ‘‘MovingSphero.cs’’
demo code, developed using theMicrosoft Visual Studio IDE,
the ‘‘TestingSphero.aia’’ and ‘‘MovingSphero.aia’’ VEDILS
demos, as well as the statements and solutions for the
three exercises in the three learning scenarios. In addition,
the sample data can be accessed through the IEEE DataPort
repository using the DOI http://dx.doi.org/10.21227/5x1h-
ad78. Finally, a short video-clip of the ‘‘MovingSphero.cs’’
C# demo execution can be watched accessing the link
http://youtu.be/swPNGf8RqZI.

The quantitative results of the experimental tests were
expressed as a set of indicators, calculated as the mean values
of the data obtained for each learning scenario. The provided
indicators for student perceptions were:
• Subjective perception of the clarity level (from 1 to 4)
for the course exposition (CL).

• Subjective perception of the interest level (from 1 to 4)
for the course exposition (IT).

• Subjective perception of the difficulty level (from
1 to 4) for exercises 1, 2 and 3 respectively (DF1, DF2
and DF3).

• Subjective perception of the enjoyment level (from
1 to 4) for the development environment (EJ).

The provided indicators for student learning data were:
• Time spent (expressed in minutes) to study the course
contents (ST ).

• Achieved mark (from 0 to 2) for exercises 1, 2 and
3 respectively (MR1,MR2 and MR3).

• Spent time (expressed in minutes) for exercises 1, 2 and
3 respectively (TM1, TM2 and TM3).

C. PROCEDURE
Once the three courses for the three learning scenarios -
C# OOP programming, Sphero Edu visual programming
and VEDILS authoring tool - were taught, the three student
groups were asked to indicate using a scale between one
and four - to avoid the selection of neutral options - their
perception of the clarity and the interest of the exposition
(CL and IT indicators), as well as the time spent studying the
course contents (ST indicator).

The instructor for the three groups was one of the authors
of this work, and the total duration for the three courses was
eight hours (four two-hour sessions).

All the students also undertook the same three program-
ming exercises, which were marked using the logical sense
of the algorithms and the implementation degree of the func-
tionalities required by the statements as evaluation criteria,

VOLUME 7, 2019 17541



J. M. Rodríguez Corral et al.: Study on the Suitability of Visual Languages for Non-Expert Robot Programmers

FIGURE 6. ‘‘RGBLed’’ program developed with the SpherOOP C# API.

and a scale between 0 and 2 (0 - Poor: The student did not
resolve the exercise at all and the code has no logical sense,
1 - Average: The student only solved part of the exercise and
part of the code has logical sense, 2 - Good: The student
solved the whole exercise and all the code has logical sense)
in order to reduce the subjectivity in the marking process.

The maximum time available for completing the three
exercises was ninety minutes. This time could be freely dis-
tributed among the exercises.

From the three exercises (‘‘SquareRoll’’, ‘‘RGBLed’’ and
‘‘MovingCollision’’), we obtained the following data for each
student: the time taken to solve each exercise (TM1, TM2 and
TM3 indicators), the perception of the difficulty level
(DF1, DF2 and DF3 indicators) and the achieved mark
(MR1, MR2 and MR3 indicators), as well as the perceived

enjoyment level in relation to the use of the development
environment (EJ indicator).

Finally, in order to complement and qualify the quantitative
results obtained from the experimental tests, the students
participating in the experiments answered a survey asking
them to describe the impressions about their experience. The
survey document is also included in the ZIP package men-
tioned in Subsection B.

V. RESULTS AND ANALYSIS
Tables 1 and 2 show the values for the set of indicators
described in Subsection 4.B, along with the corresponding
standard deviations. These values are shown for the three
groups of students that have taken part in the experiment:

17542 VOLUME 7, 2019



J. M. Rodríguez Corral et al.: Study on the Suitability of Visual Languages for Non-Expert Robot Programmers

FIGURE 7. ‘‘MovingCollision’’ program developed with the VEDILS authoring tool.

TABLE 1. Values of indicators and standard deviations (student perceptions) for the three groups of students.

TABLE 2. Values of indicators and standard deviations (student learning data) for the three groups of students.

• Learning Scenario I: Students that have participated in
the C# OOP course using the SpherOOP API and the
Microsoft Visual Studio IDE (C# group).

• Learning Scenario II: Students that have participated in
the visual programming course using the Sphero Edu
app for mobile devices (Sphero Edu group).

VOLUME 7, 2019 17543



J. M. Rodríguez Corral et al.: Study on the Suitability of Visual Languages for Non-Expert Robot Programmers

TABLE 3. Wilcoxon rank sum test for independent samples (α = 0.05).
C# and sphero edu groups.

TABLE 4. Wilcoxon rank sum test for independent samples (α = 0.05).
C# and VEDILS groups.

• Learning Scenario III: Students that have participated
in the visual programming course using the VEDILS
authoring tool (VEDILS group).

Data from Tables 3, 4 and 5 indicate if significant differ-
ences have been found when comparing the values of the
indicators for the experimental groups.

TABLE 5. Wilcoxon rank sum test for independent samples (α = 0.05).
sphero edu and VEDILS groups.

From the obtained results, we can observe that, for the
clarity level indicator (Table 1), the Sphero Edu group and
the VEDILS group achieve higher values than the C# group.
This result could be expected due to the characteristics of
VPLs, that are more descriptive thanks to their visual notation
and, consequently, facilitate the exposition of the contents
about programming in these languages. Moreover, data from
Tables 3 and 4 show the existence of significant differences
in the CL indicator.

However, data from Tables 3 and 4 do not show the
existence of significant differences in relation to the interest
level indicator values. This can be explained by the fact that
the three groups of students knew that they were going to
develop programs for controlling a Sphero robot, which is an
important factor of interest. Especially, when the participants
in the experimental tests were students that did not have a
previous contact with robot programming.

Anyway, a higher level of interest can be appreciated for
the Sphero Edu and VEDILS groups compared to the C#
group (Table 1), since the nature of VPLs also contributes to
the interest in the exposition of the corresponding courses.

The spent time (study) indicator (Table 2) is smaller for
the students of the C# group, and greater but similar for the
students of the Sphero Edu and VEDILS groups. Data from
Tables 3 and 4 show the existence of significant differences
between the Sphero Edu and C# groups, and between the C#
and VEDILS groups for the ST indicator. VPLs were new
for the students and, therefore, required a greater time for
their study. However, the students of the C# group already
had a knowledge on imperative programing in C language,

17544 VOLUME 7, 2019



J. M. Rodríguez Corral et al.: Study on the Suitability of Visual Languages for Non-Expert Robot Programmers

on which they only had to learn what C# adds, which is
mainly the object orientation paradigm.

The achieved marks for the three exercises are lower for
the C# group compared to the other ones.Moreover, data from
Tables 3 and 4 indicate the existence of significant differences
between the Sphero Edu and C# groups, and between the
C# and VEDILS groups for MR1, MR2 and MR3 indicators.
Compared to VPLs, the complexity of developing a program
in a textual language is greater, due to the possibility of
making syntax errors and the use of a more open development
environment (on the contrary, a visual language provides a
more or less extensive set of programming primitives in the
form of graphic blocks), in addition to being less intuitive than
a visual language.

It is important to note that the exercise relating to the
collision event detection (‘‘MovingCollision’’) has obtained
the lowest average mark in the three experimental groups.
This exercise is the most complex of the three ones.
However, those students who have worked in visual environ-
ments (Sphero Edu app and VEDILS) have achieved a better
average mark compared to their classmates who have worked
in the textual programming environment.

Although the paradigm of event-based programming is
new for all the students, the programming environments
based on VPLs simplify considerably the writing of the
code that enables the detection of events - the Sphero robot
collisions in this case - and the code for the corresponding
hander methods. When using the VEDILS authoring tool,
the ‘‘ConfigureCollision’’ block (Fig. 7) must be included in
the visual programming code in order to activate the collision
detection. Also, the ‘‘Collision’’ block allows to program
the corresponding handler method. In the case of the Sphero
Edu app, the method for enabling and handling the collision
detection events is programmed using the ‘‘On Collision’’
block.

However, when programming in C# a detailed knowledge
about its concrete syntax is necessary for enabling the col-
lision event, writing the corresponding handler method and
subscribing the collision event with the handler method name.

As for the time spent completing each exercise (Table 2),
the students from the Sphero Edu group took less time com-
pared to the other two groups (C# and VEDILS) in carrying
out the first two exercises (Tables 3 and 5 indicate the exis-
tence of significant differences for TM1 and TM2 indicators).
However, they spent rather more time doing the third one
(TM3 indicator), that has a greater complexity. Moreover,
all the students of the C# group spent all the time available
(ninety minutes) for solving the three exercises, but none of
themwas able to complete all the exercises correctly. This fact
can be explained due to the greater complexity of developing
programs using a textual language instead of a visual one.

With regard to the difficulty level perceived by the students
when solving the three exercises, such level is consistent
with their complexity. The second exercise (‘‘RGBLed’’) is
the simplest one, since the tasks to perform only consist of
changing the color of the Sphero main LEDs every second

to red, green and blue in sequence, and playing in the mobile
device a sound associated to each color.

However, the third exercise is the most complex since
it is related to event-based programming, which is a new
paradigm for students initiated in imperative programming,
as in the present case. In fact, all the three experimental
groups - C#, Sphero Edu and VEDILS - perceived a higher
difficulty level when doing the third exercise.

The students of the three groups perceived an intermediate
difficulty level associated to the resolution of the first exer-
cise (‘‘SquareRoll’’). This fact corresponds to reality, since
the control algorithm for the straight-line motions and the
rotations of the Sphero robot in order to perform a square-
shaped path is more complex than the one that changes its
color (‘‘RGBLed’’). However, the first exercise is simpler
than the third one (‘‘MovingCollision’’), due to the event-
based programming component that the latter includes.

Data from Table 5 indicate the existence of significant
differences between the Sphero Edu and VEDILS groups for
TM1, TM2, TM3, DF1, DF2 and DF3 indicators, whereas
the existence of significant differences is not shown for the
rest of the indicators. This result was predictable since both
developing environments are similar to a certain extent, given
that they are based on visual programming and, particularly,
considering that the experimental tests were circumscribed to
the specific context of the Sphero robot programming.

According to the differences in the indicators previously
mentioned, it seems reasonable to think that due to the greater
development complexity inherent to the VEDILS authoring
tool, the students of the VEDILS group took more time to
solve the three exercises - ‘‘SquareRoll’’, ‘‘RGBLed’’ and
‘‘MovingCollision’’ - in comparison with the students of the
Sphero Edu group. Certainly, the Sphero Edu app is a more
closed environment than VEDILS, and exclusively oriented
to the use of the Sphero robotic ball.

Moreover, in relation to the perceived level of difficulty, the
students of the Sphero Edu group indicated a lower level for
the first two exercises (DF1 andDF2 indicators) compared to
the VEDILS group, which can also explained by the reason
described in the previous paragraph.

However, the perceived difficulty level when solving the
third exercise (DF3 indicator), which is the most complex,
was a bit higher for the Sphero Edu group. The difference
with the VEDILS group is only 0.7 points, but it is significant
according to the corresponding data from Table 5. This result
can be explained given the subjective nature of the DF3
indicator, and the fact that the samples of the Sphero Edu and
the VEDILS groups are independent. In the context of these
experimental tests, the students can compare the perceived
difficulty levels when solving their own exercises, but they
cannot make comparisons with the exercises corresponding
to those learning environments in which they have not taken
part.

The enjoyment level indicator in the use of the con-
crete development environment (Table 1), in contrast with
the learning scenario based on the C# language, achieves

VOLUME 7, 2019 17545



J. M. Rodríguez Corral et al.: Study on the Suitability of Visual Languages for Non-Expert Robot Programmers

a higher value for the learning scenario based on the VEDILS
authoring tool, and achieves its maximum value for the
scenario based on the Sphero Edu app. This fact can be
easily explained due to the characteristics of VPLs (use of
a visual environment, absence of syntactical errors, greater
abstraction level, etc.), that make the programming task a
more entertaining and intuitive process. In fact, data from
Tables 3 and 4 shows the existence of significant differences
in the EJ indicator between the C# and Sphero Edu groups,
and between the C# and VEDILS groups.

In general, a real improvement in the experimental results
(i.e. the clarity level perceived by the students when attending
the presentations of the courses, the marks achieved and the
difficulty levels perceived when solving the programming
exercises, as well as the enjoyment level perceived in the
use of the development environments) can be appreciated for
the Sphero Edu and VEDILS groups in comparison with the
C# group.

VI. DISCUSSION
As indicated in Subsection 4.C, the students participating in
the experiments answered a survey asking them to describe
the impressions about their experience. The most significant
responses are inserted in the rest of this section as qualitative
data.

The work presented in this paper has introduced the
students, in an enjoyable and practical way, to the fields
of robot programming, event-based programming, object-
oriented programming and visual programming. In this way,
the students have been involved in an integrated learning
experience in an interdisciplinary environment.

[C#]This programming style leads to a new way of solv-
ing problems, since they can be applied to objects found in
the real world (like a robot). This approach is far from the
programs to solve equations I am used to.

[C#] It has been an interesting activity related to robotics
and programming. The fact of sending commands to a phys-
ical object (robot) for controlling it makes the activity very
interesting for those passionate about robotics.

[Sphero Edu] It has been an innovative and fun course
that has led us, almost without realizing it, to the direct
and enjoyable practice without the need for spending endless
hours of theoretical study.

[Sphero Edu] I encourage all the students to take part
in similar projects based on this development environment,
since it is so easy to learn how to program a robot for
performing tasks even without having previous knowledge on
computer programming.

The obtained experimental results show that a visual pro-
gramming language can also be suitable for robot program-
ming. The main advantages derived from the use of a VPL
in this context include a more intuitive programming process
and the ease of use of the development environment corre-
sponding to theVPL. In the visual contexts used for this work,
the programmer chooses a set of programming blocks after
selecting a block category (Sphero Edu app) or a component

(App Inventor/VEDILS), which is easier than writing a set of
statements in a textual programming environment.

[Sphero Edu] I have found the experience interesting and
enjoyable. I had never programmed using a visual environ-
ment. Really, what surprised me most was the facility for
learning to program using a visual language.

[VEDILS] The development environment is very easy to
use, and the programs can be imported and exported in a
fast and simple way. Moreover, it is so intuitive that it is
not necessary for a person to have an in-depth knowledge
about programming in order to use it and develop a number
of applications for different purposes.

[VEDILS] After attending this course, several features of
the development environment have helped me to deal with
computer programming. The use of the block interface allows
students to understand programming concepts better, and
also helps those with previous concepts to acquire more in-
depth knowledge.

[VEDILS] After taking part in the activity, I find program-
ming a less complex task than before. I think that the use of
the block-based environment is a simple and useful way of
getting started in the field of computer programming, since it
allows students and teachers to learn a skill used by relatively
few people.

Also, the obtained results and the student’s responses show
that those who worked with VPLs have enjoyed more the
programming process compared to the students who used
the textual programming language. Moreover, the students
using VPLs were able to understand better the tasks to be
performed by the robot when viewing the block diagrams
that specified the example programs thanks to the visual
notation. However, when understanding a program written
using a textual language, the programmer must visualize in
his or her mind the meaning of the statements. In this case,
a higher level of abstraction is necessary.

[Sphero Edu] The experience of programming in a visual
language was enjoyable because it could be seen what the
program does, whereas the use of a textual language makes
necessary to know the meaning of every programming ele-
ment, which makes easier to lose track of the program code.
The sensation of enjoyment was due to the awareness that
the actions executed by the robot could be seen graphically
expressed in the visual program that was shown on the tablet
screen, without the need to interpret code statements.

[Sphero Edu]The resolution of the exercises becomes a very
convenient process, since you can visualize your idea about
the robot behavior - movements, lights and sounds - at any
time directly on the (visual) program you are working on.

In this vein, various studies [54], [55] state that people
understand programs developed using VPLs better, since
the human visual system is clearly optimized for processing
multi-dimensional data. However, textual computer programs
are presented in a one-dimensional form.
‘‘The primary advantage of visual programming languages

is that they provide direct representations of software struc-
tures such as algorithms and data. This is in contrast to

17546 VOLUME 7, 2019



J. M. Rodríguez Corral et al.: Study on the Suitability of Visual Languages for Non-Expert Robot Programmers

traditional textual languages, where such multi-dimensional
structures are encoded into one-dimensional strings (state-
ments) according to some intricate syntax’’ [55].
Moreover, VPLs abstract many specific and even uncom-

fortable aspects of programming. They provide the abstrac-
tion to the student [5] in order to make the programming
task easier, since VPLs only enhance the logic that is directly
relevant to the application, and hide more specific aspects
of programming such as storage allocation, scope rules for
objects or event loops. Also, the use of programming blocks
allows to avoid the issues related to concrete syntax, and
facilitates the writing process thanks to menu systems for
selecting the necessary blocks in every moment.

In our opinion, the learning experience consisting of pro-
gramming and controlling the robotic ball operation has
helped students of university degrees not directly related to
the Computer Science discipline, such as Industrial Engineer-
ing, to have a better understanding about the usefulness of
computer programming.

[C#] It has been an interesting experience where we have
seen that computer programming can be used to operate a
physical device, like a robot.

[C#] I now see programming as a more useful tool than I
initially thought. An Industrial Engineering student must be
familiar with robotics at the hardware and software levels.
It is rewarding to learn an object-oriented language.

[C#] I was already interested in robotics, but after taking
part in the activity my interest is now greater. It is exciting
to see how an object can move and to be able to give it
instructions about the tasks that you want it to perform.
Thus, I find computer programming so important and the
experience very interesting.

[Sphero Edu] I have enjoyed the course more than I
expected. Sincerely, I thought that it was going to be boring,
but I felt attracted by the idea of programming a robot,
executing the program and seeing the result. The develop-
ment environment is very easy to use and anyone with some
knowledge of computer science can use it. It is very satisfying
to know that the program that you are writing has a specific
utility.

[VEDILS] Being able to control the Sphero robot using
a mobile app developed through simple steps is just one
example of the potential that this environment can offer in
contexts related to robotics.

[VEDILS] It is very interesting to write simple interactive
programs in order to know the resources of the mobile device
that can be used. The use of this development environment
could be an effective method for introducing young people
to the world of computer programming due to its graphical
interface and its ease of use.

Moreover, it is important to note that all the students who
answered the survey expressed their interest in taking part in
future projects related to programming and robotics. This fact
underlines the motivating nature of this experience.

Despite both the Sphero Edu app and the VEDILS author-
ing tool are based on the use of VPLs, the latter tool has the

advantage of working in amore open environment. Unlike the
Sphero Edu app, VEDILS allows the use of the set of sensors
and gadgets available in an Android device in addition to the
Sphero robot, and also allows to perform the programming
process in a computer desktop environment, which use may
be more comfortable than the tactile interface characteristic
of a smartphone or a tablet.

From our experience, we think that the use of VPLs not
only has a positive influence on the student’s learning pro-
cess, but it also provides a greater quality to the professor’s
teaching activity. In fact, the teaching of basic and advanced
programming concepts, such as those related to event-based
programming, is made easier and improved due to the visual
nature of these languages.

[VEDILS] The experience was very rewarding in relation
to the way in which the course contents were explained, and
mainly to the eminently visual appearance that the practical
examples presented. The course was so interesting since it
made us discover a new programming method.

[VEDILS] Before taking part in the activity, I saw pro-
gramming as something boring and unattractive that only
had statements and numbers. However, with somebody who
teaches you with motivation, in an interactive way, and helps
you to think that you can do it, you can learn.

The visual component of these languages facilitates
notably the understanding of a meaningful number of pro-
gramming concepts that, explained in the context of a textual
language, require a greater effort by the instructor so that
they can be understood by the students. For example, when
introducing the students to C# language, it was necessary
to define the concepts of class and object. However, with
App Inventor/VEDILS there was no need to explain that
dragging a component (class) to the design window, makes
the system to create automatically an instance (object) of that
component and associate to it the component name followed
by an integer, as a default name for the instance.

On the other hand, the portability of the Sphero robot due
to its low weight and small size, in addition to its affordable
price, as well as the open-source software used [23], [44], [48]
and the availability of the Sphero Edu [36] and VEDILS
[14], [15] development tools, and the accessibility of related
documentation [38], [46], [49], allow the replication of the
experiments. The portable infrastructure used is, therefore,
an important advantage of this work.

In the future, the possibility of using some of the met-
rics provided by the multidimensional analysis module
of VEDILS (e.g. the number of user interface compo-
nents or programming blocks sorted by type, category, project
and user, as well as the number of builds or debug sessions
classified by projects and users) could be applied to the anal-
ysis of learning processes and the consequent improvement
of teaching strategies in the context of robot programming
through the use of the VEDILS authoring tool).

Finally, our work suggests the convenience that, in addi-
tion to the use of traditional textual programming languages,
industrial robots can also be programmed using VPLs.

VOLUME 7, 2019 17547



J. M. Rodríguez Corral et al.: Study on the Suitability of Visual Languages for Non-Expert Robot Programmers

Thus, those people that are not IT professionals but work
with robots (e.g. in a production plant) would see their daily
tasks facilitated and streamlined, and even their work would
become more enjoyable. The potential of VPLs in the context
of industrial robots is also considered in [32] and [33]. The
fact that a VPL may not be as flexible as a textual language is
not necessarily a disadvantagewhen the tasks to be performed
by the robots in an industrial environment are not excessively
complex, which is usually the case.

A. THREADS TO VALIDITY AND LIMITATIONS
In order to allow the reader to evaluate the confidence that
can be placed on the results of this work, it is necessary to
identify potential issues of validity and bias that may occur
during the design and the development of the study.

An internal validity threat of this work consists of its
condition of pilot study, carried out through experimental
tests performed with not very large groups (twenty students
for each group), that is a first step from which more in-depth
studies can be conducted. Anyway, the obtained results and
the students’ responses underline the suitability of VPLs for
robot programming.

Unfortunately, although the participants were given an
incentive consisting of improving their final mark in the
course (Fundamentals of Computer Science), the total num-
ber was not greater due to the high level of difficulty of the
Industrial Engineering studies, which require a lot of time,
effort and a great dedication.

Furthermore, since it was necessary for the students to
acquire the necessary knowledge of the C programming lan-
guage before performing the experimental tests, these tests
had to be carried out at the end of the course. Thus, the exam-
ination period was very near and, consequently, the students
had even less time available.

Also, the number of learning scenarios - one based on
a textual programming language and two based on VPLs -
could be considered an internal validity threat themselves.
Certainly, a greater number of scenarios (for example, three
based on textual languages and another three based on visual
languages) would have allowed us to obtain more meaningful
results. Obviously, first of all we would need a great number
of participants in order to have an appropriate sample size in
each learning scenario.

Moreover, the fact that the samples were composed only
by students of Industrial of Engineering can be viewed
as an external validity threat, since we cannot assure that
the obtained results can be generalized to students of uni-
versity grades in disciplines very different from Industrial
Engineering.

Another validity threat is related to the use of variables
for measuring the perceptions of the students (clarity and
interest level when attending the exposition of the course
contents about the specific programming language, difficulty
level when solving the exercises and enjoyment level when
using the specific development environment), due to their
subjective nature.

In fact, as explained in previous section, data from
Table 5 shows that the values for the perceived level of
difficulty when solving exercises 1 and 2 (DF1 and DF2
indicators) are lower for the Sphero Edu group than the cor-
responding ones for the VEDILS group, whereas the values
for DF3 indicator (exercise 3) are higher for the Sphero Edu
group. However, the Sphero Edu app is a simpler and more
easy to use environment than VEDILS, since it is exclusively
oriented to the use of the Sphero robot.

VII. CONCLUSION
In this work, a number of functionalities have been added to a
visual programming-based authoring tool (VEDILS) in order
to make it capable of controlling a commercial mobile robot
(Sphero). This tool, along with an Android app (Sphero Edu)
and a C# API (SpherOOP) have been used as development
environments where programs for controlling the Sphero
robot operation have been written and tested. A Bluetooth
link allows the robot to communicate wirelessly with the
hardware (computer or Android device according to the spe-
cific development environment in use).

A comparison among these three development environ-
ments has been made through the analysis of empirical data
collected from a set of experimental tests about robot pro-
gramming carried out by a sample of Industrial Engineering
students at the University of Cádiz (Spain). From the analysis
of the results presented in this work, we can conclude that a
visual programming language can also be suitable for robot
programming. Furthermore, the main advantages derived
from the use of a VPL in such context, when compared to a
textual programming language, include a more intuitive and
enjoyable programming process, a greater ease of use of the
development environment and a better understanding of the
tasks to be performed by the robot when viewing the block
diagram that specifies a program.

Furthermore, the educational approach proposed in this
work has familiarized the students with visual programming
environments based on block languages, object-oriented pro-
gramming and event-based programming. It also has intro-
duced them to the fields of robotics and robot programming
from an eminently practical point of view, thus leading to an
enriching learning experience in an interdisciplinary context.

ACKNOWLEDGMENT
Illustration 1 is provided by courtesy of Sphero.

REFERENCES
[1] E. Lahtinen, K. Ala-Mutka, and H. Järvinen, ‘‘A study of the difficul-

ties of novice programmers,’’ in Proc. 10th Annu. Conf. Innov. Technol.
Comput. Sci. Educ. (ITiCSE), Caparica, Portugal, 2005, pp. 14–18, doi:
10.1145/1151954.1067453.

[2] I. Milne and G. Rowe, ‘‘Difficulties in learning and teaching
programming—Views of students and tutors,’’ Educ. Inf. Technol.,
vol. 7, no. 1, pp. 55–66, 2002, doi: 10.1023/A:1015362608943.

[3] A. Gomes and A. J. Mendes, ‘‘Learning to program—Difficulties and
solutions,’’ inProc. Int. Conf. Eng. Educ. (ICEE), Coimbra, Portugal, 2007.

[4] M. Erwig, K. Smeltzer, and X. Wang, ‘‘What is a visual lan-
guage?’’ J. Vis. Lang., Comput., vol. 38, pp. 9–17, Feb. 2017, doi:
10.1016/j.jvlc.2016.10.005.

17548 VOLUME 7, 2019



J. M. Rodríguez Corral et al.: Study on the Suitability of Visual Languages for Non-Expert Robot Programmers

[5] R. Navarro-Prieto and J. J. Cañas, ‘‘Are visual programming languages
better? The role of imagery in program comprehension,’’ Int. J. Hum.-
Comput. Stud., vol. 54, no. 6, pp. 799–829, 2001, doi: 10.1006/ijhc.2000.
0465.

[6] M. Khademi, M. Haghshenas, and H. Kabir, ‘‘A review on authoring
tools,’’ in Proc. 5th Int. Conf. Distance Learn. Educ. (ICDLE), Singapore,
2011, pp. 45–49.

[7] M. Resnick, ‘‘Sowing the seeds for a more creative society,’’ Learn. Lead.
Technol., vol. 35, no. 4, pp. 18–22, 2008.

[8] Lifelong Kindergarten Group. (Apr. 16, 2018). Scratch—Imagine, Pro-
gram, Share. [Online]. Available: https://scratch.mit.edu/

[9] M. Armoni, O. Meerbaum-Salant, and M. Ben-Ari, ‘‘From scratch to
‘real’ programming,’’ ACM Trans. Comput. Educ., vol. 14, no. 4, 2015,
Art. no. 25, doi: 10.1145/2677087.

[10] D. Wolber, H. Abelson, E. Spertus, and L. Looney, App Inventor 2: Create
Your Own Android Apps. Sebastopol, CA, USA: O’Reilly Media, Inc.,
2015.

[11] Y. C. Hsu, K. Rice, and L. Dawley, ‘‘Empowering educators with Google’s
Android app inventor: An online workshop in mobile App design,’’ Brit.
J. Educ. Technol., vol. 43, no. 1, pp. E1–E5, 2012, doi: 10.1111/j.1467-
8535.2011.01241.x.

[12] (2017). MIT App Inventor—Explore MIT App Inventor. Accessed:
Apr. 16, 2018. [Online]. Available: http://appinventor.mit.edu/explore/

[13] M. S. Horn, E. T. Solovey, R. J. Crouser, and R. J. Jacob, ‘‘Comparing the
use of tangible and graphical programming languages for informal science
education,’’ inProc. 27th Conf. Hum. Factors Comput. Syst. (CHI), Boston,
MA, USA, 2009, pp. 975–984, doi: 10.1145/1518701.1518851.

[14] VEDILS Team. (2018). (VEDILS—Visual Environment for Designing
Interactive Learning Scenarios). Accessed: Apr. 16, 2018. [Online]. Avail-
able: http://vedils.uca.es/web/

[15] J. M. Mota, I. Ruiz-Rube, J. M. Dodero, and M. Figueiredo, ‘‘Visual
environment for designing interactive learning scenarios with augmented
reality,’’ in Proc. 12th Int. Conf. Mobile Learn., Algarve, Portugal,
2016, pp. 67–74.

[16] A. Balderas, I. Ruíz-Rube, J. M. Mota, J. M. Dodero, and
M. Palomo-Duarte, ‘‘A development environment to customize assessment
through students interaction with multimodal applications,’’ in Proc. Int.
Conf. Technol. Ecosyst. Enhancing Multiculturality (TEEM), Salamanca,
Spain, 2016, pp. 1043–1048, doi: 10.1145/3012430.3012644.

[17] J. Arlegui, E. Menegatti, M. Moro, and A. Pina, ‘‘Robotics, computer
science curricula and interdisciplinary activities,’’ in Proc. 1st Int. Conf.
Simulation, Modeling, Program. Auton. Robots (SIMPAR), Venice, Italy,
2008, pp. 10–21.

[18] S. Kurkovsky, ‘‘Mobile computing and robotics in one course: Why not?’’
in Proc. 18th Annu. Conf. Innov. Technol. Comput. Sci. Educ. (ITiCSE),
Canterbury, U.K., 2013, pp. 64–69, doi: 10.1145/2462476.2465584.

[19] S. Kurkovsky, ‘‘Interdisciplinary connections in a mobile computing
and robotics course,’’ in Proc. 19th Annu. Conf. Innov. Technol. Com-
put. Sci. Educ. (ITiCSE), Uppsala, Sweden, 2014, pp. 309–314, doi:
10.1145/2591708.2591735.

[20] B. Jost, M. Ketterl, R. Budde, and T. Leimbach, ‘‘Graphical programming
environments for educational robots: Open Roberta—Yet another one?’’
in Proc. IEEE Int. Symp. Multimedia (ISM), Taichung, Taiwan, Dec. 2014,
pp. 381–386, doi: 10.1109/ISM.2014.24.

[21] Sphero. (2017). Sphero 2.0—Playtime Just Got Real. Accessed:
Apr. 8, 2018. [Online]. Available: https://www.sphero.com/sphero/

[22] Sphero. (2017). Sphero Docs—What is Sphero. Accessed: Apr. 8, 2018.
[Online]. Available: http://sdk.sphero.com/sphero-robot-basics/what-is-
sphero/

[23] J. M. R. Corral et al., ‘‘Application of robot programming to the teaching
of object-oriented computer languages,’’ Int. J. Eng. Educ., vol. 32, no. 4,
pp. 1823–1832, 2016.

[24] T. Faison, Event-Based Programming: Taking Events to the Limit.
Breinigsville, PA, USA: Apress, 2006, doi: 10.1007/978-1-4302-0156-4.

[25] T. Booth and S. Stumpf, ‘‘End-user experiences of visual and textual pro-
gramming environments for Arduino,’’ in End-User Development (Lecture
Notes in Computer Science), vol. 7897, Y. Dittrich, M. Burnett, A. Mørch,
and D. Redmiles, Eds. Berlin, Germany: Springer-Verlag, 2013, pp. 25–39,
doi: 10.1007/978-3-642-38706-7_4.

[26] D. Weintrop and U. Wilensky, ‘‘To block or not to block, that is the
question: Students’ perceptions of blocks-based programming,’’ in Proc.
14th Int. Conf. Interact. Design Children (IDC), Boston, MA, USA, 2015,
pp. 199–208, doi: 10.1145/2771839.2771860.

[27] T. W. Price and T. Barnes, ‘‘Comparing textual and block interfaces in a
novice programming environment,’’ in Proc. 11th Annu. ACM Int. Com-
put. Educ. Res. Conf. (ICER), Omaha, NE, USA, 2015, pp. 91–99, doi:
10.1145/2787622.2787712.

[28] D. Weintrop and U. Wilensky, ‘‘Comparing block-based and text-based
programming in high school computer science classrooms,’’ ACM Trans.
Comput. Educ., vol. 18, no. 1, pp. 1–25, 2017, doi: 10.1145/3089799.

[29] D. Bau, J. Gray, C. Kelleher, J. Sheldon, and F. Turbak, ‘‘Learnable
programming: Blocks and beyond,’’ Commun. ACM, vol. 60, no. 6,
pp. 72–80, 2017, doi: 10.1145/3015455.

[30] J. P. Diprose, B. A. MacDonald, and J. G. Hosking, ‘‘Ruru: A spa-
tial and interactive visual programming language for novice robot pro-
gramming,’’ in Proc. IEEE Symp. Visual Lang. Hum.-Centric Com-
put. (VL/HCC), Pittsburgh, PA, USA, Sep. 2011, pp. 25–32, doi:
10.1109/VLHCC.2011.6070374.

[31] F. Riedo, M. Chevalier, S. Magnenat, and F. Mondada, ‘‘Thymio II, a
robot that grows wiser with children,’’ in Proc. IEEE Workshop Adv.
Robot. Social Impacts (ARSO), Tokyo, Japan, 2013, pp. 187–193, doi:
10.1109/ARSO.2013.6705527.

[32] D. Weintrop, D. C. Shepherd, P. Francis, and D. Franklin, ‘‘Blocky goes
to work: Block-based programming for industrial robots,’’ in Proc. IEEE
Blocks BeyondWorkshop (B&B), Raleigh, NC, USA, Oct. 2017, pp. 29–36,
doi: 10.1109/BLOCKS.2017.8120406.

[33] D. Weintrop et al., ‘‘Evaluating CoBlox: A comparative study of robotics
programming environments for adult novices,’’ in Proc. CHI Conf.
Hum. Factors Comput. Syst. (CHI), Montreal QC, Canada, 2018, doi:
10.1145/3173574.3173940.

[34] F. Barreto and V. Benitti, ‘‘Exploring the educational potential of robotics
in schools: A systematic review,’’ Comput. Educ., vol. 58, no. 3,
pp. 978–988, 2012, doi: 10.1016/j.compedu.2011.10.006.

[35] D. Alimisis, ‘‘Educational robotics: Open questions and new challenges,’’
Themes Sci., Technol. Educ., vol. 6, no. 1, pp. 63–71, 2013.

[36] Sphero. (2017). Sphero Edu. Accessed: Apr. 16, 2018. [Online]. Available:
https://edu.sphero.com/

[37] Danish Business Research Academy (DEA/Danmarks Erhvervsforskn-
ingsAkademi), and Danish Forum for Business Education (FBE), Think-
ing Across Disciplines—Interdisciplinarity Res. Educ., Copenhagen,
Denmark, 2008.

[38] Sphero. (2017). Sphero Edu—Learning is Evolving. Get on the Ball.
Accessed: Apr. 8, 2018. [Online]. Available: http://www.sphero.
com/education/

[39] H. Zhang, Ed. Climbing and Walking Robots: Towards New Applications.
Vienna, Austria: InTech, 2007, ch. 11, pp. 235–256, doi: 10.5772/47.

[40] Bluetooth SIG, Inc. (2018). Specifications—Bluetooth Technology Web-
site. Accessed: Apr. 8, 2018. [Online]. Available: https://www.bluetooth.
org/en-us/specification/

[41] A. S. Huang and L. Rudolph, Bluetooth Essentials for
Programmers. Cambridge, U.K.: Cambridge Univ. Press, 2007, doi:
10.1017/CBO9780511546976.

[42] GitHub, Inc. (2017). Sphero Sensor Streaming. Accessed:
Apr. 8, 2018. [Online]. Available: https://github.com/orbotix/Sphero-
iOS-SDK/tree/master/samples/SensorStreaming/

[43] M. Pagel and D. Carlson, ‘‘Ambient control: A mobile framework for
dynamically remixing the Internet of Things,’’ in Proc. IEEE 16th Int.
Symp. World Wireless, Mobile Multimedia Netw. (WoWMoM), Boston,
MA, USA, Jun. 2015, pp. 1–9, doi: 10.1109/WoWMoM.2015.7158143.

[44] T. Bladh. (2013). Balls Out Fun With the Sphero and .NET.
Accessed: Apr. 8, 2018. [Online]. Available: http://thomasbladh.com/
2013/01/01/balls-out-fun-with-the-sphero/

[45] GitHub, Inc. (2013). Orbotix—Developer Resources. Accessed:
Apr. 16, 2018. [Online]. Available: https://github.com/orbotix/
DeveloperResources/zipball/master/

[46] Sphero. (2017). Sphero Docs—API Quick Reference. Accessed:
Apr. 16, 2018. [Online]. Available: https://sdk.sphero.com/api-reference/
api-quick-reference/

[47] F. Weichert, D. Bachmann, B. Rudak, and D. Fisseler, ‘‘Analysis of the
accuracy and robustness of the leap motion controller,’’ Sensors, vol. 13,
no. 5, pp. 6380–6393, 2013, doi: 10.3390/s130506380.

[48] GitHub, Inc. 2018. Sphero Android SDK. Accessed: Apr. 8, 2018. [Online].
Available: https://github.com/orbotix/Sphero-Android-SDK/

[49] Sphero. (2017). Sphero Docs—Convenience Robot. Accessed:
Apr. 8, 2018. [Online]. Available: http://sdk.sphero.com/sdk-
documentation/convenience-robot/

VOLUME 7, 2019 17549



J. M. Rodríguez Corral et al.: Study on the Suitability of Visual Languages for Non-Expert Robot Programmers

[50] B. W. Kernighan and D. M. Ritchie, The C Programming Language,
2nd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 1988.

[51] Microsoft Corporation. (2012). C# Language Specification, Version 5.0.
Accessed: Apr. 8, 2018. [Online]. Available: https://www.microsoft.
com/en-us/download/details.aspx?id=7029

[52] D. Clark, Beginning C# Object-Oriented Programming, 2nd ed. NewYork,
NY, USA: Apress, 2013.

[53] M. Michaelis and E. Lipper, Essential C# 6.0. Ann Arbor, MI, USA:
Addison-Wesley, 2016.

[54] B. A. Myers, ‘‘Taxonomies of visual programming and program visual-
ization,’’ J. Vis. Lang., Comput., vol. 1, no. 1, pp. 97–123, 1990, doi:
10.1016/S1045-926X(05)80036-9.

[55] P. T. Cox and T. J. Smedley, ‘‘Building environments for visual program-
ming of robots by demonstration,’’ J. Vis. Lang., Comput., vol. 11, no. 5,
pp. 549–571, 2000, doi: 10.1006/jvlc.2000.0175.

JOSÉ MARÍA RODRÍGUEZ CORRAL received
the master’s degree in computer engineering and
the Ph.D. degree from the University of Seville,
Spain, in 1993 and 2002, respectively. From
1993 to 1995, he worked on robot control with
the Robotics and Computer Technology Research
Group, University of Seville. He was an Associate
Lecturer with the University of Cádiz, Spain, from
1995 to 1998, where he is currently an Associate
Professor of computer languages and systems and

also a member of the Applied Robotics Group. He has authored various
papers and research reports on computer architecture. His research interests
include engineering education, robotics, and bus emulation.

IVÁN RUÍZ-RUBE received the master’s degree
in software engineering and technology from
the University of Seville and the Ph.D. degree
from the University of Cádiz. He was a Soft-
ware Engineer for consulting companies, such
as Everis Spain S.L. and Sadiel S.A. He is
currently an Associate Lecturer with the Uni-
versity of Cádiz. His current research interests
include technology-enhanced learning, software
process improvement, and linked open data.
He has published several papers in these fields.

ANTÓN CIVIT BALCELLS received the mas-
ter’s degree in physics (electronics) and the Ph.D.
degree from the University of Seville, Spain,
in 1984 and 1987, respectively. After working for
several months with Hewlett–Packard, he joined
the University of Seville, where he is currently a
Full Professor of computer architecture and also
the Director of the Robotics and Computer Tech-
nology Research Group. He has authored various
papers and research reports on computer architec-

ture, rehabilitation technology, and robotics. His research interests include
advanced wheelchairs, robotics, and real-time architectures.

JOSÉ MIGUEL MOTA-MACÍAS received the
master’s degree in computer science with the Uni-
versitat Oberta de Catalunya, Spain. He is cur-
rently an Associate Lecturer with the University
of Cádiz, Spain. He is also a Ph.D. Candidate
Researcher in technology-enhanced learning. His
current research interests include mobile learning,
augmented reality, and learning analytics.

ARTURO MORGADO-ESTÉVEZ received the
master’s degree in industrial organization engi-
neering and the Ph.D. degree from the University
of Cádiz, Spain, in 1997 and 2003, respectively.
After working on ASIC design with the Micro-
electronics Research Group, University of Cádiz,
from 1989 to 1998, and also with the Robotics
and Computer Technology Group, University of
Seville, from 1998 to 2010. He has been an Asso-
ciate Professor of computer architecture with the

University of Cádiz, since 1991, where he is currently the Director of the
Applied Robotics Group. His research interests include robotics and life-
inspired systems. He has authored various papers on computer architecture.

JUAN MANUEL DODERO received the master’s
degree in computer science from the Polytech-
nic University of Madrid and the Ph.D. degree
from the Carlos III University of Madrid. He was
an Associate Lecturer with the Carlos III Uni-
versity of Madrid and was also a R&D Engi-
neer for Intelligent Software Components S.A.
He is currently an Associate Professor with the
University of Cádiz, Spain. His current research
interests include web science and engineering and

technology-enhanced learning. He has co-authored numerous contributions
in journals and research conferences.

17550 VOLUME 7, 2019


	INTRODUCTION
	LEARNING PRINCIPLES
	TECHNOLOGICAL FOUNDATIONS
	EXPERIMENTAL TESTS
	PARTICIPANTS
	DESIGN
	PROCEDURE

	RESULTS AND ANALYSIS
	DISCUSSION
	THREADS TO VALIDITY AND LIMITATIONS

	CONCLUSION
	REFERENCES
	Biographies
	JOSÉ MARÍA RODRÍGUEZ CORRAL
	IVÁN RUÍZ-RUBE
	ANTÓN CIVIT BALCELLS
	JOSÉ MIGUEL MOTA-MACÍAS
	ARTURO MORGADO-ESTÉVEZ
	JUAN MANUEL DODERO


