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Resumen

El objetivo de este proyecto es estudiar las posibilidades de aplicación de técnicas de aprendizaje
supervisado (apprenticeship learning) para diseñar un piloto automático capaz de aterrizar un avión en

un aeropuerto específico desde una aproximación final a la altitud del patrón de tráfico establecido, confiando
solo en instrumentos instalados en la aeronave.

Los procesos de decisión de Markov (Markov Decision Process (MDP)) proporcionan un marco útil para
optimizar el comportamiento de sistemas utilizando aprendizaje reforzado. La exploración de posibles políti-
cas de control en sistemas que tienen espacios de estado de gran dimensión puede ser computacionalmente
desafiante, especialmente si la dinámica del sistema es desconocida o difícil de modelar, como en el caso de
estudio planteado. La técnica conocida como apprenticeship learning es una alternativa en la que un experto
humano guía la exploración de políticas de control mediante la ejecución manual de la tarea deseada. Se ha
demostrado que esto resulta en rendimientos casi óptimos en relación al rendimiento del ser humano, y es
computacionalmente eficiente.

El simulador de vuelo X-Plane se utilizará para probar y demostrar el comportamiento del piloto automático
diseñado. X-Plane es un simulador de vuelo comercial desarrollado por Laminar Research que utiliza la
teoría de los elementos de pala para modelar en tiempo real las fuerzas aerodinámicas que intervienen en las
distintas partes de un avión, lo que resulta en un comportamiento realista incluso en situaciones complejas.

Como se describe a lo largo del documento, el trabajo propuesto es ambicioso e implica la integración
de ideas y conceptos de disciplinas diversas, así como el desarrollo de software específico para su imple-
mentación.

Desafortunadamente, a fecha de finalización de este trabajo, las diferentes etapas del proyecto han sido
cubiertas con una eficacia desigual, no siendo posible obtener una aplicación cerrada en estado final de uso.
La memoria describe en detalle el trabajo realizado y su grado de desarrollo.
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Abstract

The objective of this project is to study the possibilities of application of supervised learning techniques
(apprenticeship learning) in order to design an automatic pilot which is capable of landing an aircraft

at a specific airport from a final approach at the altitude of the established traffic pattern, relying only on
instruments installed on the aircraft.

Markov Decision Processes (MDP), provide a useful framework to optimize the behaviour of systems
using Reinforcement learning. The exploration of possible control policies in systems that have large-scale
state spaces may be computationally challenging, especially if the dynamics of the system is unknown or
difficult to model, as in the case of the proposed study. The technique known as apprenticeship learning is an
alternative in which a human expert guides the exploration of control policies through the manual execution
of the desired task. It has been shown that this results in almost optimal performance in relation to human
performance, and is computationally efficient.

The X-Plane flight simulator will be used to test and demonstrate the behaviour of the designed autopilot.
X-Plane is a commercial flight simulator developed by Laminar Research that uses the theory of blade
elements to model in real time the aerodynamic forces that intervene in different parts of an airplane, resulting
in realistic behaviour even in complex situations.

As it is described in the document, the proposed work is ambitious and implies the integration of ideas
and concepts of diverse disciplines, as well as the development of specific software for its implementation.

Unfortunately, at the deadline of the work, the different stages of the project have been covered with an
unequal effectiveness, and it is not possible to obtain a closed application in the final state of use. This
document describes in detail the work done and its degree of development.
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1 Introduction

The current situation of airports around the world is very different. Depending on the area they are
located, it is found some aids systems (of diverse categories) or not.

It is true that nowadays in such a modern society, the phases of a flight have been automatized with flight
directors, autopilots, however not all of them can be performed by software. In a future, planes will have
only computers and a pilot to supervise that everything the machine commands is correct instead of two
pilots and a computer that helps them.

Landing is a difficult operation that always ends in humans taking control of the situation. Although
landing systems aids could be implemented in all the airports to make it easy, the cost would be extremely
high.

This work aims to provide a computational solution to the problem from a Machine Learning approach.

1.1 Overview

The intention is to develop a software capable of landing an aircraft without human intervention or external
devices to the plane. The question that arises is where to start.

In the past few decades machine learning as revealed itself as a invaluable tool to deal with complex
computational problems requiring to deal with large unstructured amounts of data. This consists on making
a machine learn from training data, mimicking the capabilities of a human brain, by means of apropriate
algoritmic techniques (described in Section 1.4). The resulting algorithm allows the computer to take
decisions autonomously when presented with similar situations to those used in the training phase.

The result is a more economically feasible solution than implementing the complex and costly landing
aid technology required at every airport. Moreover, there exist airports where this technology can not be
deployed due to physical constraints (buildings or rugged terrain nearby for instance), that could benefit from
the proposed approach since no external equipment to the aircraft are required.

In the first place, a more accurate definition of landing is provided. The next step is deciding the procedure.
Due to considerations of practical nature and facing the impossibility of accessing real data of aircraft flights,
a flight simulator (X-Plane) has been employed to obtain the data for the project. Due to the inexperience of
the author in flying an aircraft, it has been decided to make the simulator govern the plane, with the necessary
landing aids to get a smooth touchdown. The final aim is to develop algorithms which, taking as reference the
simulator landing trajectories, are capable of generating aircraft piloting actions autonomously in scenarios
not presented to the system in the training phase. However during this phase, unexpected problems have
delayed the resolution of the problem, causing the software to not be able to perform the landing at the
moment of the presentation of this document. Hence, it can’t produce graphs of airport approach trajectories
or similar results, although its obtaining is described.

1.2 Landing

Landing is a mandatory phase of a flight. Generally, an airplane is descending and decelerating until it
reaches the final approach speed, which allows to deploy flaps to slow down the speed and increase the
resistance. Near the ground the aircraft must increase the angle of attack to get a gentle landing, performing a
flare, reducing the rate of descent. Upon touchdown, spoilers (sometimes called "lift dumpers") are deployed

1



2 Chapter 1. Introduction

to dramatically reduce the lift and transfer the aircraft’s weight to its wheels, first to the main gear and then
to the auxiliary gear as well, until it comes to complete stop. Some extra resources can be speed brakes or
reverse thrust.

In [1], 5 phases are distinguished:

• base leg: the pilot decides the altitude and distance to start the landing to reach to the desired spot. It
depends on wind, flaps, altitude....

• final approach: with the longitudinal axis of the airplane aligned with the centreline of the runway, the
final flap setting is completed and the pitch attitude adjusted as required for the desired rate of descent.
It is affected by the four fundamental forces that act on an airplane (lift, drag, thrust, and weight), as
well as wind. It is controlled throughout the approach with slight adjustments in airspeed, attitude,
power and drag (flaps or forward slip); so that the airplane lands in the center of the first third of the
runway. Flaps allow to produce what can be appreciated in Figure 1.1:

– greater lift, permitting lower landing speed

– greater drag, permitting a steeper descent angle without airspeed increase

– reducing the length of the landing roll

• round out (flare): a slow, smooth transition from a normal approach attitude (nose low) to a landing
attitude (nose up), gradually rounding out the flightpath to one that is parallel with, and within a very
few inches above, the runway. It starts 10 or 20 feet above the ground, as a continuous process of
changing angle of attack until the touchdown in Figure 1.2.

• touchdown: smooth setting of the airplane onto the landing surface. As the previous phase, it is done
at minimum controllable airspeed so that the airplane touches down on the main gear at approximately
stalling speed. At this point, the proper landing attitude is attained, decreasing the angle of attack, to
touch the ground with the auxiliary gear.

• after-landing roll: the landing phase is completed when the aircraft decelerates to the normal taxi
speed or has been brought to a complete stop when clears of the landing runway.

This project is focused on the final approach and the flare phases and to simplify, the after-landing roll is
ended with the plane stopped.

Figure 1.1 Effect of flaps on the landing point [1].

Regarding the final approach speed, it depends on weight, type of aircraft, crosswind, weather, runway
altitude, visibility, avionics, .... For instance, in light aircraft, the stall speed may be reached, while in large
aircraft, the airspeed and attitude are adjusted to kept them well above stall speed, at a constant rate of
descent. As to the landing distance, it is related with aircraft gross weight and airfield elevation.

While in traditional descents aircraft repeatedly level off and power up the engines with traditional staircase
descents, due to the fact of being constrained by the availability and proximity of ground-based navigation
aids following the Required Navigation Performance (RNP); nowadays, things are changing. More precise
Area Navigation (RNAV) technologies based on GPS provide a more efficient and smoother arrival, with less
fuel usage and less noise [2].



1.3 Current approach and landing systems 3

Figure 1.2 Changing angle of attack during flare [1].

1.3 Current approach and landing systems

In the first place, it would be appropriate to know about the systems (landing aids) that exist in some places,
and how they are used due to their importance to this project.

In this type of navigation systems, some ground infrastructures are needed to send information to aircraft
equipments using radiocommunication technology.

The approach and landing phases are those where the aircraft goes from being in the air at cruise speed, to
leaving the runway. It is divided into two segments characterized by the touchdown point or touchdown zone.
The take-off and landing operations are those which most compromise the security of the flight under bad
weather conditions. In air navigation, these are called Instrument Meteorological Condition (IMC), instead
of Visual Meteorogical Conditions (VMC) if the atmospheric conditions allows a landing without the help
of external assistance. In order to precise when a case is given, visibility is defined as the horizontal and
vertical distance in which it is possible recognize objects [3]. The ceiling is the height between the runway
and the clouds. Whenever the visibility is lower than 2600 feet and the ceiling 200 feet, it will be required
necessarily electronic assistance.

In the approach phase, the plane has to find the glide slope and follow it until the touchdown point. It is
align horizontally with the runway axis and an elevation of 3 degrees. This is achieved transmitting radio
signals, from the ground installations, that are received on board indicating to the pilot if he is navigating
correctly or the horizontal or vertical course have to be corrected. Not all the navigation systems can provide
the accuracy and precision required in the aeronautical world, such as:

• Very High Frequency Omnidirectional Range (VOR)

• Distance Measuring Equipment (DME), which can replace the markers of the Instrument landing
System, explained later.

• Automatic Directional Finding/Non Directional Beacon (ADF-NDF)

For instance, although VOR can provide the horizontal heading, it would not indicate the height to navigate
to. Regarding the other two systems, they do not have enough precision. [4]

Therefore the systems adequate to assist in the operation are:

• Instrument Landing System (ILS). It has been the mainstay of landing navigation aids and provide
aircraft with precision vertical and horizontal navigation guidance information during approach and
landing. [5]

• Microwave Landing System (MLS). A developed system with better capabilities than ILS and with
the purpose of replacing it. However it has not had future due to the economical inversion required
and the emergency of the satellite-based navigation systems.

• Global Position System (GPS) is one of those satellite-based navigation systems which consist of
three segments: spatial, terrestrial and user, with a group of satellites that orbit around the Earth and
emitting radioeletric signals, provide the necessary information to the user system to determine its
position. The system has some deficiencies such as jamming (easily corrupted) and a weak signal. If
precision improvement techniques are included, it is known as a whole as Global Navigaton Satellite
System (GNSS).
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• Wide Area Augmentation System (WAAS) is a type of GNSS with North America coverage that
provides service for all classes of aircraft in all phases of flight including vertically-guided landing
approaches in instrument meteorological conditions at all qualified locations through the United States
National Airspace System (U.S. NAS) accordingly to Federal Aviation Administration (FAA).[6]

• Ground Based Augmentation System (GBAS), previously known as Local Area Augmentation System
(LAAS), provides differential corrections and integrity monitoring of GNSS in the vicinity of the host
airport (23 nautical miles, via a Very High Frequency (VHF) radio data link from a ground-based
transmitter, as it is demonstrated in Figure 1.3. It achieves an accuracy less than one meter in both the
horizontal and vertical axis. [7]

Figure 1.3 GBAS [7].

The ILS is going to be explained with a more detailed vision due to the influence into this project,which
counts on it to extract data to train the machine.

It consists of three different subsystems:

• Localizer (LOC), which indicates how to maintain the plane horizontally in the correct trajectory using
an array of aerials, located 300 meters behind the runway.

• Glideslope (G/S), which is focused in the vertical mode with two or three aerials on a support providing
two bars in the artificial horizon, emplaced 30 m from the edge of the contact area with the runway.

• Markers, which indicate how far is the runway with directional radiobeacons and the Morse message
broadcast that implies that a light switches on as blue, amber or white.

While localizer systems are sensitive to obstructions in the signal broadcast area, such as large buildings
or hangars, glide slope systems are also limited by the terrain in front of the glide slope aerials. Since the ILS
signals are pointed in one direction by the positioning of the arrays, glide slope supports only straight-line
approaches with a constant angle of descent. This kind of system is expensive because of sighting criteria
and the complexity that involves. In fact, if the glide slope is inoperative, the ILS reverts to a non-precision
localizer approach; or if the localizer is inoperative, an ILS approach is not authorized. [8]

The system allows the pilot to know if he is on the left, on the right or in the right position. If the plane
deviates to the right, the vertical bar does it to the left indicating to the pilot that he has to turn to the left. In
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the same way if it is flying high the horizontal bar is under the horizon indicating to the pilot that he must
descent.

A more extensive development of ILS is found in [4].

Figure 1.4 Horizontal and vertical view of ILS [4].

Figure 1.5 Localizer aerial, glide slope installations and ILS indicator [4].

A variation of ILS is the Transponder Landing System (TLS), which does not need to be installed at the
end of the runway, and that can be perceived by the aircraft as if it were using ILS, without adding new
avionics. [9]

It is important to take into consideration the lowest authorized ILS minimum visibility values, with all
required ground and airborne systems components operative as it is demonstrated in Table 1.1. Some
definitions may help to understand how they are divided:

• Decision height (DH). "The glide slope transmitter is located between 750 feet and 1,250 feet from the
approach end of the runway (down the runway) and offset 250 to 650 feet from the runway centreline.
It transmits a glide path beam 1.4 degrees wide (vertically). The signal provides descent information
for navigation down to the lowest authorized decision height (DH) specified in the approved ILS
approach procedure. The glidepath may not be suitable for navigation below the lowest authorized DH
and any reference to glidepath indications below that height must be supplemented by visual reference
to the runway environment."[8]

• Runway Visual Range (RVR) measures visibility, background luminance and runway light intensity to
determine the distance a pilot should be able to see down the runway. [10]

Regarding the normative to be applied, an aspect to be highlighted is the minimum height to fly above the
highest obstacle is 1000 feet within a horizontal radius of 2000 feet of the aircraft over any congested area
with people, both in Europe [11] and America [12].

Therefore, the data that are going to be taken will be related to CAT IIIc ILS (the worst conditions), with a
runway that offers it and with the intention of landing respecting the minimum altitude.
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Table 1.1 ILS Categories [8].

Category Decision height RVR

I 200 ft 1800 ft
Special I 150 ft 1400 ft

II 100 ft 1000 ft
III a None or 100 ft 700 ft
III b None or 50 ft 150 ft
III c None None

1.4 Why Machine Learning

This project focuses on Machine Learning (ML) as a way of responding the objective of producing a
non-expensive aircraft landing aid, and a software capable of performing it itself.

Artificial Intelligence (AI), is a technique that allows machines to replicate the human behaviour. It
includes Machine Learning, which is a data analysis that automatizes the process of constructing models,
employing algorithms. Machines learn from the data, and are capable of facing new situations without human
intervention. It is important to distinguish them and to differentiate from Deep Learning (DL), concept on
the rise, a particular branch of ML which employs huge quantities of data (not available to this purpose) to
learn from, using advances in computational science.

Figure 1.6 AI vs ML vs DL [13].

From its origin in the search of artificial intelligence which result in the creation of neural nets, the applica-
tion of statistical methods in simple algorithms to the automatic apprenticeship, an the Bayesian methods; this
discipline evolved into approximations based in data instead of knowledge. Lately, unsupervised methods,
deep learning, cyber-physic systems and in-situ machine learning have being developed [14].

The main classification is:

• Supervised learning with the aim of finding a function which, given the input data, assigns it the
adequate labelled output.

• Unsupervised learning if the labels are unclear and the system has to be capable of recognize patterns
to label new inputs.[15]

In order to resolve the different subsets, several algorithms can be implemented. Some decision tables
exist like the one of [16].

Reinforcement learning (RL) is one of the latest investigated. It can not be positioned in supervised
learning nor unsupervised learning. It is based on improving the answer of the model using a feedback
procedure. It encourages the apprenticeship from humans observing the environment and evaluating the
response to various actions. In that way the system learns by trial-error. It is not supervised learning because
it does not needs a group of labelled data. Likewise, it is not an unsupervised learning due to known expected
reward when modelling the apprentice.
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Specifically, if what is available as entry to the problem is some trajectories made by an "expert", the
problem gets catalogued as an Inverse Reinforcement Learning case.

To finish this previous explanation of Machine Learning, it is remarkable to take care of the data manage-
ment even in this project where there are various parameters to control in time. Nowadays, the quantity of
data that is moving around the world is extremely immense. For instance in a cross-country flight, almost 2.5
thousands of terabytes are generated which leads to being able of extracting the correct information from the
appropriate parameters through the tool of Big data [17] (for much larger numbers of data, exceeding the
present situation).

1.5 Procedure

For the purpose of clarifying the upcoming contents of the document and providing a general overview, a list
of intended steps to follow is presented in the following, (graphically described in Figure 1.7).

• Investigating about related projects in Chapter 2

• Selecting the tools to use in Chapter 3.

• Learning how to use the simulator in Chapter 4.

• Managing the tool to extract data from it and creating an algorithm with the conditions that define the
situations to study and the data to extract that interest to the project in Chapter 5.

• Investigating types of Machine Learning, where Inverse Reinforcement Learning Inverse Reinforce-
ment Learning (IRL) is going to be seen as the best option in Chapter 6.

• Processing data through a program to convert it into the kind that is treated by the framework where
the algorithm IRL is executed and developing an own environment for the project in Chapter 7.
Nonetheless, it has resulted poorly documented and with a number of bugs and errors complicating
and requiring a considerable amount of time to be dealt with. [Unfinished]

• Processing acquired data in real time and obtaining the actions to perform in the simulator from the
machine, briefly described. [Unfinished]

Unfortunately, it has to be said that due to lack of time and the subestimated complexity of the project
(above all of the codes in the toolkit used to develop the IRL algorithm, which have originated unexpected
problems), not all these points have been achieved. That is, solving the processing of data to be managed by
the IRL framework has been preferred in order to maintain a sequential and logical structure without gaps in
the reasoning. However, the steps to follow are described in detail as well as most of the tools needed.

Figure 1.7 Procedure in blocks.





2 Previous investigations

The present project is inspired in the ideas of the summary document of the work of Oren Hazi [18] as
CS 229 (Stanford course in Machine Learning (ML)) Final Project in 2011.

In the aforementioned work, after writing a plug-in to export flight parameters from within an aircraft
simulator, X-Plane, the author flew approximately 100 training approaches and landings. Once the dynamics
were estimated, two planning algorithms were used to guide the airplane in order to reduce costs in two
different phases: approach and flare, transitioning when the aircraft reaches 10 feet Above Ground Level
(AGL). It has to be said that the costs increase linearly with varying parameter for non ideal states, as well as,
the directional movement was not taken into account due to lack of yaw axis control in the joystick.

One of the aspects which makes the present work an improved approach compared to Hazi’s is the fact
that the data recording has been automatized and generalized. This implies a faster process with a better
organization of the extracted information. Moreover, this work’s approach does not depend on the ability
of a human pilot, because it has been employed the autopilot that controls the throttle, and with the help
of the ILS, follows the generated optimal path. To acquire some sense of reality, the expert providing
the data to learn from, must be that, an expert, which is not possible in the present case, so the solution
is taking the suggested controls of the programmed autopilot in X-Plane. The procedures developed are
nonetheless generic in the sense that, provided an adequate data set from actual expert landing manoeuvres,
the algorithms should readily provide effective and improved control policies.

It is that kind of efficiency that would be required in every airport independently of humans and the
conditions to which the zone is subjected.

During the research for this document, other similar cases of Machine Learning in aviation have been
found. Some of the most closely related to the work at hand are briefly described in the following:

• Gizzi and Zabner report [19], which focuses on using Reinforcement Learning (RL) to control the
aircraft with high level commands and to increase flight safety, without access to expert instructors
to apply apprenticeship learning. It employs X-Plane (the same as in this project) as simulation
environment and later, VISTAS (a rapid proto-typing simulation environment of National Aeronautics
and Space Administration (NASA)).

• Baomar and Bentley have several interesting papers [20], [21], [22], [23] on the topic in which they
apply Artificial Neural Networks (ANN) to manage the data, much larger than what it is going to be
treated here.

• Morales and Sammut proceeding of the 21st International Conference on Machine Learning, celebrated
every year with updates off experts in this field, combines RL with Behavioural Cloning [24].

Regarding a student approach to this theme, several courses have been consulted, both their lectures and
videos, such as:

• CS 229, Stanford course about Machine Learning [25], with special mention to the lectures:

– Supervised Learning

– MDPs, Bellman Equations. Value iteration and policy iteration, where Reinforcement Learning
is explained.

• CS 188, Berkeley course about Introduction to Artificial Intelligence, remarking the lectures:

9



10 Chapter 2. Previous investigations

– Markov Decision Processes I and II

– Reinforcement Learning I and II

A more technical point of view has been acquired through this papers, in a chronological order:

• Algorithms for Inverse Reinforcement Learning, one of the first articles about this modern method of
solving problems [26]

• Apprenticeship Learning via Inverse Reinforcement Learning [27]

• Non-linear Inverse Reinforcement Learning with Gaussian Processes [28], where non-linear relations
can be established between features to define the problem. They even developed their own algorithm,
Gaussian Process Inverse Reinforcement Learning (GPIRL) which is more complex but represents
better the reality of complex non-linear problems, giving more accurate results than other algorithms
(Maximum Entropy IRL, FIRL and margin-based methods: MMP, MWAL, MMPBoost and LEARCH).
The paper includes several examples to demonstrate all the theory, such as an autonomous car driving
along a highway avoiding obstacles, with the attached code.

It has to be noted that Machine Learning is not included in any of the subjects of the academic curriculum
belonging to the Aerospace Engineering Degree in the Escuela Técnica Superior de Ingeniería (ETSI) of the
Universidad de Sevilla (US).



3 Tools

In this chapter the tools needed along the project are exposed, justifying their election.

3.1 Simulator: X-Plane®

The chosen tool to obtain data from and to test the design algorithm has been X-Plane, one of the most
complete flight simulator on the market. Other options could have been Microsoft Flight Simulator® which
is more orientated as a game although it has the possibility in previous versions of playing a demo in two
airports and several airplanes.

The disadvantage of the free demo of X-Plane, in either of its latest versions, 11 [29] or 10 [30], is that it
only allows to fly around Seattle-Tacoma International Airport (ICAO code) (KSEA) for 15 minutes. The
positive point is that if the simulation is paused to take some notes or data, the time will not be discounted.

Figure 3.1 X-Plane 11 logo [31].

Figure 3.2 X-Plane 10 logo [32].

3.1.1 Why X-Plane 10 and not X-Plane 11

Despite the fact that the first idea of this project was to be implemented in the latest update of the program
of January 2019, it results in some way a worse option than X-Plane 10. This one offers the possibility of
having the screen divided in two while the newest forces the full screen and its procedures of turn on, settings
and controls are a lot much slower.

All these arguments tipped the balance towards using X-Plane 10.51 from October 2016, with lower
definition graphics but a more agile response.

This doesn’t prevent the codes from been able to be used in either of the versions.

3.2 Programming platform: MATLAB®

MATLAB is a specifically designed platform for engineers and scientists with its own matrix-based language.
ETSI is characterized by providing a quite advanced training to the students, above all to those in Aerospace

11
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Engineering Degree, including in the academic curriculum subjects that apply this tool. In most of them,
using it for some exercise, while in others, it is a fundamental component, such as:

• Programming fundamentals, where the first contact is taken.

• Numeric Methods, which emphasizes its optimal use, saving time and computational operations.

• Fluid Mechanics II, combined with the application of the theory to develop codes about laminar and
turbulent boundary layers.

• Aerodynamics II, with codes related to wings in subsonic and supersonic flight regimes.

• Computational Mathematics, starting from the basis and with the perspective of developing applica-
tions.

Figure 3.3 MATLAB logo [33].

3.3 Connection between X-Plane and MATLAB

After the installation and the first use of X-Plane (MATLAB was already implemented in the computer for
the project, specifically, version R2018a), a form of communication between both software was required.

The two first libraries [34] and [35] found in the Community of MathWorks® did not provide a correct
communication neither the required capability of taking a closer look at the code of the Plug-in to be able to
automatize the data recording.

However, after some investigation, the third library was found, surprisingly, as part of a NASA repository
in GitHub [36]. The open source research tool allows to send and receive all kind of commands and data
incorporating them in some useful examples that have been taken as a baseline and developed in order to
adapt them and acquire what is pursued in the project.

3.4 Machine Learning in MATLAB

In the first place several toolboxes about Reinforcement Learning [37] or Markov Decision Processes (MDP)
[38] [39] were found, but they did not take into account the fact of having as entry condition expert data,
only the policy, which is too much complicate to obtain from this kind of problem.

This limitation motivates the use of the IRL Toolkit [40] that allows us to incorporate expert decision data
into the model.

Now that all the required parts of the project have been briefly described to provide a quick and simple
understanding, the Figure 1.7 can be further detailed as presented in Figure 3.4. In the following sections
an in-deep step-by-step description will be provided in order to make everyone able to replicate all the
procedures taken in a chronological order.

Figure 3.4 Tools in blocks.



4 First steps with X-Plane

The usage of the chosen simulator is going to be treated from a beginner approach. It is focused on this
project following all the steps that have been taken by the author of the document for who it is her first

simulator.

4.1 Getting to know X-Plane

Some of the main characteristics of X-Plane 10 are going to be detailed. It is launched from X-Plane.exe in
X-Plane 10, the folder unzipped of the downloaded one, obtained from [30]. Several seconds are required
and a small window opens to select under which option the program is going to be launched. As it has been
commented, the version of this project is the free one, and therefore Run Demo is chosen in Figure 4.1.

Figure 4.1 First selection.

After some time reading configuration, airports and airplanes from the folder X-Plane 10 as it is shown in
Figure 4.2, a new window allows to choose the airport, aircraft, time and weather in Figure 4.3.

This version of X-Plane doesn’t allow to charge a specific situation in this main window, so the aircraft
appears in one of the runways by default of the selected airport. In the case of study with the demo, only the
Seattle Tacoma Intl (KSEA) in Figure 4.4 (with its real version in Figure 4.5) is available.

Time selection:

• day

• sunset

• twilight

• night

13
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Figure 4.2 Loading X-Plane.

Figure 4.3 QuickFlight Setup.
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Figure 4.4 Aerial image of Seattle Tacoma airport in simulator.

Figure 4.5 Aerial image of Seattle Tacoma airport [41].

Weather selection:

• clear

• few

• scattered
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• broken

• overcast

• low-vis

• foggy

• stormy

Therefore, after choosing Seattle Tacoma Intl KSEA airport, an airplane, the time and weather and
clicking in the box at the right bottom: Fly with these options, the system loads all the scenario with its
characteristics.

4.1.1 Airport: KSEA

As it has been said, due to the demo version, the only option is KSEA, Seattle Tacoma International airport.
It counts with an elevation of 432.3 ft (131.8 m) and three runaways.

The dimensions of the smallest available runaway, the 16R-34L, are 8500 ft x 150 ft. This is the one that
most interest implies to the project, because of being the unique of KSEA that presents ILS category III,
which has been described in Section 1.3. That permits to study the case with the worst atmospheric and
visual conditions. It can be seen on the left side of the Figure 4.6.

According to [42], airplanes can land in both directions using Visual Approaches or Dependent Instrument
Approaches. Finally, the chosen one was 16R (heading 161.3°) as the arrival runway (South Flow). It is the
less dangerous to the buildings, which are higher near the 34L (heading 341.3°). Besides, the glideslope
provided by default is the one of the 16R, as it is at the bottom of Figure 4.15. In order to take data from
different situations, landings in 34L have also been performed.

4.1.2 Aircraft: A380

Once the runaway has been chosen to satisfy the established requirements by the project, the aircraft must
fulfil the possibilities offered by that runway. Besides, it needs to own autopilot and ILS communication to
take the data using this approach aid. In order to apply the results to other situations without problem, the
extreme case was taken, the largest commercial plane: A380.

Some of its characteristics related to the landing phase are the final approach speed, the indicated airspeed
at threshold in the landing, of 138 knots (71 m/s) and the landing field length between 5200 ft (1600 m,
minimum gross weight and 0 ft of airfield elevation) and 8800 ft (2700 m, for maximum gross weight and
8000 ft of airfield elevation) [44]. For KSEA elevation, the landing field length reaches 7200 ft, what assures,
enough to land the A380, although it doesn’t operate in the airport due to its huge wingspan [45]. However,
it could be a potential additional alternate accordingly to airport compatibility of Airbus [46]

More information about this airplane is found in [47], with the classification as regards several organisations
such as ICAO and depending on the criterion: wingspan, approach category...

It has to be pointed that the A380 is not one of the defaults in the simulator. Nevertheless, in the official
page of the software, several airplanes, among which A380 is, are offered in a free way. It was added copying
the downloaded plane data to the folder Aircraft inside X-Plane folder, as it is shown in Figure 4.7. The
design of the plane resembles the real one, what can be appreciated in Figure 4.9.

4.1.3 Settings of a flight

The simulator places the airplane on the runway 16 L by default, and the second window about the demo or
complete version appears (Figure 4.10). After selecting Understood, 15 minutes are available to use the
demo unless it is paused pressing letter "P" in the keyboard.

The screen in that moment is as depicted in Figure 4.11 or, if the program fills only half screen, in
Figure 4.12. This is the one used during all the project because of developing codes in MATLAB or
elaborating this memory simultaneously. It is one of the main reasons why X-Plane 10 has been chosen, with
this possibility leading to have other processes at the same time in the screen.

At the top of the cockpit, the menu bar can be displayed if the mouse is moved towards that part of the
screen. The first drop-down menu or pop-up menu, About, consists on two submenus:

• About X-Plane, where some important information about X-Plane can be found in Figure 4.13, such
as:
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Figure 4.6 Diagram of Seattle Tacoma airport [43].

– version

– author of scenery

– author of algorithms

– author of rendering

– author of airplanes

– author of airports
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Figure 4.7 Adding A380.

Figure 4.8 Airbus A380 [48].

Figure 4.9 Airbus A380 from X-Plane.
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Figure 4.10 Second selection.

Figure 4.11 Cockpit in full screen.

– author of Air Traffic Control

– source of airspace data

– source of Instrument Approach Data: Lufthansa Systems, important to this project because of
making possible the autopilot can be ordered and the data is taken.

• Instructions, in Figure 4.14, with several tabs that provide information about:

– flight controls

– cockpit control

– keyboard

– ATC

– tech support

Besides, the following options should be selected:
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Figure 4.12 Cockpit in half screen.

– Show mouse click-regions in the cockpit, to get the green lines that point to the zones of the
screen that can be changed

– Show instrument instructions in the cockpit in Figure 4.14 to obtain the information about
them, passing the mouse over those areas

The submenu File has the options of:

• QuickFlight Setup, going back to the initial screen to choose airport, airplane, time and weather

• Save/Load situation

• Save/Load replay

• Load Xavion Flight, to see flights performed with Xavion in iPads or iPhones

• Load Flight Data Recorder File, to set atmospheric conditions and the state of the aircraft

• Take Screenshot

• Toogle AVI Movie, to start recording

• AVI Movie Specs, to specify the characteristics of the recording

• Logbook, with some information about every flight performed in X-Plane

• Quit the simulation
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Figure 4.13 X-Plane information.

Figure 4.14 Aids about instructions in cockpit.

In the Aircraft module, it can be defined all its characteristics:

• Open Aircraft

• Weight and Fuel

• Equipment Failures

• Aircraft and Situations

• Others

If an aircraft is not included in the program but it is wanted to be tested, there are several options, buying it
in X-Plane or searching it in forums (free version developed by users and not the official ones) and copying
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its data inside Aircraft in X-Plane folder, or it could be designed in a special tool related to X-Plane, the
Plane-Maker.

Regarding the Location, four options are displayed:

• Select Global Airport, which allows to choose the aircraft location as a ramp, or a runway in order to
perform a take off or a final approach from two possible points (3 or 10 nautical miles)

• Local map in Figure 4.15 offers different views of the navigation maps, aids and a vertical cut of the
glideslope. Besides, it indicates in a label the name of the runway and its frequency associated. It
is employed to tune and start the ILS communication when the aircraft enters in the corresponding
zone. On the left part, the different approaches are offered to send the airplane to those locations, as
substitute of the submenu Select Global Airport.

• Planet Map, an overview of the planets and the airports

• Get Me Lost, to go to an arbitrary airport

Figure 4.15 Local map.

The Environment controls:

• Weather, with more possibilities than those offered in Figure 4.3

• Date and time

Settings are another remarkable piece.
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• It starts with the Data Input and Output. Data can be shown in cockpit during flight if it is selected
or sent and received via UDP with an Internet connection, or to a disk file ’data.txt’ or in Data See with
a Graphical Display. However not all the data are interesting to the purpose of this project and other
options are required to optimize the data recovery. This is one of the reasons why the X-Plane Connect
from NASA is being employed. The important aspects are UDP and disk rates which determine the
transfer of information.

• Net Connections, with computer IPs for multiplayers, instructors,...

• Joystick and Equipment. If external devices (joystics, yokes, pedals, handles...) are going to be used
instead of the default controls, they have to be connected to the computer before launching X-Plane.
Their configuration is done during the loading of the program and in this submenu, the characteristics
can be changed.

Figure 4.16 X-Plane dataset.

• With Rendering Options, the quality is adapted according to the desired speed.

• The configuration of Sound allows to set the volume of engines, props, ground contact, weather,
warning systems, com radio and avionics fan.

• At last, Operations and Warnings, in Figure 4.17 allows to set the language of preference among
eight of them as well as some configuration about startup, warnings, damage and data.

All the control of visualization and cameras, can be chosen in View. The most used along the project have
been Forwards with panel to control the aircraft indicators in cockpit, and View is Ridealong in order to
watch the extraction of the landing gear and contact with the ground, which is wanted to be as smooth as
possible for the comfort of the passengers. Another example could be Figure 4.18, with the 3D view of the
cabin and all the controls and indicators in a more realistic disposition. This can be compared with the real
one of Figure 4.19, from a 360° view in [49]. The different options classified in groups are:

• Forwards with Panel/HUD/Nothing

• 3-D Cockpit Command-Look
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Figure 4.17 Operations and Warnings.

• View is Ridealong/Chase/Circle/Still Spot/Linear Spot

• View is Beacon Tower/on Runway/on Weapon/Free-Camera

• Translate Left/Right/Up/Down/Fore/Aft

• Rotate Left/Right/Up/Down

• Zoom In/Out

• Toogle Cinema Verite/Sunglasses/Night Vision Goggles/Aviation Flashlight

In Special, extra properties are found such as:

• Find Pitch/Yaw Stability Derivative

• Show/Output Flight Model

• Open/Toggle Checklist for Use

• Open/Toggle Text File for Viewing

• Toggle Nearby Air Traffic Controllers in Window
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Figure 4.18 3D cockpit.

Figure 4.19 Real A380 cockpit from a 360° view in [49].

• Set Environment Properties/Artificial Stab Constants/Autopilot Constants/FADEC Constants

• Show Control Deflections/Bouncers/Weapons Guidance/Projector Setup/Sky Colors/Dev Con-
sole

Finally, Plugins is the other important submenu. It allows the connections with MATLAB.

• After selecting Enable/Disable, a window is opened, showing all the plugins available. In order to
see them, they have to be previously in the folder plugins inside of Resources, X-Plane 10 subfolder,
like in Figure 5.1.

• Plugin Information
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• HotKey Admin

Figure 4.20 Enable/Disable Plugins.

Once this is all set, the following step is to learn some controls.

4.2 Controls and displays

It is important to understand the purpose of the different controls and indicators in the cabin. A real cockpit
with its main parts is in Figure 4.21 to compare with the presented in the simulator. The main difference is
that the pedals are substituted by a stick to control the rudder and by a bottom to brake the plane. From left
to right and from the top to the bottom of the panel in Figure 4.11, the most important zones of the cockpit
are described.

Autopilot (Figure 4.22) can be found at the top right part of the cockpit, and it consists on controls and
modes to make the plane fly in.

The autopilot controls: speed, heading, altitude and vertical speed settings in the black rectangles can be
changed to indicate the autopilot’s targets (to reach and hold them).

The autopilot modes are those which aircraft can be configured to behave in a specific way. From left to
right:

• WLV: autopilot engage attitude-hold. The autopilot will hold the plane’s wings level to maintain the
current heading. This is the simplest autopilot mode, often found on general aviation aircraft.

• LOC: autopilot engage VOR/localizer. The autopilot will fly the selected VOR bearing (if it has a plan
with segments between established points) or follow the approach localizer whose frequency is tuned
in the selected Nav receiver, at the right bottom of Figure 4.6. Nav receiver and OBS must be set up
before engaging this mode and the aircraft have to fly a path that crosses the selected course to let the
autopilot lock on.

• HDG: autopilot engage heading. The autopilot will fly the heading indicated in the heading selected
bug on the directional gyro or HSI and in the heading display. The desired heading must be set in the
described control before engaging this mode.
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Figure 4.21 Parts of the cockpit [50].

Figure 4.22 Autopilots controls and modes.

• FD: autopilot flight-director

• AP: autopilot servo

• THR: autopilot engage auto-throttle. The autopilot will adjust the throttle to maintain the set speed (it
has to be chosen before engaging this mode).

• ALT: autopilot engage altitude hold. The autopilot will lock onto and maintain the plane’s current
altitude.

• APP: autopilot approach mode. This primes the autopilot to grab both a localizer and glideslope.

• VS: autopilot engage vertical speed. The autopilot will fly the plane at the climb rate selected in the
vertical speed setting (positive value to climb, negative to descend).
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• VNAV: autopilot engage Flight Management System (FMS) Vertical Navigation (VNAV). The autopilot
will fly the plane at the altitude programmed into the flight management computer.

Figure 4.23 Navigation screens.

In Figure 4.23, two screens are displayed.

• The left one includes:

– active aircraft modes

– airspeed, artificial horizon

– altitude above sea level

– rate of climb

– horizontal situation indicator (HSI).

• The right one is subdivided in:

– the EFIS map, a moving map that shows airports, navaids, weather and other air traffic in the
area near the plane.

– the top part, which presents data such as true airspeed, the speed over the ground and the relative
wind direction with an arrow and its compass direction.

– the bottom part, with the distance to the navaid tuned to and the course selected with the OBS
indicators are found; as well as different trim options are offered for aileron, rudder, elevator...

The main screen of Figure 4.24 is divided in three parts:

• Engine information: engine N1 (the speed at which the first stage (outer) compressor is turning in a
turbine engine, as a percent of the original maximum design speed) and exhaust gas temperature (the
temperature of the exhaust gases leaving the engine, measured at the exhaust manifold of a piston
engine and at the exhaust port of a turbine engine)

• Flaps and slats indicator, which points the current position of them.

• Warning System: inverter warning for electronics, autopilot disconnection, thrust reverse indicator,
slats out, engine fire, oil pressure, fuel pressure, hydraulic pressure and fuel quantity.
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Figure 4.24 General characteristics and landing gear indicators.

Regarding the landing gear, on the right of Figure 4.24:

• There is an indicator for each gear (green when it is down and locked, unlit when the gear is up and
locked and red when it is in transit.

• At the bottom, a lever raises and lowers the landing gear, with its wheel-shaped end not to be confused
with something else.

• The brakes control the turn of wheels to slow or stop the plane when it is on the ground. In real planes,
they are not an indicator but operated by pedals. The autobrake selector enables automatic braking on
touchdown and controls how hard the brakes will come on.

If the projection of the present document had been in a larger scale, the Flight Management Computer
(FMC) of Figure 4.25 would have allow to program a route through multiple waypoints, but the last phase of
a flight, the landing, is the one been studied. The other parts are:

• The screen above the knob that controls throttle, which indicates:

– engine pressure between the intake and exhaust

– engine N, the speed at which the second stage (inner) compressor is turning in a turbine engine,
expressed as a percent of the original maximum design speed

– the fuel flow rate

• On the right, some atmospheric data are displayed as:

– the cabin pressure with the cabin altitude indicator

– the rate of change of cabin pressure as an equivalent climb rate (vertical velocity indicator)

– the temperature
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Figure 4.25 FMC, engine, throttle and communications.

• Just under this, the communications are settled with the transponder or the Nav/comm/ADF receiver,
a combination receiver for communications, VOR/ILS, and non-directional beacons (all of them
described in Chapter 1). First, the receiver must be selected, then with the knobs the standby frequency
is set and flipping the switch it is activated. As the selected runway is 16R-34L, and its frequency,
110.75 Hz, is shown in Figure 4.26, it is what must be dialled.

Additionally, extending this image, the glideslope installation can be appreciated in Figure 4.27 with the
letters GS surrounded by the blue square. Its location is defined by 793 feet (247 meters) from the extreme
of the runway and 175 feet from its longitudinal axis (or 100 feet -31 meters- from the lateral of the runway),
which resembles what has been exposed in Figure 1.4. As regards to the localizer, it is situated at the extreme
of the runway in the direction of the landing, with its center 800 feet (243.84 meters) away from the runway
in its axis.

4.2.1 Using joysticks or similar

A joystick was borrowed and configured, establishing its limits as regards its degrees of freedom: pitch and
roll but not yaw or thrust control. The camera visualization was also connected. After some trials, it was
seen that this external device did not provide the needed accuracy, and the author of the project hasn’t had
the enough knowledge to land a plane by hand. Therefore, the idea of using the autopilot and the ILS to
make the most optimal number of landings came out. To interact with the simulator, the mouse and keyboard
was preferred at the end.

4.2.2 Using keyboard and mouse

The controls can be configured associating some commands to keys that the user chooses and the movement
of pitch, roll and yaw or the camera, to the mouse. This is done inside of Joystick and Equipment/Keys, in
Figure 4.28.

4.3 Setting a landing manually

After this general overview, the steps to follow in order to perform a landing using X-Plane would be:

1. Starting X-Plane from X-Plane.exe

2. Clicking in the little windows in Run Demo (Figure 4.1) and Understood (Figure 4.10)

3. Choosing airport (KSEA in demo), aircraft, time and weather in Figure 4.3

4. Pausing the simulation pressing letter "P"

5. Selecting starting point (3 nmi is preferred) for the approach in Location, Select Global Airport
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Figure 4.26 ILS of 16R runway.

Figure 4.27 Glideslope and localizer installations 16R.
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Figure 4.28 Key association.

6. Setting the NAV receiver with the corresponding frequency. If the selected runway is 16R-34L, its
frequency, 110.75 Hz (that can be obtained from Location, Local Map, as it is in Figure 4.26), it is
what must be dialled.

7. Clicking THR (autothrottle), LOC (localizer) and APP (approach mode) in cockpit (FD (flight director)
and AP (autopilot) must switch on themselves applying this order)

8. Pulling down the lever to deploy landing gear

9. Setting autobrake turning the knob to point at the maximum option

10. Pressing "P" in order to continue the simulation and watch how the autopilot lands the aircraft.

Now that X-Plane is controlled, the software to send orders and extract parameters, without having to
repeat all this procedure each time, is going to be addressed.



5 X-Plane Connect

This chapter deals with the toolbox that connects MATLAB with X-Plane.

5.1 Installing plugin in X-Plane

First of all, the repository [36] allows the download of the toolbox X-Plane Connect (XPC), which must be
associated in X-Plane to be recognised. For that, the X-Plane Plugin folder from (xpcPlugin/XPlaneConnect
of Figure 5.1, or with backslash (\) in Windows directory - it is automatically corrected) has to be copied to
the plugin directory (X-Plane 10/Resources/plugins on the right of Figure 5.1). Then, X-Plane 10 can be
launched and in the plugins, the XPC must be shown, as it is indicated in Figure 4.20.

5.2 Inner functions of X-Plane Connect

In the first place, getting to know the toolbox required some time because it is more complex to understand
than the two previous libraries. A helpful resource has been the page where all the functions and their usage
is explained [51].

Although it provides modules for C, Java, MATLAB and Python, the one to be implemented along the
document is the related to MATLAB. So the functions provided in Figure 5.2, where the ones used in this
project are circled in red, can be described as follows:

• openUDP: sets up a new connection to an X-Plane Connect pluging running in X-Plane through
Internet User Datagram Protocol (UDP)

• closeUDP: closes a connection to X-Plane Connect

• setCONN: sets the port on which the client sends and receives data

• pauseSim: pauses or activates the X-Plane physics simulation. 1 or true to pause the simulation; 0 or
false to activate and 2 to switch the pause state.

• getDREF: gets an X-Plane dataref

• getDREFs: gets one or more X-Plane datarefs

• sendDREF: sets the value of an X-Plane dataref

• sendDREFs: sets the value of one or more X-Plane datarefs. The size of value has to match the size
(number) of datarefs.

• readDATA: reads data exported by X-Plane

• sendDATA: sends raw data to X-Plane

• selectDATA: sets which data rows X-Plane will export

• getCTRL: gets control surfaces information for a plane: position of latitudinal stick, longitudinal stick,
pedal and throttle between -1 and 1; gear configuration (up/down), flaps deflection betweeen 0 and 1;
speed brakes between -0.5 and 1.5.

• sendCTRL: sets control surfaces for a plane
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Figure 5.1 Folder to be copied and where to place it.

• getPOSI: gets position and orientation of a plane: latitude, longitude, roll, pitch, true heading (in
degrees), altitude above mean sea level (in meters).

• sendPOSI: sets position and orientation of an airplane

• sendTEXT: draws text on the screen

• sendVIEW: sets the X-Plane cameras

• sendWYPT: draws waypoints in the simulated world

The difference between data and datarefs is that, while the first one is defined according the corresponding
values in the X-Plane UDP Data screen (this isn’t enough information for the project), the second one is
chosen in MATLAB independently of the screen of X-Plane.

From now on, the term "data" will be used as a shortcut of datarefs throughout the document.

5.3 Data

In [52], a detailed list of all the possible data or commands to extract/send is available. Some of them have
been deprecated and substituted by others. Also as the version of the toolbox and X-Plane does not coincide,
others appear to be no longer active.

The main parameters of interest for this project are the following:

• sampling time for the data to be retrieved between specific moments where the data is taken

• speed of the simulation, which also activates the simulation when it is sent to X-Plane if it was paused
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Figure 5.2 Inner functions, those relevant to the project circled in red.

• autothrottle

• localizer, to set the localizer communication

• approach mode, to set the glideslope communication

• gear status (down or up)

• autobrake ratio, to brake just when the touchdown is produced

• indicated airspeed

• groundspeed, the condition to stop taking data

• latitude

• longitude

• altitude in feet above mean sea level

• altitude in meters measured by radioaltimeter above ground level

• pitch

• roll

• heading

• pitch ratio

• roll ratio

• heading ratio

• throttle ratio



36 Chapter 5. X-Plane Connect

• flap ratio

• vertical velocity

5.3.1 Notes

The deprecated data that could have been used in the project are:

• airspeed_mode

• heading_mode

• altitude_mode

• mode_hnav

• mode_gls

All the autopilot modes have been implemented as flags in autopilot_state [53]. They have three states: off,
arm and engage. The difference between arm and engage is that the mode is loaded and it will be activated
when certain conditions are reached, passing from arm to engage. For example altitude hold arm will engage
altitude hold when the plane reaches the target altitude dialled into the autopilot dash.

Some modes can’t be overwritten and others must have a specific order to set them correctly. For instance,
to set up an approach, only the heading mode has to be set first, then the localizer arm, otherwise, there could
happen that the implementation of the localizer comes first if they are set at the same time. The autopilot
must have always one lateral and one vertical mode. And from that, some modes cancel other automatically.

Editing a variable that has associated several fields, -998 can be written in those that aren’t wanted to
overwrite them. That is, the parameter will stay at the current X-Plane value if -998 is assigned to it.

Reading of several parameters from aircraft sensors tends to lag by several second, like the indicator of
the vertical velocity: vvi_fpm_pilot; and their exact measure have to be obtained using other methods. It has
been decided to use discretised difference quotient, being h_i the value of the altitude at the previous instant
of time, h_f the one of the current altitude and interval the step of time. If h_i is empty, in the first instant of
time, it has been considered h_i = h_ f and therefore, the vertical velocity is null, vvi = 0. For the rest of
instants, the vertical velocity is calculated as:

vvi =
h_ f −h_i
interval

·60 (5.1)

Code 5.1 SERP3nmiapp.

if cont==1
h_i = posi(3)*3.28084; % set h_i to calculate vertical velocity
%initial altitude in feet in order to calculate the vertical
%velocity by deriving the altitude with incremental cocients
%due to the lag of the vvi of the airplane

end
h_f = posi(3)*3.28084; %new altitude in feet
vvi = (h_f-h_i)/(interval)*60; % vertical velocity feet/min
h_i = h_f;

5.3.2 Equipment of the aircraft

In this project, the simulated aircraft will be equipped with the following sensors, available as normal
instrumentation in modern airplanes, to allow the extraction of the data described in the previous subsection.

• Radar altimeter to get the altitude above ground level.

• Instruments of attitude: gyroscopes and accelerometers of Air Data and Inertial Reference System
(ADIRS) with pitch, roll and heading and their derivatives and accelerations.

• Sensor of airspeed.
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• Multi-Function Probe to provide the pressure from which obtain altitude measured from mean sea
level.

• GPS, that provides the location in latitude and longitude mainly.

• Sensor of gear state.

• Weight On Wheels (WOW) sensor, to start braking as soon as the airplane touches ground, when this
sensor activates.

• Throttle sensor.

These assumptions are based on the document from [50]. In this, several images of the real cockpits as
well as a detailed description of all the components and systems of A380-800 can be appreciated.

5.4 Own code in X-Plane Connect

Using the provided X-Plane Connect code as a starting point, a number of customized pieces of code were
developed in order to fulfil the requirements of the work at hand. The code is named SERP3nmiapp and can
be found in section Subsection 9.1.1.

It is worth remarking that this code has been extended and adapted to be applied to all kind of airports,
aircraft, and situations related to landing operations. This versatility requirement has increased the difficulty
of the development of codes, but will be quite useful to future works.

5.4.1 Start X-Plane

Before the program is executed, the simulator has to be running with the situation 3nmi, at 16R runway of
KSEA, paused since the beginning (letter "P" must be pressed when being at the runaway or during the
loading of the approaching). Several seconds have to pass before running the file.

If it is preferred, X-Plane can be executed from MATLAB with the orders of changing folder to the
directory which contains X-Plane.exe and running it preceded with the bang operator (!). The instructions
must be executed from the Command Window, where they can be implemented.

5.4.2 Import X-Plane Connect

The path is set to contain the inner functions described in Section 5.2 and then the connection is established
with X-Plane importing the plugin XPlaneConnect.

5.4.3 Setup

Each iteration (landing) is saved in two files and in order to generate automatically a new file, persistent
variable num is created. The path of the files is added and then they are opened to write in them.

• File of extension .txt, where in the first row some info about the landing is saved:

– plane, A380 by default in this project

– airport, KSEA by default in this project

– weather, with the possible options of Section 4.1

– time, with the possible options of Section 4.1

– distance, starting point around that distance to the airport

– land_way, landing runway in 16R or in 34L

– start_point, starting point from the default point (’default’) or a sent point (’s’)

– direction, landing from north to south (’NS’, 16R) or from south to north (’SN’, 34L)

The second row contains the name of each variable and its units (if it’s a dimensional one) are presented,
with all the data by columns and indicating at the end the total number of requested connections, the
successful ones and the percentage of connectivity. Some samples aren’t taken due to UDP timeouts,
originated by bad WIFI/Internet connection, or a low efficiency of the computer that causes the delay
of the simulation.
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• File of extension .mat, with the name of the variables and their data as vectors of the same number of
components, to be used with the IRL algorithm in Chapter 7. It can’t have all the extra information
that the previous document allows.

The characteristics of the connections are fixed opening the socket with the inner function openUDP,
indicating the interval of data acquisition, 0.2 s or 5 Hz, 20 samples per second. Then the simulation speed
can be selected as 1 for real time, 2, for accelerating time to double the real one or 0 to pause it.

5.4.4 Set the initial position

The software provides two points (3 nmi and 10 nmi) from the chosen landing strip or runway. However if
the aim is to study and take data of different casuistry, this fixed point does not provide a complete point of
view.

To ensure that, the initial point is given around 3nmi, the maximum distance the glideslope and localizer
operate. The general characteristics considered are:

• A normal altitude for the considered distance to the airport

• The throttle and controls required to land correctly that have been left to the autopilot

• The landing gear deployment in a certain distance from the airport given as the latitude coordinate.
Since the starting point is around the 3 nmi from the runway, this is an adequate distance to deploy it.
With this, the indicated airspeed at threshold in the landing reaches the required 138 knots for this
aircraft, A380.

It is important to point out that in order to send a specific location with latitude, longitude and altitude, all
the rest of parameters must have been configured. The easiest way of doing that is pausing the simulation,
and then sending the plane to the default 3 nmi point from X-Plane. Once there, the position can be set to
another point from MATLAB, for example, A, maintaining the pitch, roll, heading and gear the same as they
were in the default position of 3 nmi, putting -998 in their respective values. A remarkable aspect is the
direction of the aircraft, if the landing is performed flying to the north, the chosen runway to take the point of
approach must be the 34L one. If the 16R was selected, the plane would continue to south from the point A
when it was sent.

Besides, the given point has to be really near of the default points 3 nmi of 16R or 34L, according to
the direction the landing is wanted; however it doesn’t limit the first default point of the simulator. In fact,
being in the point of 3 nmi of 34Rit, it is possible to send A near 34L due to their same direction. This two
paragraphs could be more understandable observing the Figure 4.6.

5.4.5 Set initial conditions: autothrottle, localizer, approach

After selecting the datarefs to work with: autopilot_state, gear_handle_status, auto_brake_settings and
sim_speed; they are defined with sendDREF. The order to perform a good approach using ILS is putting the
flag of autopilot_state: 1 - autothrottle, 256 - localizer, 1024 - approach mode.

At last, the gear is extracted and the autobrakes set to 4 the maximum, to start their function when the
plane touches the ground.

It is important to know that if the starting point is far from the airport, the approach mode will be armed
but will not engage until it reaches the 3 nmi from the airport and even it will avoid it if the aircraft changes
its course excessively. In the meantime, another mode is armed, such as autopilot engage attitude-hold or the
altitude hold. However, if the dialled altitude is reached, the autopilot will try to maintain it and will not land.
To avoid that, a high value of altitude must be dialled. It happens the same with the vertical velocity and the
heading. This last one has a huge influence on the aircraft when it is dialled the opposite to the one being
followed. The aircraft tries to reach it too quickly and ends falling.

5.4.6 Parameter extraction

The parameters that are required to perform the subsequent data analysis have their datarefs written in a
vector, DREF.

A variable, cont keeps track of the requested connections every 0.2 s and another registers if a connection
is perfectly performed of conn. It doesn’t update its value if any failure has been produced.

A loop is initialized with an inner stop condition in its interior. Every step time, a new iteration is done
and the code tries to obtain the data. However, when for some reason the connection can not be executed, the
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code shows an error in Command Window (instead of the data of that step of time) and counts a fail using the
catch part, but doesn’t stops running the program and tries the next iteration. Hence, to end a iteration, the
stop condition must be accomplished or the user has to use in Command window the keys of the keyboard:
"Ctrl"+"C".

DREF parameters are sent as request to X-Plane to receive their values with getDREFs. They along with
some of the data from getPOSI and getCTRL (saved in posi and ctrl respectively) are shown in the Command
Window each step time and recorded in the corresponding file. It is remembered the exception of the vertical
velocity indicator that is calculated deriving the altitude.

The process of selecting the adequate variables to extract is determined by the subsequent study in the
algorithm. A plane is a source of parameters and the efficient way is not to extract all of them. This would
not be correct due to the quantity of time required and the limitations of the processing capacity. On the other
hand, an insufficient number of data would result in a inexact control. Therefore, the following parameters
have been selected:

• conn, number of successful connection and the component of the vectors

• lat, latitude in degrees from the first component of posi

• long, longitude in degrees from the second component of posi

• altmsl altitude in meters measured from the mean sea level, converted to feet

• altagl, altitude in meters measured from above ground level, converted to feet (third component of
posi)

• pitch, pitch of the aircraft,fifth component of posi

• roll, roll of the aircraft, fourth component of posi

• head, heading of the aircraft, sixth component of posi

• pitchr, pitch ratio flying with autopilot, deflection of elevator

• rollr, roll ratio flying with autopilot, deflection of ailerons

• headr, heading ratio flying with autopilot, deflection of rudder

• Tr, throttle ratio of all the engines

• vvel, vertical velocity in feet per minute differentiating the altitude with incremental quotients (the
decrement divided the interval)

• Vg, ground speed in m/s, as the condition to stop taking data

• V, indicated airspeed in knots, to proof the threshold speed (138 knots in A380)

• flaps, flap ratio

• gear, gear status, down or up

• autob, autobrake selector, set to the maximum to brake just as the touchdown is performed

The stop condition is used to finish saving data when the aircraft is not moving in the runway after landing.
It is described by having an altitude under than 10 feet above ground level, with an ground speed inferior to
0.001. The last thing added to the file of extension .txt (and printed to the Command Window) is the number
of successful connections and the percentage of connectivity. Finally, the connection between X-Plane and
MATLAB is ended with closeUDP.

One of the important aspects to consider is that due to the inexperience of the student in charge, with this
kind of software, it has been decided to take the information of the performance of the autopilot employing
the ILS described in Section 1.3.

5.5 Considered cases

The situations vary in time of day, the meteo (with the implied turbulences) and the starting location. However
all of them have in common the aircraft (A380 and the airport (KSEA).

As it has been said, in spite the fact that the unique plane considered has been A380, any model with
autopilot and the required modes can be chosen to extract data from it.
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After hundreds of failed iterations while testing and modifying the code to include more data or information
until its current version, a number of ten landings have been correctly and completely performed. In the
Table 5.1 is shown their information.

Table 5.1 First iterations.

Number Time Weather Runway Starting point

1 day clear 34L default
2 day clear 34L sent
3 night clear 16R default
4 sunset foggy 34L default
5 sunset stormy 16R default
6 sunset stormy 34L sent
7 twilight foggy 16R sent
8 twilight foggy 16R default
9 sunset broken 16R sent

10 sunset broken 34L sent

These can be found in the created folder Landing with the code that has generated them, as it is shown in
Figure 5.3.

Figure 5.3 Developed code and folder of iterations.

As a first approach to the problem, a limited number of scenarios have been considered. The small set is
nonetheless sufficient to test the performance of the proposed method in the IRL Toolkit of Chapter 7, and
can be extended in future reviews of the work. That is because it will be necessary to obtain more robust
results training the machine, before letting it to determine the optimal action to follow in X-Plane.



6 Machine Learning (Inverse Reinforcement
Learning)

As it has been described in Section 1.4, Machine Learning (ML) is going to be employed to make the
simulator learn from recorded data. In that way the automatic system that is been developed will be

able to land the plane without human supervision. To this goal, lots of tests should be done to certify the
system.

The branch of ML to be used in this project is going to be based is Inverse Reinforcement Learning
(IRL). It has the inverse setting of Reinforcement Learning (RL). What distinguishes them is needed to be
understood in order to clarify what is given and what is searched in each one. [54]

On the one hand, in RL the agent (machine) tries to find the optimal actions that have to be implemented
in given states to maximize the reward in a environment.

On the other, in IRL, the aim is to find a reward function that explains the behaviour given a policy or a set
of trajectories performed by an expert.

As reported by [26], it is characterized informally as follows:

Given:

• measurements of an agent’s behaviour over time, in a variety of circumstances

• if needed, measurements of the sensory inputs to that agent (environment states)

• if available, a model of the environment (transition probabilities)

Determine: reward function to optimize

The two given last points appear in any reinforcement learning, so the first one is which determines the
definition of an IRL problem. In Table 6.1 their differences are exposed.

Table 6.1 Differences between RL and IRL.

RL IRL

given reward function R policy π or set of trajectories
determine optimal policy π reward function R

IRL and Inverse Optimal Control (IOC) are often used as synonyms. The most important difference to be
aware of is that optimal control talks about costs while IRL talks about rewards. Rewards can be turned into
costs and vice versa by adding a negative sign.

The biggest motivation for IRL is the difficulty in designing manually a reward function for a task, which
becomes much more complex as more parameters have to be considered in the definition of the state.

According to [26], the reward function, rather than the policy, supposes the best definition of the task,
because of being:

• succint, with the desired states, instead of the policy, which needs the description of what the behaviour
should look like

41
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• robust, adapting to any variations of the environment in order to accomplish the objective

• transferable to a different set of actions, for example, from humans to robots

Therefore, it is better to learn the underlying reward function than to copy a behaviour. That’s why
Behaviour Cloning isn’t applied. In spite of that, this has been combined with Reinforcement Learning in
[24] to show how they are powerful enough to learn how to fly an aircraft through different points in space
and different turbulence conditions.

With the aim of making decisions, Markov Decision Processes provide a mathematical framework in
situations where outcomes are partly random and partly under the control of a decision maker.

6.1 Markov Decision Processes

It consists on a tuple (S, A, R, Psa, γ) [26], where:

• S is the set of n environment states

• A = {a1,...,ak} is the set of k actions

• R is the real reward function which maps each state to a real valued reward S→ R. It is only known
by the demonstrator or expert, while the estimated one is E, also called R̂. Another term related with
this is the expected reward, R(s,a), for state-action pairs with SxA domain instead of R(s), defined as
a function of states. The conversion from one to another is explained in [55], and can’t be found in
papers generally although it is mentioned.

• T contains the transition probabilities, the probability of getting state s′ ∈ S after performing action
a ∈ A in state s ∈ S

• γ ∈ [0,1) is the discount factor for future rewards. In each step, the reward is updated multiplying by
the discount once

– Sooner rewards probably do have higher utility than later rewards

– Also helps the algorithm to converge

A policy π maps states to actions. It can be:

• stationary deterministic, which outputs one deterministic action for each state: π : S→ A

• stochastic, containing probabilities of choosing each action for each state: π : SxA→ [0,1].

The observed behaviour can be provided as a set of trajectories ξ = {(s0,a0),(s1,a1),...} = ξ1,ξ2,..., a
ordered in time list of states and actions performed by an expert or sampled from some policy, instead of the
policy itself.

The value of a state s under policy π is denoted as V π(s). By the first theorem of Bellman Equations, this
value is defined as:

V π(s) = R(s)+ γ ∑
s′∈S

T (s′|s,π(s))V π(s′) (6.1)

Besides, the value of state-action pairs under some police π is denoted as

Qπ(s,a) = R(s)+ γ ∑
s′∈S

T (s′|s,a)V π(s′) (6.2)

The second theorem determines the optimal police in and only if, for all s ∈ S,

π(s) ∈ argmaxa∈AQπ(s,a) (6.3)

The optimal policy π
∗ maximizes the expected discounted sum of rewards E[∑∞

t=0 γ
tR|π∗].

6.2 IRL algorithms

The different algorithms depend on the definition of the problem. In a basic approach to the problem, three
cases can be found according to [26], although lately new methods have been developed.
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• Optimal policy π is known, in a small state space

• Optimal policy π is known, in a large or infinite state space

• Optimal policy π is unknown, but behaviour trajectories ξ are given

The third one is the most realistic case and the one to be dealt with in the present project. All of them are
extensively develop in [26].

6.2.1 IRL from sampled trajectories

This method does not require an explicit model of the MDP, though it is assumed the ability to find an
optimal policy under any reward. The algorithm is also presented with features of the form f : S→ R that
can be used to represent the unknown reward R.

The initial state distribution ξ = ξ1,ξ2,...,ξd is fixed and it can be assumed that for the (unknown) policy
π the goal is to find R such that π maximizes E[V (ξ )]. To simplify notation, only one fixed start state s0 is
considered (to generalize this fact, s0 can be a "dummy" state whose next-state distribution under any action
is ξ ).

R is estimated as R̂ using linear approximation.

R̂(s) = α1φ1(s)+α2φ2(s)+ ...αdφd(s) (6.4)

With φ1,...,φd are fixed, known, bounded basis functions mapping from S into R and the αis are the
unknown parameters wanted to "fit". This turn the difficult function search into a much easier linear
combination which enables to use linear programming. The aim is to calculate the empirical value of a
trajectory not the expected value of a policy, in other words, how much reward did some trajectory actually
yield.

It is needed to estimate V (ξ ). After registering m trajectories, for each i = 1,...,d, V̂i(ξ ) is defined to be
what the average empirical return would have been on these m trajectories if the reward had been R = φi. For
instance, with only m = 1 and if that trajectory visited the sequence of states (s0, s1, ...), then:

V̂i(ξ ) = φi(s0)+ γφi(s1)+ γ
2
φi(s2) (6.5)

V̂i(ξ ) = ∑
s j∈ξ

γ
j
φi(s j) (6.6)

In general, V̂i(ξ ) would be the average over the empirical returns of m such trajectories (in practice,
trajectories are also truncated after a large but finite number of steps). Then, for any setting of the αis, a
natural estimate of V (ξ ) is:

V̂ (ξ ) = α1V̂1(ξ )+α2V̂2(ξ )+ ...+αdV̂d(ξ ) (6.7)

This is justified by the fact that:

V (ξ ) = α1V1(ξ )+α2V2(ξ )+ ...+αdVd(ξ ) (6.8)

The trajectory generated by the expert is called ξπ∗ . In some cases, there might be several trajectories
the same expert (from different initial states for example). The weighted mean of their respective empirical
values can be calculate. From now on, it is assumed that only one expert trajectory exists.

The goal is to find parameters αis such that the given expert trajectory (assumed optimal) ξπ∗ yields
a higher empirical reward than other trajectories generated by different policies. So for the "base case"
trajectory ξπ1 , which is a randomly chosen policy:

V̂ (ξπ∗)> V̂ (ξπ1) (6.9)

However, just comparing the expert trajectory to one arbitrary random trajectory will most likely not be
suffice. Optimally, it is wanted to compare to many more trajectories and especially trajectories that are more
"competitive" than random policies. The "inductive step" of the algorithm is as follows. Having some set (m)
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of trajectories associated to policies π1,...,πk, and wanting to find a setting of the αis so that the resulting
reward function (hopefully) satisfies:

∀ξπ¬∗ ∈ {ξπ1 ,ξπ2 ,...,ξπk} : V̂ (ξπ∗)> V̂ (ξπ¬∗) (6.10)

The optimization becomes:

maximize
k

∑
i=1

p(V̂ (ξπ∗)−V̂ (ξπi
))

such that |αi|6 1, i = 1,...,d
(6.11)

Where, p, the penalization function penalizes violated constraints more heavily than satisfied constraints
are rewarded. That has to be taken into account because in some cases the reward function cannot be
expressed as linear combination of the fixed basis functions. p can be defined as follows:

p(x) = x i f x 6 0
p(x) = 2x i f x > 0 (6.12)

Here 2 is a heuristically chosen parameter, to which the results aren’t extremely sensitive in general.
V̂ (ξπ∗) and V̂ (ξπ i) are just (implicit) linear functions of the αis as given in (6.8) and hence the problem is
solved via linear programming.

The optimization gives a new setting of the αis and a new reward function R̂ = α1φ1 + ...+αdφd . Then
this trajectory ξπk+1

, maximizing V (ξπ) under R̂, is added to the current set of policies and the process is
repeated until a satisfactory R̂ is found.

This development follows the one of [26] and [54]. It has to be said that due to the the author’s inexperience
in this kind of algorithms, it was decided to use a toolbox that implements them.

The first options were:

• One of Reinforcement Learning that was exactly the opposite of the situation to apply [37]

• Two of MDP solvers [38] and [39], which doesn’t provide an environment, IRL algorithm or examples

The tool of choice in this case was the IRL toolkit. It is provided in [40], with three examples and lots of
algorithms. Its weak points are the complexity and the scarce description available.

Continuing the mathematical description of this chapter, the paper associated to it, [28], is characterised
by taking the real human demonstration as suboptimal trajectories using a probabilistic model of the expert’s
behaviour, as the maximum entropy IRL model (MaxEnt). This is closely related to linearly-solvable MDPs,
and has been used extensively to learn from human demonstrations. Under MaxEnt, the probability of
taking a path ξi is proportional to the exponential of the rewards encountered along that path. The model
is convenient for IRL, because its likelihood is differentiable and a complete stochastic policy uniquely
determines the reward function. Intuitively, such a stochastic policy is more deterministic when the stakes
are high, and more random when all choices have similar value.

The structure and usage of the IRL Toolkit is presented in the next chapter.
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In this chapter, the toolkit used to obtain the reward and policy functions is described. It can be found in
[40], based on the project in paper [28], which presents a probabilistic algorithm for nonlinear inverse

reinforcement learning. While most prior inverse reinforcement learning algorithms represent the reward
as a linear combination of a set of features, with Gaussian processes, GPIRL’s aim is to learn the reward
as a nonlinear function. At the same time it also determines the relevance of each feature to the expert’s
policy. This probabilistic algorithm allows complex behaviours to be captured from suboptimal stochastic
demonstrations (performed by humans, or in this project by an autopilot), while automatically balancing the
simplicity of the learned reward structure against its consistency with the observed actions.

One of the points that characterise this paper is that it includes most of the existent algorithms of IRL:
MaxEnt, FIRL, MMP, MWAL, MMPBoost and LEARCH. The result is that the nonlinearities considered in
GPIRL outperformed prior methods, especially when generalising the learned reward to new state spaces.

In the following sections, it is going to be presented a point of view of the tool focused in its use for this
project. It is worth noticing that the IRL Toolbox is not a commercial product and has been developed by its
authors as complement to help others to replicate their results. The package is provided as is. It is poorly
documented, it’s not regularly maintained and there is no support line available to handle potential errors or
code bugs. Unfortunately in this project, a number of such bugs and errors have appeared, thus complicating
and requiring a considerable amount of time to be dealt with.

7.1 Installation

After downloading (from [40]) and unzipping the toolkit, the file README.txt provides a succinct description
of the structure and the organization of the programs.

This toolkit was built with MATLAB R2009b, and therefore, its implementation in earlier versions might
need some changes in the codes, like the instruction matlabpool (General\runtestseries.m), which has been
deprecated by parpool as of MATLAB R2013b.

Besides that, other bugs that have been solved are those related to the addition of the corresponding files to
the path in order to execute a test. It has been done in the scripts, uncommenting addpaths, a function with
no inputs or outputs that updates MATLAB path with all the files required. For the project, the created folder
Landing and its subfolders have been included within this function, which allows MATLAB to access them.

The unique file that requires installation is CVX (convex optimization implemented by [56]). It can be run
from Utilities\cvx_setup in Figure 7.1 as the first step of every session or added to path and executed if it is
the first time, with the following lines proposed by the author of the present project:

Code 7.1 Setup of cvx.

global i %global and not persistent if it is not a function

if isempty(i) %running cvx_setup only the first time
addpath Utilities/cvx

45
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Figure 7.1 cvx_setup localization.

cvx_setup
i=1;

end

addpaths; % IMPORTANT, as it comes in the code, it is commented. It activates
%the necessary files to MATLAB

7.2 Directory overview

The main categories of the directory in Figure 7.2 are IRL algorithms, MDP solvers, example domains and
miscellaneous.

7.2.1 IRL algorithms

The implemented algorithms are described and it is indicated the related paper of each one.

• AN: Abbeel & Ng’s projection algorithm for IRL. Since Abbeel & Ng’s algorithm does not return a
single reward, this implementation is somewhat less accurate than the original algorithm, because a
single reward function must be selected to return for evaluation. [26]

• FIRL: Feature Construction for Inverse Reinforcement Learning algorithm. Only compatible with
discrete features (the "continuous" parameter must be set to 0 for the current example environment)
[57]

• GPIRL: Gaussian Process Inverse Reinforcement Learning algorithm. For continuous features, it is
recommended to use the warped kernel by setting the "warp_x" parameter to 1. [28]

• LEARCH: a simplified implementation of the Learning to Search algorithm. The current version can
run either log-linear mode or nonlinear, with decision trees of logistic regression to create nonlinear
features. [58]
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Figure 7.2 Directory of IRL Toolkit.

• MaxEnt: Maximum Entropy IRL algorithm. [59]

• MMP: Maximum Margin Planning. This implementation uses the QP formulation of MMP rather than
subgradient methods, since the QP version is already very fast on the examples in this package. [60]

• MMPBoost: MMP with feature boosting, using decision trees of a configurable depth. It has also been
simplified. [61]

• MWAL: the game-theoretic MWAL algorithm. [62]

• OptV: a provisional implementation of the OptV algorithm, that learns reward functions instead of
value functions due to the framework in which it has developed, producing poor results compared to
other methods in the toolkit. [63]

All of them must implement two functions: <name>run and <name>transfer, where <name> is the name
of the algorithm examples domains (gridworld, highway, objectworld or the developed landing) that will
be used to identify it when calling runtest, central code to execute an experiment. Additionally, all current
algorithms implement <name>defaultparams, but this is a convenience. <name>run function must accept
this arguments:

• algorithm_params, the parameters of the algorithm. Some parameters may be missing, so it is advisable
to implement a <name>defaultparams function to fill them in (for example, see gpirldefaultparams.m).
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• mdp_data, a specification of the example domain. It includes the number of states, the number of
actions, the transition function (specified by sa_s and sa_p), and so forth. For details, see (for example)
gridworldbuild.m

• mdp_model, the name of the current MDP model (standardmdp or linearmdp). The final returned
policy must be computed from the reward function using this model, but most algorithms will not use
this parameter anywhere else.

• feature_data, information about the features associated to the example. The main parameter of this
structure is feature_data.splittable, which is a matrix containing the value of each feature at each state.

• example_samples, an important part of the program, a cell array of the examples, where example_-
samples{i,t} is time step t along trajectory i. Each entry in the cell array has two numbers: example_-
samples{i,t}(1) is the state, and example_samples{i,t}(2) is the action. This one has been generated
converting the data of X-Plane to this format with the program XPC_IRL_converter.m, in Section 9.3,
which has been explained in Section 7.5.

• true_features, the true features that form a linear basis for the reward. Most algorithms (that are not
cheating) will ignore this, but it may be useful for establishing a baseline comparison.

• verbosity, the desired amount of output. 0 means no output, 1 means "medium" output, and 2 means
"verbose" output.

Additionally, IRL algorithms must return the structure irl_result containing the result of the computation.
This has the following fields:

• r, the learned reward function, with mdp_data.states number of rows and mdp_data.actions number of
columns

• v, the resulting value function, returned by <mdp_model>solve

• p, the corresponding policy

• q, the corresponding q function

• r_itr, the reward at each iteration of the algorithm, useful for debugging; if unused, set to r

• model_itr, the model at each iteration of the algorithm, to be used for transfer

• model_r_itr, a second optional reward at each iteration of the algorithm, useful for debugging; if
unused, set to r_itr

• p_itr, the policy at each iteration; if unused, set to p

• model_p_itr, a second optional policy at each iteration of the algorithm, useful for debugging; if
unused, set to p_itr

• time, the time the algorithm spent computing the reward function (optional, set to 0 if unused)

The transfer function must use the learned model to transfer the reward function to a different state space.
The output of this function is identical to <name>run. The arguments are the following:

• prev_result, the irl_result structure returned by a <name>run call.

• mdp_data, MDP definition for the new state space.

• mdp_model, MDP model, as before.

• feature_data, feature data for the new state space.

• true_feature_map, true features for the new state space (again, not used except when "cheating").

• verbosity, as before

If both <name>run and <name>transfer are implemented, the algorithm should be usable in all tests
without further modification.
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7.2.2 MDP solvers

The package includes two MDP solvers.

• standardMDP: standard solver that uses value iteration to recover a function, which in turn specifies a
deterministic optimal policy for the MDP.

• linearMDP: linear MPD solver that uses soft value iteration and corresponds to linearly-solvable
MDPs. It produces stochastic examples, suboptimal under the prior solver.

Also additional MDP solvers can also be added to the framework, they hasn’t been it. A MDP solver must
implement 5 functions:

• <name>solve must find the solution to the specified MDP. It has two arguments: mdp_data, the MDP
definition, constructed by the example building function; and the reward r. The output is a structure
mdp_solution, which has fields v, q and p, corresponding to the value function, Q function, and policy.
Note that these fields will only be used by other functions relating to the MDP solver implemented, so
they can contain whatever information that is chosen.

• <name>frequency finds the visitation frequency of all states in the MDP. This function is used by
many metrics. The inputs are mdp_data and mdp_solution (from a previous call to <name>solve), and
the output is a column vector with 1 entry for each state, giving that state’s expected visitation count
under the policy in mdp_solution.

• <name>action samples an action at a particular state and takes as input mdp_data, mdp_solution, and
a state s. The output is an action a, which is either the optimal action under a deterministic policy or a
sampled action under a stochastic policy.

• <name>step executes the sampled action. It takes mdp_data, mdp_solution, a state s, and an action a,
and returns the resulting state after taking action a in state s, which may be sampled if the MDP is
nondeterministic.

• <name>compare compares two policies, given as arguments p1 and p2, and returns the amount of
discrepancy between them. In the case of a standard MDP, this is currently the number of states
in which the policies disagree. In the case of the linear MDP, this is the sum over all states of the
probability that p1 and p2 will take different actions. This function is only used when evaluating some
metrics.

7.2.3 Example domains

Three example domains are included in the toolkit.

• Gridworld. This is an NxN gridworld, with 5 actions per state corresponding to moving in each
direction and staying in place. The determinism parameter specifies the probability that each action
will "succeed." If the action "fails," a different random action is taken instead. The reward function of
the gridworld consists of BxB blocks of cells (forming a "super grid"). The features are indicators
for x and y values being below various integer values. This environment does not support transfer
experiments.

• Objectworld. This is a Gridworld populated with objects. Each object has one of C inner and outer
colors, and the objects are placed at random. There are 2C continuous features, each giving the
Euclidean distance to the nearest object with a specific inner or outer color. In the discrete feature case,
there are 2CN binary features, each one an indicator for a corresponding continuous feature being less
than some value D. The true reward is positive in states that are both within 3 cells of outer color 1
and 2 cells of outer color 2, negative within 3 cells of outer color 1, and zero otherwise. Inner colors
and all other outer colors are distractors.

• Highway. This is the highway environment described in "Nonlinear Inverse Reinforcement Learning
with Gaussian Processes." The number of cars on the highway must be specified manually. There is
an algorithm for placing cars that avoids creating roadblocks. This algorithm will stall if it cannot be
placed the specified number of cars, so too much can’t be introduced. It is also possible to specify
more than 2 categories or classes of cars, though this functionality is currently untested.

To this project, each domain has been observed and tried to understood. After that, a new environment has
been created to represent the operation of landing a plane, following the structure that defines the default
ones and that is described in the following section.
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Functions that define the domain

The functions that are presented in all the domains and which have to be developed are:

• <name>build, with a single argument, the mdp_params structure passed to runtest that specifies the
parameters of the desired example. Its outputs are:

– mdp_data, a structure containing the definition of the MDP. It must specify the following fields:

* states, the number of states

* actions, the number of actions in each state

* discount, the discount factor of the MDP (currently all examples are infinite horizon dis-
counted reward)

* sa_s, 3D matrix of size states x actions x K, where K is any number. The entry sa_s(s,a,k)
specifies the state to transition to when taking action a in state s, and sampling destination k
(see below)

* sa_p, 3D matrix as above, where sa_p(s,a,k) gives the probability of transitioning to sa_-
s(s,a,k) on action a in state s

– r, a states x actions matrix specifying the true reward function of the example environment.

– feature_data, a structure containing two fields regarding the features of the example:

– splittable, a states x features matrix containing the value of each feature at each state

– stateadjacency, a sparse states x states matrix with "1" for each pair of states that are "adjacent"
(have an action to transition from one to the other); this is currently only used by FIRL.

– true_feature_map, a (sparse) states x features matrix that gives the values of the "true" features
that can be linearly combined to obtain r.

• <name>draw, which must draw some visualization of the specified example to the current axes. It has
no output, and takes the following input arguments:

– r, the reward function to draw.

– p, the policy to draw (may be deterministic or stochastic).

– mdp_params, the mdp_params structure passed to <name>build.

– mdp_data, the mdp_data structure returned by <name>build.

– feature_data, the feature_data structure returned by <name>build.

– model, the MDP model (standardmdp or linearmdp).

Additionally to these, other functions may be created:

• <name>defaultparameters which contains the default parameters that define the example.

• others functions needed to reduce the extension of the main functions or to avoid repetitions, concen-
trating all the possible change of data into them

7.2.4 Miscellaneous

These are included for operations relative to the prior functions.

• Evaluation. This directory contains implementations of the various metrics that can be used to evaluate
the IRL result. Each function is a particular metric.

• General. These are general testing scripts, including runtest, runtransfertest, etc.

• HumanControl. Interface for generating human demonstrations.

• NIPS11_Tests. Scripts for reproducing test results from "Nonlinear Inverse Reinforcement Learning
with Gaussian Processes."

• Testing. Scripts for graphing, saving, and visualizing test results from series tests.

• Utilities. External utilities, including minFunc and CVX, where cvx_setup is to be executed.
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7.3 Usage

After knowing an overview of the directories, it is possible to understand how to execute some example. It
can be running a single test, a transfer test (to test how well a learned reward function generalizes to another
state space), a series of test or series of transfer tests or using human data, which can be obtained for the
three default examples in Human_Demos.

It has been implemented two extra files of single test, to make the execution of the examples Gridworld
and Highway with their respective data, because the default one is expressed only on terms of Objectworld.
Additionally, one single test for landing is available.

These and other files are shown in Figure 7.3.

Figure 7.3 Extra files of IRL Toolkit directory.

7.4 Definition of the current problem

As it has been indicated, the extracted variables from the simulator are those from Section 5.3. However, not
all of them are considered to define the state of the airplane:

• latitude, lat, in degrees

• longitude, long, in degrees

• altitude in meters measured from the mean sea level, altmsl, converted to feet

• altitude in meters measured from above ground level, altagl, converted to feet

• pitch ratio, pitch_r, which belongs to the maximum range of [-1.00,1.00], the minimum and maximum
deflections of the yoke, controlling the elevator, where -1.00 is full down, and 1.00 is full up.

• roll ratio, roll_r, which belongs to the maximum range of [-1.00, 1.00], the minimum and maximum
deflections of the yoke, controlling the ailerons, where -1.00 is full left, and 1.00 is full right.

• heading ratio, head_r, which belongs to the maximum range of [-1.00, 1.00], the minimum and
maximum deflections of the yoke, controlling the rudder, where -1.00 is full left, and 1.00 is full right.
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• throttle ratio, T_r, which is the position of the handle itself (ratio of all engines), from 0.0 (idle) to 1.0
(max normal).

• indicated airspeed, V, in knots

Flap deflection, gear status and autobrake aren’t considered because with all these states, the definition
is already complex and they don’t change during the landing, being fixed before starting it at a distance of
around 3nmi from the runway.

The actions that may be taken are related to increase, decrease any of these parameters or do nothing:

• pitch_r: ratio of pitch

• roll_r: ratio of roll

• head_r: ratio of heading

• throttle_r: ratio of throttle

The features employed to determine the reward in a more accurate way are:

• pitch, pitch of the aircraft in degrees

• roll, roll of the aircraft in degrees

• head, heading in degrees

They could be described as in [19], however due to lack of time and complexity of the codes, they haven’t
been implemented in the IRL Toolkit.

7.4.1 Airport data

The program is aimed to land without external aid. However, a data base must be on board to know some
information about the runways in order to be able to calculate the optimal descending and touchdown.

airportdata.m Subsection 9.2.1 allows to edit the following information:

• information of the north extreme of the runway: name, latitude, longitude, elevation and the altitude
(measured with mean sea level) of the north glideslope installation. This last one is needed when using
the altitude MSL of the aircraft position (to avoid the interferences of buildings, hills and other things
on the ground) before passing to the altitude AGL when reaching 15 ft of altitude (because the runway
is considered of null variation due to its unknown profile)

• information of the south extreme of the runway:name, latitude, longitude, elevation and the altitude
(measured with mean sea level) of the north glideslope installation

• width and length of the runway

• information about localizer: the relative distance (longitudinal and transversal) with the nearest extreme
of the runway and the degrees of the interior and exterior cones and the increments of degree to define
the limits of horizontal lanes (while more values, given as a vector, more lanes)

• information about glideslope: the relative distance (longitudinal and transversal) with the nearest
extreme of the runway and the degrees of the interior and exterior cones and the increments of degree
to define the limits of vertical lanes (while more values, given as a vector, more lanes)

In this case, the information about the runways 16R-34L, taken from X-Plane (it differs a bit regarding the
reality), is in Table 7.1 and Table 7.2

Table 7.1 Information about 16R. Landing north→ south.

North extreme Glideslope (north) Localizer (south)

Latitude [degrees] 47.46384 47.46069 47.43774
Longitude [degrees] -122.31785 -122.31683 -122.31809

Altitude [ft msl] 330.33 351.79 349.38
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Table 7.2 Information about 34L. Landing south→ north.

South extreme Glideslope (south) Localizer (north)

Latitude [degrees] 47.44056 47.44304 47.46661
Longitude [degrees] -122.31808 -122.31667 -122.31784

Altitude [ft msl] 353 359.86 308.4

7.4.2 Conversions

As it has been exposed, IRL Toolkit works with states: single values which represent the definition of the
aircraft each instant of time. The easier way of setting up the state is to have all the variables that define it
(vectors of values that depend on the instant of time) expressed like vectors of whole numbers starting from
1. These can be added up easily and allow to distinguish a state from another very intuitively with the inverse
of the formula used to obtain it.

These vectors of whole numbers are going to be called coordinates, as they represent positions in matrices.
Mainly, two different conversions are employed depending on the variable to deal with.

From degrees into coordinates

It is needed to convert from increment of degrees of latitude and longitude into feet, in order to represent
distances which are much more easy to represent with plots in MATLAB. The associated program is the one
in Subsection 9.3.2

It has to be said that two different conversion factors are searched, due to the decreasing distance between
two meridians, that goes to zero when going to the poles, that varies the conversion factor of longitudinal
degrees into feet depending on the area around where the wanted distance is.

At first, the method was using KSEA diagram of FAA in Figure 4.6. It was obtained a conversion factor of
latitude into feet thanks to the division of the decimal degrees and the known measure of the runway.

1 segment = 0.1′ = 0.0017 (7.1)

With the length of the runway of 8500 feet and 14 segments:

14 ·0.0017 = 0.0233 (7.2)

So the conversion could be:

8500 f eet/0.0233 = 364290 feet/degree (7.3)

However, it was rejected due to precision, above all with the conversion of longitudinal degrees into feet.

The other option proposed was taking the distance in the Equator that corresponds to 360 degrees and pass
it to feet. The equatorial circumference consists on 40075161.2 meters: the Earth radius of the semi-major
axis of the Earth at the equator is 6378137 meters, so it gives:

111319.9 meters/degree ·3.28084 f eet/meter = 365222.78 feet/degree (7.4)

The inconvenience of this one is the inaccuracy for the longitude conversion.

The solution offered is the Haversine formula. It calculates the great-circle distance between two points,
the shortest distance over the Earth’s surface.This is needed above all due to the decreasing distance between
two meridians, that goes to zero when going to the poles, multiplied by the cosine of the latitude. The two
previous conversions aren’t used.

a = (sin(∆φ/2))2 + cos(lat1 ·π/180)cos(lat2 ·π/180)(sin(∆λ/2))2

c = 2 ·atan2(
√

a,
√

1−a)
d = REarth · c

(7.5)
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With Earth’s mean radius REarth = 6371 ·103meters, passed to feet multiplying by 3.28084 feet/meters,
and the increment in radians:

∆φ = (lat2− lat1)π/180
∆λ = (long2− long1)π/180 (7.6)

Applying (7.5) for (7.7) and (7.8) in degrees:

lat2 = lat1 +1; long2 = long1 (7.7)

lat2 = lat1; long2 = long1 +1 (7.8)

For degrees of latitude it is obtained convlat and for degrees of longitude it is obtained convlong. The
respective results for the location of this project, the KSEA, are:

convlat = 364812.76 feet/degree of latitude
convlong = 246631.93 feet/degree of longitude (7.9)

Multiplying the degrees by the corresponding factors, the distances obtained are transformed into coordi-
nates, which represent lanes. In the axis system defined in this project, the variable that shows the advance of
time is the one defined in the direction of the runway, x (starting at 1 in the initial location of the aircraft),
and the transversal to this one in the horizontal plane is used to create the horizontal lanes, as well as the one
in the vertical plane, that defines the vertical lanes.

While the limits of the vertical lanes are established by lines generated from a glideslope installation
(supposed in its optimal position if it doesn’t exist in the runway), the limits of the horizontal ones are
determined by lines generated from a localizer at the further extreme of the runway.

Ratios to coordinates

Applying a similar reasoning to the rest of parameters that define the state is obtained the code of Subsec-
tion 9.3.1.

It is important to note that pitch_r, roll_r, head_r and T_r are ratios, and therefore, a conversion to the
"components of the possible number of each parameter is needed". For example, pitchrs could be 201
possible values, from -1 to 1 with a step of 0.01. In this case it is going to be applied a linear conversion, so
its values have to be found. Before that, as the data extracted comes with several decimals from X-Plane,
they must be discretised to adapt them to the possible values given by the indicated range (ini and last) and
the number of possible values, divisions. Hence, the step is defined:

step =
last− ini

divisions−1
(7.10)

Associating each value from X-Plane to the possible discretised ones is like rounding to the nearest
possible value.

Having that, the values of the linear conversion can be deduced proposing two equations, taking the first
and the last possible values of pitch ratio, are the (7.11):

−1a+b = 1
1a+b = 201 (7.11)

Subtracting the first to the second one:

2a = 200→ a = 100 (7.12)

Substituting in one of (7.11)
b = 101 (7.13)

Then, if pitch_r is 0.1, its conversion would be:

0.1 ·100+101 = 112 (7.14)
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It is going to be considered the same number of possible ratios of all variables: pitchrs = rollrs =
headrs = Trs = divisions. Generalizing for an unknown number of possible pitch ratios (pitchrs) and for a
range [ini,last]:

ini ·a+b = 1
last ·a+b = pitchrs (7.15)

Subtracting the first to the second one:

(last− ini)a = pitchrs−1→ a =
pitchrs−1
last− ini

(7.16)

Substituting in the first equation of (7.15)

b = 1−a · ini→ b = 1− pitchrs−1
last− ini

· ini→ b =
last− ini · pitchrs

last− ini
(7.17)

With that, the coordinates of the ratios are:

pitch_r = pitchr ·a+b
roll_r = rollr ·a+b
head_r = headr ·a+b
T _r = Tr ·a+b

(7.18)

Regarding the indicated airspeed, its coordinates are calculated as a combination of the two previous
methods. It is given the initial and last values of the range of the speed and the number of divisions (for
this project, it has been considered the same as for the ratios, although it could be simply added as another
parameter). The difference with the ratios is that the velocity is not discretised. Instead, it is directly
converted into coordinates, checking if each component is inside two near possible vales and associating the
respective coordinate.

These three methods can be edited or improved, modifying the codes and always having as outputs the
coordinates to compute the state.

The inverse procedure is implemented in Subsection 9.4.3

7.4.3 landing

In this program (Section 9.2) a vertical and a horizontal view of the movement of the aircraft is represented
accordingly to the glideslope and the localizer in the selected runway. With this, it is possible to know of a
simple and quick way if the data taken from X-Plane is correct regarding the situation of the aircraft each
step of time, before its conversion and implementation in IRL Toolkit.

A first section of data that can be changed allows to:

• load the data from a .mat file (for example from the added path: XPC original data copied folder)

• call to airportdata.m where the runway, localizer and glideslope data is found and can be edited

• introduce conversion factors to pass from latitude and longitude to feet, as it has been explained in
Subsubsection 7.4.2

With that, the (x,y,z) of the runway and aircraft are obtained and all is calculated taking as origin point of
the graphic representation the furthest extreme of the runway from the position of the aircraft.

It has to be said that to reproduce the graphics of X-Plane as best as possible, the landing will be represented
from the right to the left, independently of the direction (north to south or south to north). This generalisation
will also be useful to draw the landing environment in the Toolkit. To achieve that, some parameters have
to be changed of sign depending on the direction and others even their value, such as the altitude of the
glideslope related to the point of touchdown. For the altitude of the aircraft, because of unknowing the profile
of the runway, it has been defined as a combination of the subtraction of the altitude measured from the mean
sea level and the altitude of the corresponding point of glideslope (until the aircraft is 15 feet above ground),
and the altitude above ground level when it is in the runway.

Then, on the one hand, the vertical plane includes the glideslope cone projected with two different zones:
a more centred disposition around 3 degrees and the vertical movement of the aircraft.
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On the other hand, the localizer cone with two areas is projected in a horizontal plane with the horizontal
movement of the aircraft.

In both, which can be appreciated with an example in Figure 7.4, the following aspects can be found:

• runway views, in black and center axis in discontinuous line

• aircraft movement in red

• a description in a title indicating the view, name of the instrument related, name of the runway and the
direction of landing.

• the labels of the axis and their units

• the location of glideslope, in dark blue, and localizer, in green

• aircraft movement in red

• the limits of the range, where it is recommended to fly in order to perform a soft touchdown, in the
color corresponding to the localizer or glideslope.

The range of movement is fixed by Figure 7.5 of [8], because of not having very accurate measures from
Figure 7.6. In spite of that, comparing the images, their similarity can be appreciated.

Figure 7.4 Vertical and horizontal views.

7.5 XPC IRL converter

It is a program (Section 9.3) to convert data taken from X-Plane with X-Plane Connect (XPC) Toolbox into
the kind of data managed by the IRL Toolkit. It produces files of .mat extension which contain a structure,
autopilot_result, with two fields:

• mdp_params, a structure with the common data of every iteration

• example_samples, with a cell matrix that contains in each cell a state and an action, defined by:

– columns with the number of steps considered (it doesn’t have to be a complete iteration. It could
be divided into several segments, each one in a .mat file.

– rows with the different iterations (they have to have the same characteristics)

Before running the script, the files generated by XPC must be copied to the folders:

• landing_demos, which is going to be modified

• XPC original data copied, for doing tests and don’t loose the data. If something goes wrong, the data
in landing_demos can be browsed and restored from this folder or from the folder of XPC.

After executing the program, landing_i.mat files are generated with the segments of a set of iterations.
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Figure 7.5 ILS with localizer and glideslope according to [8].

7.5.1 Options

Here are presented all the data that is susceptible to being changed, as values of parameters.

File configuration
It is started with file configuration:

• tlen, total length to standardise the iterations

• len, length of the segment. It is a parameter to have the landing discretised in segments of the same
length (for example 50 instants of time, in which the connection has been successful), because in
each iteration, the number of taken data is different. When it is in the last segment, every landing is
different, and to solve that, those with a minor number of components are filled repeating their last
value. The number of instants of time of a landing performed with 0.2 s as step time from 3 nmi of the
runway oscillates between 255 and 281. If the discretised length is 50, taking a total extension of tlen,
as 300 instants, it would result in 6 segments and their corresponding files.

• ini, initial point of the range of pitch, roll, heading and throttle ratios. It has been considered the same
for all of them.

• last, last point of the range of pitch, roll, heading and throttle ratios. It has been considered the same
for all of them.

• divisions, number of possible values in the range of pitch, roll, heading and throttle ratios. It has been
considered the same for all of them. For example, 201 divisions belongs to a range [-1,1] and step of
0.01.

• inis, initial value of the range of indicated airspeed

• lasts, last value of the range of indicated airspeed

Airport information
Then the airport information is offered. If the instrument landing systems doesn’t exist, their optimal
coordinates should be set to generate the optimal cones of descending.
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Figure 7.6 XPlane representation in Local Map of an aircraft landing.

It calls a file named airportdata.m, the one in Subsection 9.2.1, and explained in Subsection 7.4.1. In it
the horizontal and vertical lanes (Hlanes and Vlanes) are calculated as regards to the number of values of
increments of degrees that define the limits of the lanes.

IRL algorithm information

At last, some fixed information is needed relative to the IRL algorithm.

• continuous, if it is 1 the features are continuous, if not, they are discrete

• determinism, probability of correct transition

• discount, temporal discount factor to use

For deeper modifications, all the code should be completely read and understood before changing anything.
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7.5.2 Processing

The folder landing_demos where the .mat files are located is added to path (it is needed because, in general,
MATLAB only allows to work with files that are in the same folder that the executed file), and then a structure
is obtained with information of all the .mat files of that folder (landing_demos).

A first loop is started to repeat the same in each iteration. There is a problem when the connection fails,
the vertical velocity increases in the right next iteration after the bad connection(s). So, to solve this, unusual
values are searched and substituted in a internal loop with the media of the previous (it has been considered
0 if it was the first component or the last one) and the next one.

Then, to get the files of the same length, the last value of each parameter is repeated to fill the number of
components indicated by tlen.

The last thing in the first loop is to discretise the values. That is, to associate the extracted values of
X-Plane (by default with several decimals) with the possible values given by the indicated range (ini and
last) and divisions as well as converting all of the relevant data for the state into coordinates, with what has
been explained in Subsection 7.4.2.

7.5.3 First structure, mdp_params

Once the data is adequate to work with, it is going to be adapted to the IRL Toolkit. The first structure needed
is really simple, as it doesn’t need any extra operations, and it doesn’t depend on X-Plane. It consists on this
information:

• seed, initialization for random seed

• ini, initial point of the range of pitch, roll, heading and throttle ratios. It has been considered the same
for all of them.

• last, last point of the range of pitch, roll, heading and throttle ratios. It has been considered the same
for all of them.

• inis, initial point oof the range of indicated airspeed.

• lasts, last point of the range of indicated airspeed.

• length, length of the segment.

• Hlanes, number of possible horizontal lanes (associated to longitude)

• Vlanes, number of possible horizontal lanes (associated to altitude)

• pitchrs, number of possible pitch ratios. It coincides with divisions.

• rollrs, number of possible roll ratios. It coincides with divisions

• headrs, number of possible heading ratios. It coincides with divisions

• Trs, number of possible throttle ratios. It coincides with divisions

• airport, a structure with all the information of Subsubsection 7.5.1

• continuous, parameter to set a discrete (0) or continuous (1) problem

• determinism, probability of correct transition

• discount, temporal discount factor to use

7.5.4 Second structure, example_sample

This one requires some extra manipulation. Three loops are contemplated. On the external one, the files that
are going to be generated are created, and the structure, initialized as a cell matrix of zeros.

In the second loop, for each of the iterations, its data is loaded, and the vectors of pitch, roll, heading
and throttle ratios are differentiated. To know the action to perform, the maximum difference indicates the
variable to change.

The third loop is used to stablish the state and the action of increasing or decreasing the corresponding
parameter for each instant of time in the segment. The stated is obtained as the result of an external
function (landingcoordstostate, explained in Subsection 7.6.1) after passing to it the longitudinal position,
the horizontal and vertical lanes; the pitch, roll, heading and throttle ratios; and the mdp_params, where
the important parameters are the number of possible: horizontal and vertical lanes; pitch, roll, heading and
throttle ratios; and indicated airspeed.
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7.6 Own codes in IRL Toolkit

Just like the three world by default, Gridworld, Objectworld and Highway, were defined by several functions,
another world has been created to satisfy the requirements of the project: Landing.

This section includes the explanation about the new environment developed, which is shown in Figure 7.7.

Figure 7.7 Landing directory.

7.6.1 landingcoordstostate

This function, which is presented in Subsection 9.3.3, converts the coordinates that define a point into the
state that the algorithm needs to apply IRL.

For that, the following procedure gives the equations that are programmed there.
To make it simple, an example of a car in a highway is applied. The car is supposed to move forwards

inside three lanes with four possible velocities. So in the first position, in the first lane, with the first velocity,
it would be the first state. If it were in the same longitudinal position and lane, but with the next speed, it
would represent the second state, and so forth, as it is in Figure 7.8. This situation, where the car has to avoid
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other vehicles and move under certain restrictions, is the mentioned highway example of the Toolkit and it is
fully developed in [28].

Figure 7.8 States in a highway.

Three variables are involved: longitudinal position, x; transversal position, lane; and speed. Forming a
matrix with the number of lanes, nl, as columns and the number of files as the possible longitudinal positions,
n, Figure 7.8 reflects that in each position, some number of speeds ns, are available (four in this case),
defining the state. In a certain point, x, in a certain lane with a certain speed, its state, s, would be the sum of
the previous positions multiplied for the number of possible speeds (four in this case) and adding up the
speed that maintains in the moment.

s = ((x−1) ·nl +(lane−1)) ·ns+ speed (7.19)

Reordering for a future application in Subsection 7.6.2:

s = (x−1) ·nl ·ns+(lane−1) ·ns+ speed (7.20)

Therefore, from Figure 7.8, with the point defined by:

• x = 4

• lane = 2

• speed = 3

• nl = 3

• ns = 5
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Its state as s = 43 is explained as:

s = (4−1) ·3 ·4+(2−1) ·4+3 = 43 (7.21)

s = (x−1) ·Hlanes ·V lanes · pitchrs · rollrs ·headrs ·Trs ·V s
+ (Hlane−1) ·V lanes · pitchrs · rollrs ·headrs ·Trs ·V s+
+ (V lane−1) · pitchrs · rollrs ·headrs ·Trs ·V s+
+ (pitch_r−1) · rollrs ·headrs ·Trs ·V s+
+ (roll_r−1) ·headrs ·Trs ·V s+
+ (head_r−1) ·Trs ·V s+
+ (T _r−1) ·V s+
+ V _

(7.22)

It must be said that pitchrs, rollrs, headrs, Trs and Vs are fields in a structure named mdp_params, and
to access them, dot notation has to be used of the form structName.fieldName (mdp_params.pitchrs for
instance)

Vlanev and Hlanev are vectors indicating the vertical and horizontal lane in which the aircraft is flying.
In Figure 7.9, an example with 5 Hlanes and 5 Vlanes (indicating two values to incrthetaL and two values
to incrthetaG) are shown as an equivalent to Figure 7.8. There the different lanes are indicated with their
number in a circle while the limits determined by the lines are associated to a number inside a square.

Figure 7.9 Horizontal and vertical lanes.

7.6.2 landingstatetocoords

This function, which is presented in Subsection 9.4.2, applies the inverse concept of landingcoordstostate,
transforming the state into coordinates that define the characteristics of the aircraft in a more intuitive way.

For that, the following procedure provides the equations that are programmed there.

Continuing with the highway example, given the state, the coordinates are obtained dividing it by the
highest coefficients of its definition in (7.20) and updating s subtracting that term for each parameter. It is
shown the final transformation in (7.24).
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x = ceil(s/(nl ·ns))
s = s− (x−1) · (nl ·ns)

lane = ceil(s/ns)
s = s− (lane−1) ·ns

speed = s

(7.23)

Extrapolating to the current problem:

x = ceil(s/(Hlanes ·V lanes · pitchrs · rollrs ·headrs ·Trs ·V s))
s = s− (x−1) ·Hlanes ·V lanes · pitchrs · rollrs ·headrs ·Trs ·V s

Hlane = ceil(s/(V lanes · pitchrs · rollrs ·headrs ·Trs ·V s))
s = s− (Hlane−1) ·V lanes · pitchrs · rollrs ·headrs ·Trs ·V s

V lane = ceil(s/(pitchrs · rollrs ·headrs ·Trs ·V s))
s = s− (V lane−1) · pitchrs · rollrs ·headrs ·Trs ·V s

pitch_r = ceil(s/(rollrs ·headrs ·Trs ·V s))
s = s− (pitch_r−1) · rollrs ·headrs ·Trs ·V s

roll_r = ceil(s/(headrs ·Trs ·V s))
s = s− (roll_r−1) ·headrs ·Trs ·V s

head_r = ceil(s/(Trs ·V s))
s = s− (head_r−1) ·Trs ·V s

T _r = ceil(s/(V s))
s = s− (T _r−1) ·V s

V _ = s

(7.24)

As before, pitchrs, rollrs, headrs, Trs and Vs are fields in a structure named mdp_params, and to access
them, dot notation has to be used of the form structName.fieldName (mdp_params.pitchrs for instance)

7.6.3 coordstoratios

This function in Subsection 9.4.3 is needed to convert the coordinates (defined by the state and action
indicated by the IRL algorithm) to ratios that will be introduced in X-Plane. It is the inverse procedure of
Subsection 7.4.2.

7.6.4 landingdefaultparams

This file Subsection 9.4.4 contains the default value of the default parameters. If a field is given a value by
the user, it doesn’t have to be filled with the default one.

7.6.5 Unfinished functions

Several functions haven’t been finished. Their names and the explanation of why they aren’t ready to be
executed are:

• landingbuild.m, where the environment is defined. A single argument is needed as input, the mdp_-
params structure passed to runtest that specifies the parameters of the desired example, and which is
already defined in this case. Its outputs are:

– mdp_data, a structure containing the definition of the MDP. It must specify the following fields,
all of them already defined:

* states, the number of states.

* actions, the number of actions in each state.

* discount, the discount factor of the MDP (currently all examples are infinite horizon dis-
counted reward).

* sa_s, 3D matrix of size states x actions x K, where K is any number. The entry sa_s(s,a,k)
specifies the state to transition to when taking action a in state s, and sampling destination k
(see below).
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* sa_p, 3D matrix as above, where sa_p(s,a,k) gives the probability of transitioning to sa_-
s(s,a,k) on action a in state s.

– r, a states x actions matrix specifying the true reward function of the example environment, the
unique parameter of landingbuild.m that hasn’t been defined. It can be created in this file or in
landingfeatures.m.

– feature_data, a structure containing two fields regarding the features of the example, from
landingfeatures.m.

• landingfeatures.m, with the features associated to the problem. From its two (three - depending on the
example) outputs, only a part of the first one is finished, the others have to be added:

– feature_data with two fields:

* stateadjacency, the only one which is the same as in the default examples, a sparse states
x states matrix with "1" for each pair of states that are "adjacent" (have an action to
transition from one to the other); although it is only used in FIRL, what has been said in
Subsubsection 7.2.3.

* splittable, a states x features matrix containing the value of each feature at each state.
Despite the fact of having them defined as in [19], the difficult operation is expressing them
in that format. This may also cause the addition of pitch, roll and heading (pitch, roll and
head) to the parameters that define the state, which would become to depend on 11 variables.

– true_feature_map, a (sparse) states x features matrix that has to be extrapolated from one of the
default examples to the current case. It gives the values of the "true" features that can be linearly
combined to obtain r.

– r, the reward function, only if it isn’t generated inside landingbuild.m.

7.7 Continuation

The ten iterations performed with the simulator X-Plane have been processed and converted to six .mat files
with XPC_IRL_converter.m, ready to be inputs to IRL Toolkit.

Nevertheless, the training phase has presented unexpected problems which couldn’t be solved in time.
Mainly, as it has been announced previously, because of a subestimated development of the project before
starting it. With the proximity of the deadline, it has been preferred closing the previous aspects of IRL
Toolkit applying a logical and sequential order. This avoids omissions or unfinished intermediate parts whose
lacking pieces would be much more difficult to fit together.

A specific description of what is still needed to develop is the following:

• finishing the previous functions of Subsection 7.6.5

• revising the files of NIPS11_Tests folder and adapting them to the problem of landing. That is to be
able to running the series of tests with all the files and learn the reward and policy functions instead
of running a single file with singletest_setup_landingworld.m of Figure 7.3. The function to develop
could be named as landingtest. The created world differs from highway in that its examples can’t
be generated in IRL Toolkit what must be taken into account while calling to other functions in the
toolbox.

• creating a function to use the results obtained after a first analysis of the ten iterations in IRL Toolkit.
It may be finishing SERP3nmiappML.m in XPlaneConnect-master folder, sending the correct action to
perform in X-Plane each instant of time, evaluating the current state in the policy and reward function
generated by IRL Toolkit.

– policy π that maps states to actions

– reward function R, which maps each state to a real valued reward S→ R

• repeating the process if robust results want to be achieved, with a bigger set of iterations that must
be performed using X-Plane through SERP3nmiapp.m and whose data has to be processed with IRL
Toolkit, generating better reward and policy functions.

• reaching the pertinent conclusions:
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– taking as reference the autopilot landings and those performed by the developed software which
must have similar patrons and justifying it

– comparing the airplane response between both set of iterations and noticing if with a broader
data spectrum, it presents some improvements

The degree of development of the different items performed in order to obtain a final application of
automatic landing integrable with X-Plane is in Table 7.3, expressed as percentage.

Table 7.3 Percentage of development of the different items in the project.

Item Degree of development [%]

X-Plane
downloading X-Plane, XPC and installing xpcplugin 100

SERP3nmiapp 100
performing several landings 100

IRL Toolkit
XPC_IRL_converter 100

landings from X-Plane converted to IRL Toolkit format 100
airportdata 100

coordstoratios 100
ratiostocoords 100

degreestocoords 100
landing (drawing from X-Plane) 100

landingcoordstostate 100
landingstatetocoords 100
landingdefaultparams 100

landingbuild 25
landinfeatures 25

landingtest 0
SERP3nmiappML 75





8 Considerations and future perspective

Due to factors such as time and complexity (above all of the codes in the toolkit used to develop the IRL
algorithm, which have lead to finally develop only a tool to automatize the data obtaining of X-Plane

and converting them to the appropriate format of IRL Toolkit), some aspects have been simplified or not
taken into account. Here some of them are exposed and future or possible solutions are presented.

The landings have been performed one after other taking the plane to the 3 nmi approach point, sending it
from there to the starting point indicated by hand in MATLAB (as it has been explained in Subsection 5.4.4),
and running the program. Each iteration has lasts on average around a minute. In future applications, a
more complex code could make all the steps done by hand in X-Plane and integrate them in a loop to
which indicate the number of landings desired. Besides the exploration of longer paths would be interesting,
engaging the localizer and the approach mode when a certain point is reached and meanwhile, finding a
correct way of maintaining an optimal flight.

As regards the stability, it isn’t taken into account. The autopilot is supposed to stabilize the airplane. To
assure the trim of the aircraft when the algorithm had the control, it would only be compared to the values
provided by the autopilot and observed if they are similar. With the objective of representing a more realistic
vision, the stability derivatives should be extracted and evaluated.

Regarding the Landing in IRL Toolkit, in order to generalize the codes, it could be developed a version in
which the range and step of pitch_r, roll_r, head_r, T_r and V_ vary for each parameter. This would implied
less number of possible values and therefore, less number of possible states if the range is reduced to a more
specific environment of values that are reached when performing a landing.

In SERPnmi3app.m if the distance to the runway were bigger, the landing gear would not be deployed
since the start of the simulation and another variable to control would be when to extract the landing gear,
select autobrake or extract more the flaps.

Another improvement would be generalising XPC_IRL_converter.m to perform the extension of vectors
with a loop instead of doing with every field, being able to adapt to all number of fields. So if a field is
added/eliminated, the code doesn’t need to be changed, adding a line for the new field. Field Properties must
be excluded (it only is created by default with command matlabfile, with the properties of the .mat file).

The profile of the runway could be obtained in order to use altitude MSL and get more accuracy changing
the definition of the altitude in landing.m.

An important point of view in IRL Toolkit would be taking into account several actions at the same time,
either with an index or changing the algorithm code, much more complicated than the simplification of one
action related to a parameter each instant of time.

In a future work, this project could be resumed. After fulfilling all the points of Section 7.7, and processing
the results, the relevance that IRL has in the field of aeronautics could be discussed in the corresponding
conclusions.
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9 Own codes

The codes that have been created by the author of this project are presented in this chapter. These and the
rest of codes that are necessary in order to replicate the results obtained are available in the attached

documents and they have been developed to be self-contained.

9.1 XPC Toolbox

In this section, the codes that are needed in a complementary way to the XPC Toolbox with the objective of
extracting and manipulate data from X-Plane are found.

9.1.1 SERP3nmiapp.m

Send starting point, Extract data, Record data and Process data taken beginning at points near to 3 nautical
miles from the selected runway performing an approach.

Code 9.1 SERP3nmiapp.m.

function SERP3nmiapp
%% X-Plane Connect MATLAB SERP3nmiapp
% Before running this script, ensure that the XPC plugin is installed in
% X-Plane, X-Plane is running with the situation 3 nmi, preferred, paused
% since the beginning (letter ’P’ must be pulsed when being at the runaway
% or during the loading of the approaching.
% WAIT SEVERAL SECONDS BEFORE RUNNING THE FILE
% It is correct if the plane starts going down (a little)
% The first times, it usually goes wrong
% Send (not very far from the localizer)
% Extract
% Record
% KSEA airport, 34L-16R runway, cat III, frequency 110.75 Hz, 3nmi

%% To run XPlane from MATLAB, uncomment this two lines before the script
%cd ’C:\Users\loren\Google Drive\X-Plane 10’ %The path where X-Plane.exe is
%!X-Plane.exe & % Executes X-Plane

%% Import XPC
addpath(’../’)
import XPlaneConnect.*

%% Setup
%Info for .txt
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plane = ’A380’;
airport = ’KSEA’;
weather = ’broken’;
time = ’sunset’;
distance = ’3nmi’;
land_way = ’34L’; %16R 34L
start_point = ’sent’; %default sent
direction = ’SN’;

% Nomenclature:
% -Weather options:clear,few,scattered,broken,overcast,low-vis,foggy,stormy
% -Time options:day,sunset,twilight,night (it doesn’t affect)
% -Distance: starting point around that distance to the airport
% -Landing runway: in 16R or in 34L
% -Starting point: from the default point (’default’) or a sent point (’s’)
% -Direction: the direction of the landing from south to north (’SN’) or
% from north to south (’NS’)

% Files to save the data in
persistent num %to generate different .txt and .mat files
if isempty(num)

num = 0;
end
num = num+1;
path = [direction,weather,distance,land_way,start_point,num2str(num)];
fd = fopen([path,’.txt’], ’w’); % Open .txt file
m = matfile([path,’.mat’], ’w’, true); % Open .mat file

% Characteristics of the connection
Socket = openUDP(); % Open connection to X-Plane
interval = 0.2; %5 Hz between one data and another
s_spd = 1; %multiplier for real-time (1: real,2: 2 x real, 0: pause)

%% Set position
%THIS SECTION CAN BE COMMENTED TO USE THE APPROACH POINTS BY DEFAULT
%To send a starting ponint, the following two lines starting with POSI and
%sendPOSI must be uncommented.
% Lat Lon Alt Pitch Roll Heading Gear
POSI = [47.39, -122.32, 1385/3.28084, -998, -998, -998, -998];
sendPOSI(POSI, 0, Socket); % Set own aircraft position
% If -998 is sent, the parameter will stay at the current X-Plane value

%By default 16R 3nmi:
% POSI = [47.514, -122.317, 1395.7/3.28084, -998, -998, -998, -998];

%By default 34L 3nmi:
% POSI = [47.391, -122.318, 1395.7/3.28084, -998, -998, -998, -998];

%CHECKED:
% POSI = [47.39, -122.32, 1385/3.28084, -998, -998, -998, -998];
% POSI = [47.514, -122.32, 1395/3.28084, -998, -998, -998, -998];
% POSI = [47.514, -122.317, 1395.7/3.28084, -998, -998, -998, -998];
% POSI = [47.391, -122.318, 1395.7/3.28084, -998, -998, -998, -998];
% POSI = [47.39, -122.32, 1400/3.28084, -998, -998, -998, -998];

%NOT IN FOGGY (depending on the conditions, the storm could be very strong):
% POSI = [47.514, -122.32, 1395/3.28084, -998, -998, -998, -998];
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%NOT VALID: two main reasons:
% POSI = [47.38, -122.32, 1396/3.28084, -998, -998, -998, -998];
% POSI = [47.52, -122.32, 1450/3.28084, -998, -998, -998, -998];
% Too far from the localizer, it crashes in the last meters

% Changing the direction. The plane just follows the initial and don’t turn
% around

%% Set initial conditions: autothrottle,localizer,approach mode(glideslope)
disp(’Setting initial conditions’)

% Set datarefs to work with
Apilot = {’sim/cockpit/autopilot/autopilot_state’};
% autopilot modes

gearst = {’sim/cockpit/switches/gear_handle_status’,...
’sim/cockpit/switches/auto_brake_settings’};

% gear status and settings of autobrake

Avalue = {’sim/cockpit/autopilot/altitude’,...
’sim/cockpit/autopilot/vertical_velocity’,...
’sim/cockpit/autopilot/heading’};

% autopilot values of dialed variables

simspd = {’sim/time/sim_speed’};
% speed of the simulation, it also unpauses

sendDREF(simspd{1},s_spd, Socket); % set speed of the sim, unpauses

sendDREF(Apilot{1}, 1, Socket); % autothrottle
sendDREF(Apilot{1}, 256, Socket); % localizer
sendDREF(Apilot{1}, 1024, Socket); % approach mode

sendDREF(gearst{1}, 1, Socket); % gear down->1; gear up->0
sendDREF(gearst{2}, 4, Socket); % autobrakes 0-4

%These values or similar has to be dialed into the autopilot to perform
%correctly and not engage the altitude or other modes.
% sendDREF(Avalue{1}, 5100, Socket); % set altitude dialed in autopilot
% % it is which is going to be maintained when it is reached, due to the
% % landing, it doesn’t interest to maintain an altitude, an therefore, an
% % altitude that is not going to be reached is settled. In that way if this
% % mode is armed, it won’t erase the Localizer or approach modes.
% sendDREF(Avalue{2}, 0, Socket); % set VVI dialed in autopilot
% sendDREF(Avalue{3}, 343, Socket); % set heading dialed in autopilot
% % going from south to north

%% Extract parameters
DREFS = {...

’sim/cockpit2/gauges/indicators/altitude_ft_pilot’,... 1
’sim/flightmodel/position/y_agl’,... 2
’sim/flightmodel2/controls/pitch_ratio’,... 3
’sim/flightmodel2/controls/roll_ratio’,... 4
’sim/flightmodel2/controls/heading_ratio’,... 5
’sim/cockpit2/engine/actuators/throttle_ratio_all’,... 6
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’sim/flightmodel/position/groundspeed’,... 7
’sim/cockpit2/gauges/indicators/airspeed_kts_pilot’,... 8
’sim/flightmodel/controls/flaprat’,... 9
’sim/cockpit/switches/auto_brake_settings’,... 10
};

% DREFS:
% 1 altitude (feet) MSL (mean sea level), barometric pressure 29.92 inHg
% 2 altitude (meters) AGL radioaltimeter altitude above ground level
% 3 actual pitch (ratio), deflection of elevator
% 4 actual roll (ratio), deflection of aileron
% 5 actual heading (ratio), deflection of rudder
% 6 throttle ratio (ratio)
% 7 groundspeed (m/s), STOP CONDITION
% 8 indicated airspeed in knots
% 9 flap ratio deflection (ratio)
%10 autobrake ratio (ratio)

% Position with the inner function POSI directly

%’sim/cockpit2/gauges/indicators/vvi_fpm_pilot’,...
%indicated vertical speed (ft/min), it tends to lag by several seconds
%’sim/cockpit/misc/radio_altimeter_minimum’ %set to zero

cont = 0; %number of asked connections
conn = 0; %number of successful connections
stop = 0; %stop condition

%Initial info printed in the file fd
fprintf(fd,[’Flying %s from %s (%s point) of %s airport ’,...

’in %s (%s) during %s with %s weather \n’],...
plane,distance,start_point,airport,land_way,direction,time,weather);

%Initial description of the data printed in the file fd
fprintf(fd,[’Connection Latitude[deg] Longitude[deg] Altitude msl[ft] ’, ...

’Altitude agl[ft] Pitch[deg] Roll[deg] Heading[deg] ’, ...
’Pitch_ratio Roll_ratio Heading_ratio Throttle_ratio ’,...
’Vertical_velocity[fpm] Vg[m/s] V[knots] Flap_ratio ’,...
’Gear_status Autobrake \n’]);

%Depending on the position it is going to be needed some number of
%data recovery or other according the distance to the runway
while stop==0

cont = cont+1;
try

% Get data
posi = getPOSI(0, Socket);
ctrl = getCTRL(0, Socket);
result = getDREFs(DREFS,Socket);

%POSI
% 1. Latitude (deg)
% 2. Longitude (deg)
% 3. Altitude (m above MSL)
% 4. Roll (deg)
% 5. Pitch (deg)
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% 6. True Heading (deg)
% 7. Gear (0=up, 1=down)

%CTRL
% 1. Latitudinal Stick [-1,1]
% 2. Longitudinal Stick [-1,1]
% 3. Pedal [-1, 1]
% 4. Throttle [-1, 1]
% 5. Gear (0=up, 1=down)
% 6. Flaps [0, 1]
% 7. Speed Brakes [-0.5, 1.5]

% Manipulate data
if cont==1

h_i = posi(3)*3.28084; % set h_i to calculate vertical velocity
%initial altitude in feet in order to calculate the vertical
%velocity by deriving the altitude with incremental cocients
%due to the lag of the vvi of the airplane

end
h_f = posi(3)*3.28084; %new altitude in feet
vvi = (h_f-h_i)/(interval)*60; % vertical velocity feet/min
h_i = h_f;

lat = posi(1);
long = posi(2);
altmsl = posi(3)*3.28084; %altitude MSL in feet ídem result(1)
altagl = result(2)*3.28084; %altitude AGL in feet
pitch = posi(5);
roll = posi(4);
head = posi(6);
pitchr = result(3);
rollr = result(4);
headr = result(5);
Tr = result(6);
vvel = vvi;
Vg = result(7);
V = result(8);
flaps = result(9);
gear = round(ctrl(5));
autob = result(10);

% Print and save data in Command Window, .txt file and .mat file
fprintf([’%3d Lat:%5.3f Long:%6.3f Alt_MSL[ft]:%6.2f ’,...

’Alt_AGL[ft]:%5.2f Pitch:%5.2f Roll:%5.2f Heading:%5.2f ’,...
’Pitch_ratio:%5.2f Roll_ratio:%5.2f Heading_ratio:%5.2f ’,...
’T_ratio:%3.2f Vz[ft/min]:%7.2f Vg[m/s]:%5.2f ’,...
’V[knots]:%5.2f Flaps:%3.2f Gear:%d Autob:%d \n’],...
[cont, lat, long, altmsl,...
altagl, pitch, roll, head,...
pitchr, rollr, headr,...
Tr, vvel, Vg,...
V, flaps, gear, autob]);

fprintf(fd,[’%3d %5.3f %6.3f %6.2f %5.2f %5.2f %5.2f %5.2f ’,...
’%5.2f %5.2f %5.2f %3.2f %7.2f %5.2f %5.2f %3.2f %d %d \n’],...
[cont, lat, long, altmsl, altagl, pitch, roll, head,...
pitchr, rollr, headr, Tr, vvel, Vg, V, flaps, gear, autob]);
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conn = conn+1;

m.cont(1,conn) = cont;
m.lat(1,conn) = lat;
m.long(1,conn) = long;
m.altmsl(1,conn) = altmsl;
m.altagl(1,conn) = altagl;
m.pitch(1,conn) = pitch;
m.roll(1,conn) = roll;
m.head(1,conn) = head;
m.pitchr(1,conn) = pitchr;
m.rollr(1,conn) = rollr;
m.headr(1,conn) = headr;
m.Tr(1,conn) = Tr;
m.vvel(1,conn) = vvel;
m.Vg(1,conn) = Vg;
m.V(1,conn) = V;
m.flaps(1,conn) = flaps;
m.gear(1,conn) = gear;
m.autob(1,conn) = autob;

if altagl<=10 && Vg<0.001 %ATTENTION: stop condition
% altagl = result(2) = altitude in ft above ground level
% Vg = result(7) = groundspeed in m/s
fclose(fd); %Close file. Returns 0 if it is correctly closed
fd=fopen([path,’.txt’],’a’); %Add information in the file
fprintf(fd,[’Time: %3.2f s. \n%d successful connections ’, ...

’from a total of %d. Connectivity: %2.2f %%\n’],...
cont*interval,conn,cont,conn/cont*100);

fprintf([’Time:%3.2f s. \n%d successful connections ’, ...
’from a total of %d. Connectivity: %2.2f %%\n’],...
cont*interval,conn,cont,conn/cont*100);

fclose(fd); %Close file.
stop = 1;

end
pause(interval); % to record exactly when it is wanted

catch ME
disp(ME.identifier)
if strcmp(ME.identifier,’MATLAB:Java:GenericException’) ...

|| strcmp(ME.identifier,’MATLAB:badsubscript’)
end

end
end

closeUDP(Socket);
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9.2 landing.m

It generates a figure such as Figure 7.4, representing the X-Plane data in vertical and horizontal views. The
inner function airportdata contains airport information that can be changed in Subsection 9.2.1.

Code 9.2 landing.m.

%Utility to draw the vertical and horizontal views of the glidepath
%Important, the x and y to draw should be transformed from degrees of
%latitude and longitude to feet.
%In the extract data code the less calculation is done the better, to take
%data in 0.2s, so the transformation has to be done here, from the latitude
%and longitude, accordding with the altitude.
%UNITS IN IMPERIAL SYSTEM: feet and degrees

clear all, clc, close all

%% DATA information (CAN BE CHANGED)
addpath XPC_original_data_copied

% load(’NSclear3nmi16Rdefault1.mat’)
% load(’SNclear3nmi34Ldefault1.mat’)
load(’NSfoggy3nmi16Rdefault1.mat’)
% load(’SNfoggy3nmi34ldefault1.mat’)

%If in the airport there aren’t glideslope or localizer, set the data
%of where they would be optimally: the point to touchdown and the point
%where to locate the origin point of horizontal guide
airport = airportdata; %Change in this file any of the airport information

%Information of the north extreme
rWNS = airport.rWNS; %name of runway from North to South
latN = airport.latN; %latitude
longN = airport.longN; %longitude
elevN = airport.elevN; %altitude MSL, it isn’t used
zGSaN = airport.zGSaN; %altitude MSL glideslope in north

%Information of the south extreme
rwSN = airport.rwSN; %name of runway from South to North
latS = airport.latS; %latitude
longS = airport.longS; %longitude
elevS = airport.elevS; %altitude MSL, it isn’t used
zGSaS = airport.zGSaS; %altitude MSL glideslope in south

%Runway given by two points in its central line:
lr = airport.lr; %the longitudinal length of runway
wr = airport.wr; %width of runway

%Localizer
xLOCr = airport.xLOCr; %distance between the extreme of runway

%and the LOC installation
yLOCr = airport.yLOCr; %distance between the axis of runway and

%the LOC installation
zLOC = airport.zLOC; %altitude AGL
incrthetaL = airport.incrthetaL; %degrees from the central line of the cone
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%Glideslope
xGSr = airport.xGSr; %distance between the extreme of runway and the

%GS installation
yGSr = airport.yGSr; %distance between the axis of runway and the GS

%installation
zGS = airport.zGS; %altitude AGL
incrthetaG = airport.incrthetaG; %degrees from the central line of the cone

%% Conversion
%From degrees to feet conversion using KSEA diagram of FAA:
%In the plane of the KSEA airport, two measures are represented:
% 47o¯ 26’ = 47.43o¯
% 47o¯ 27’ = 47.45o¯
% Between them, their distance is divided into 10 segments.
% 1 segment = 0.1’ = 0.0017o¯
% The length of the runway is 8500 feet and it takes 14 segments like
% those, that means 14*0.0017o¯ = 0.0233o¯
% So, the conversion could be: 8500 feet / 0.0233o¯ = 364290 feet/degree
% Or what is the same: 2.7451e-06 degrees/feet
% conv=364290; %feet in one degree

%Other conversion: 360o¯ of longitude in the equatorial circumference of
%40075161.2 meters (Earth radius of the semi-major axis of the Earth at the
%equator is 6378137 meters) gives 111319.9 meters/degree
% conv = 111319.9*3.28084; %feet in one degree
%The inconvenient of this one is the inaccuracy for the longitude
%conversion.

%Haversine formula (in radians) to get the conversion factors:
% -latitude to feet
% -longitude to feet
%It calculates the great-circle distance between two points, the shortest
%distance over the Earth’s surface.This is needed above all due to the
%decreasing distance between two meridians, that goes to zero when going
%to the poles, multiplied by the cosine of the latitude.
%The two previous conversions aren’t used.
% R_Earth = 6371e3*3.28084; %feet of Earth’s radius
%
% for ii=1:2
% if ii==1 %1 degree of latitude at the location of the airport
% %for example, the north, it could also have been south. For that,
% %put S where N is inside this if.
% lat1 = latN;
% lat2 = latN+1;
% long1 = longN;
% long2 = longN;
%
% else %1 degree of longitude at the location of the airport
% %for example, the north, it could also have been south. For that,
% %put S where N is inside this if.
% lat1 = latN;
% lat2 = latN;
% long1 = longN;
% long2 = longN+1;
% end
%
% ilat = lat2-lat1;
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% ilong = long2-long1;
% iphi = ilat*pi/180; %in radians
% ilambda = ilong*pi/180; %in radians
%
% a = (sin(iphi/2))^2+cos(lat1*pi/180)*cos(lat2*pi/180)*(sin(ilambda/2))^2;
% c = 2*atan2(sqrt(a),sqrt(1-a));
% d = R_Earth*c;
%
% if ii==1
% convlat = d; %feet in a degree of latitude at that location
% else
% convlong = d; %feet in a degree of longitude at that location
% end
% end

%The value of convlat and convlong could be implemented as the fixed value
%obtained instead of running the previous lines every time:
convlat = 364812.76;
convlong = 246631.93;

incrlat = latN-latS;
incrlong = longS-longN;

xr = [0,incrlat*convlat]; %points that define the runway
yr = [0,incrlong*convlong]; %points that define the
zr = [0,0]; %this would be elevation if it was in MSL instead of AGL

delta = abs(atand(diff(yr)/diff(xr)));

if lat(1)>latN
runway = rWNS; %runway of approach, from north to south
direct = ’ (from North to South)’;
latr = latS; %degrees of the second extreme of the runway, the south
longr = longS; %degrees of the second extreme of the runway, longitude
yGSr = -yGSr;
%At least in KSEA, glideslope is at the right going to north and at the
%left going to south
altgs = zGSaN;
SN = -1; %it indicates that it doesn’t go from South to North

else
runway = rwSN; %runway of approach, from south to north
direct = ’ (from South to North)’;
latr = latN; %degrees of the second extreme of the runway, the north
longr = longN; %degrees of the second extreme of the runway, longitude
altgs = zGSaS;
SN = 1; %it indicates that it goes from South to North

end

xa = abs(lat-latr)*convlat; %of the aircraft to draw
ya = SN*(long-longr)*convlong; %of the aircraft to draw
za = zeros(1,length(altmsl)); %of the aircraft to draw

runw = 0; %it starts in the air, no in the runway
for ii=1:length(altmsl)

if altagl(ii)>15 && runw==0
za(ii) = altmsl(ii)-altgs; %to avoid the interference of buildings

else
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za(ii) = altagl(ii); %because not having the runway profile
runw = 1; %this is needed, because the runway
%profile varies and without this parameter, it would return the take
%the first value of za instead of this one once it has touchdown.

end
end

%% Representation
im1 = figure;

%% Vertical plane with initial point in the GS
subplot(2,1,1)
title([’Vertical plane - glideslope. Landing in ’,runway,direct])
xlabel(’horizontal distance [feet]’)
ylabel(’height [feet AGL]’) %AGL: above ground level

%Runway 34L-16R
runwayv = line(xr,zr,’Color’,’k’,’LineWidth’,2);
hold on

%Aircraft path
plot(xa,za,’r*’)

%Location of LOC
xLOC = xr(1)-xLOCr*cosd(delta);
plot(xLOC,zLOC,’MarkerEdgeColor’,[0 0.5 0],’Marker’,’+’,...

’MarkerSize’,10,’LineWidth’,5)

%Location of GS
xGS = xr(2)-xGSr*cosd(delta)+yGSr*sind(delta);
plot(xGS,zGS,’+b’,’MarkerSize’,10,’LineWidth’,5)

%Center line of glideslope
xg = [xGS,xa(1)];
zg = [zGS,tand(3)*(xg(2)-xg(1))+zGS]; %3 degrees is the optimal
glideslope=line(xg,zg,’Color’,’b’,’LineStyle’,’--’);

%Lines of the vcone: u:upper; l:lower
thetag = atand(diff(zg)/diff(xg));
Lg = sqrt(diff(xg)^2+diff(zg)^2);

for ii=1:length(incrthetaL)
cug = [xg(1)+Lg*cosd(thetag+incrthetaG(ii)),zg(1)+...

Lg*sind(thetag+incrthetaG(ii))];
clg = [xg(1)+Lg*cosd(thetag-incrthetaG(ii)),zg(1)+...

Lg*sind(thetag-incrthetaG(ii))];
xcug = [xg(1),cug(1)];
zcug = [zg(1),cug(2)];
vconeu = line(xcug,zcug,’Color’,’b’);
xclg = [xg(1),clg(1)];
zclg = [zg(1),clg(2)];
vconel = line(xclg,zclg,’Color’,’b’);

end

%Height of transition
ht = 10; %feet AGL. According to the FAA, 10-20 feet AGL
xh = [0,xg(2)+2];
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zh = [ht,ht];
htrans = line(xh,zh,’Color’,’k’,’LineStyle’,’-.’);

% axis equal %to see properly the scale

%% Horizontal plane changes with initial point in the LOC
subplot(2,1,2)
title([’Horizontal plane - localizer. Landing in ’,runway,direct])
xlabel(’horizontal distance [feet]’)
ylabel(’top view [feet AGL]’) %AGL: above ground level

%Runway 34L-16R
runwayh = line(xr,yr,’Color’,’k’,’LineWidth’,2,’LineStyle’,’--’);
xr1 = xr+[wr,wr]/2*sind(delta);
yr1 = yr+[wr,wr]/2*cosd(delta); %semiwidth of the runway
xr2 = xr-[wr,wr]/2*sind(delta);
yr2 = yr-[wr,wr]/2*cosd(delta); %semiwidth of the runway
runwayh1 = line(xr1,yr1,’Color’,’k’,’LineWidth’,2);
runwayh2 = line(xr2,yr2,’Color’,’k’,’LineWidth’,2);
hold on

%Aircraft path
plot(xa,ya,’r*’)

%Location of LOC
xLOC = xr(1)-xLOCr*cosd(delta);
plot(xLOC,(yLOCr+sind(delta)*xLOCr),’MarkerEdgeColor’,[0 0.5 0],...

’Marker’,’+’,’MarkerSize’,10,’LineWidth’,5)

%Location of GS
xGS = xr(2)-xGSr*cosd(delta)+yGSr*sind(delta);
plot(xGS,(yGSr*cosd(delta)-xGS*tand(delta)),’+b’,’MarkerSize’,10,’LineWidth’,5)

%Center line of LOC
xloc=[xLOC,xa(1)];
yloc=[yLOCr*cosd(delta)+sind(delta)*xLOCr,-xa(1)*tand(delta)];
hold on
LOC=line(xloc,yloc,’Color’,[0 0.5 0],’LineStyle’,’--’);

%Lines of the hcone: u:upper; l:lower; 1:interior cone; 2: exterior cone
thetaL=atand(diff(yloc)/diff(xloc));
Ll=sqrt(diff(xloc)^2+diff(yloc)^2);

for ii=1:length(incrthetaL)
cuL=[xloc(1)+Ll*cosd(thetaL+incrthetaL(ii)),yloc(1)+...

Ll*sind(thetaL+incrthetaL(ii))];
clL=[xloc(1)+Ll*cosd(thetaL-incrthetaL(ii)),yloc(1)+...

Ll*sind(thetaL-incrthetaL(ii))];
xcuL=[xloc(1),cuL(1)];
ycuL=[yloc(1),cuL(2)];
hcone1u=line(xcuL,ycuL,’Color’,[0 0.5 0]);
xclL=[xloc(1),clL(1)];
yclL=[yloc(1),clL(2)];
hconel=line(xclL,yclL,’Color’,[0 0.5 0]);

end
% axis equal
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9.2.1 airportdata.m

Code 9.3 airportdata.m.

function airport=airportdata
% Function that provides information about runway, glideslope and localizer.
%If in the airport there aren’t glideslope or localizer, set the data
%of where they would be optimally: the point to touchdown and the point
%where to locate the origin point of horizontal guide

%Information of the north extreme
airport.rWNS = ’16R’; %name of runway from North to South
airport.latN = 47.46384; %latitude
airport.longN = -122.31785; %longitude
airport.elevN = 330.33; %altitude MSL, it isn’t used
airport.zGSaN = 351.79; %altitude MSL glideslope in north

%Information of the south extreme
airport.rwSN = ’34L’; %name of runway from South to North
airport.latS = 47.44056; %latitude
airport.longS = -122.31808; %longitude
airport.elevS = 353; %altitude MSL, it isn’t used
airport.zGSaS = 359.86; %altitude MSL glideslope in south

%Runway given by two points in its central line:
airport.lr = 8500; %the longitudinal length of runway
airport.wr = 150; %width of runway

%Localizer
airport.xLOCr = 800; %distance between the extreme of runway and the LOC
airport.yLOCr = 0; %distance between the axis of runway and the LOC
airport.zLOC = 0; %altitude AGL
airport.incrthetaL = [1.5,3]; %degrees from the central line of the cone(s)
% try to put a difference such as the space created is equally distributed
% between cones, for example: incrthetaL=[1,3] gives an interior cone of 2
% degrees and a exterior one of 6 degrees in total
% [1.5,3] is what gives the most similar result to what X-Plane uses,
% following the normative

%Glideslope
airport.xGSr = 793; %distance between the extreme of runway and the GS
airport.yGSr = 175; %distance between the axis of runway and the GS
airport.zGS = 0; %altitude AGL
airport.incrthetaG = [0.25,0.7]; %degrees from the central line of the cone
% try to put a difference such as the space created is equally distributed
% between cones, for example: incrthetaG=[1,3] gives an interior cone of 2
% degrees and a exterior one of 6 degrees in total
% [0.25, 0.7] is what gives the most similar result to what X-Plane uses,
% following the normative
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9.3 XPC_IRL_converter.m

Code 9.4 XPC_IRL_converter.m.

function XPC_IRL_converter
% Program to convert data taken from X-Plane with X-Plane Connect (XPC)
% Toolbox into the kind of data managed by the IRL Toolkit
% It produces a .mat file which contains a structure: autopilot_result,
% with two fields:
% - mdp_params, a struct with the common data of every iteration
% - example_samples, with a cell matrix that contains in each cell a state
% and an action, defined by:
% - columns with the number of steps considered (it doesn’t have to be
% a complete iteration, it could be divided into several segments
% - rows with the different iterations (they have to have the same
% characteristics)
% IMPORTANT:
% Copy the files generated by XPC to the folders:
% - landing_demos, which is going to be modified
% - XPC original data, for doing tests and don’t loose the data.
% In that case, browse the data in landing_demos and copy again from this
% or from the folder of XPC
% Then run this script to generate the landing_i.mat files with the
% segments of a set of iterations.

clear all, clc, close all
%% DATA information (CAN BE CHANGED)
%FILE CONFIGURATION
tlen = 300; %total length to uniformize the iterations
len = 50; %length of the segment SEE the Note about len
% NOTE ABOUT len. It is a parameter to have the landing discretized in
% segments of the same length (for example 60 steps of time, in which the
% connection has been successful), because in each iteration, the number of
% taken data is different. When it is in the last segment, every landing is
% different and to solve that, those with a minor number of components are
% filled repeating their last value.
% The number of instants of tiemea landing performed with 0.2s as step time
% from 3 nmi of the runway oscillates between 261 and 280.
% If the discretized length is 50, taking a total extension of tlen as 300
% instants, it would result in 6 segments and of files.
ini = -1; %initial point of the range
last = 1; %last point of the range
divisions = 21; %number of possible values in the range
%201 with range [-1,1] and step of 0.01
%Another good option would be 21: [-1,1] and step of 0.1
%This first method allows to discretise variables to have less values. It
%is useful if the discretisation is approximately logical and simplifies
%the result (a correct combination of ini, last, divisions; according to
%the original values, such as the two options presented).
inis = 0; %initial value of the range of indicated airspeed
lasts = 200; %last value of the range of indicated airspeed
%for speed, the initial value doesn’t reach 200knots and the last is 0knots
%It is considered the same number of divisions, but this divisions are now
%limits of the segments
%This second method is useful to take directly the component of the possible
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%values of a parameter. The difference is that with that, the variable
%isn’t discretised. While the first one gives divisions as the number of
%possible values, in this one, they are one possible value less due to be
%between two consecutive values. (SEE the paper of the project to
%understand it better).
%If the values outside the range are also considered, the number of
%components of possible values are 2 more than the provided by the
%first method. This is applied for the horizontal and vertical lanes
%related to longitude and altitude.

% AIRPORT
%If in the airport there aren’t glideslope or localizer, set the data
%of where they would be optimally: the point to touchdown and the point
%where to locate the origin point of horizontal guide
airport = airportdata; %Change in this file any of the airport information

% IRL ALGORITHM
contin = 0; %discrete (0) or continuous (1)
deter = 1.0; %probability of correct transition
discount = 0.9; %temporal discount factor to use

%% Processing
addpath landing_demos %directory where the .mat files are located

files = dir(’landing_demos/*.mat’); %files of .mat extension in the
%directory where the generated XPC files are

%CAUTION: it includes some files (generally two) that have directory
%purposes: "." and "..". For that, only the .mat files are considered. That
%also allows to have the .txt files which provide information about landings

for ii=1:length(files)
ii %To show that it is working and how the progress is going.
file = matfile(files(ii).name, ’writable’, true); % Open .mat file to write

% Note: there is a problem when the connection fails, the vertical
% velocity increases in the right next iteration after the bad
% connection. To solve this, unusual values are searched and
% substituted with the media of the previous (it has been considered 0
% if it was the first component or the last one) and the next one.

ind = find(file.vvel>1e4); %indices of the components that are too high
if ~isempty(ind) %to do this operations only if it has to

for k=1:length(ind) %for each of the found indices
if ind(k) == 1 %the previous case doesn’t exist

file.vvel(1,ind(k)-1) = 0; %the previous case is created
elseif ind(k) == length(file.V) %the next case doesn’t exist

file.vvel(1,ind(k)+1) = 0; %the next case is created
end
file.vvel(1,ind(k))=(file.vvel(1,ind(k)+1)+file.vvel(1,ind(k)-1))/2;
%the media of the previous and the next values of the wrong one

end
end

%% Extend parameters to have the same length in all files
file.Tr(1,end:tlen) = file.Tr(1,end);
file.V(1,end:tlen) = file.V(1,end);
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file.Vg(1,end:tlen) = file.Vg(1,end);
file.altagl(1,end:tlen) = file.altagl(1,end);
file.altmsl(1,end:tlen) = file.altmsl(1,end);
file.autob(1,end:tlen) = file.autob(1,end);
file.pitch(1,end:tlen) = file.pitch(1,end);
file.roll(1,end:tlen) = file.roll(1,end);
file.head(1,end:tlen) = file.head(1,end);
file.pitchr(1,end:tlen) = file.pitchr(1,end);
file.rollr(1,end:tlen) = file.rollr(1,end);
file.headr(1,end:tlen) = file.headr(1,end);
file.cont(1,end:tlen) = file.cont (1,end);
file.flaps(1,end:tlen) = file.flaps(1,end);
file.gear(1,end:tlen) = file.gear(1,end);
file.lat(1,end:tlen) = file.lat(1,end);
file.long(1,end:tlen) = file.long(1,end);
file.vvel(1,end:tlen) = file.vvel(1,end);

%% Pitch, roll, heading and throttle ratios and V into coordinates
%Discretize to the possible values and then convert them to coordinates
%to generate the state
%%%ATTENTION
%The discretized coordinates are with ’_r’ and the obtained from
%X-Plane don’t have ’_’
[file.pitch_r,file.roll_r,file.head_r,file.T_r,file.V_] = ...

ratiostocoords(file.pitchr,file.rollr,file.headr,...
file.Tr,file.V,ini,last,divisions,inis,lasts);

Vs = divisions-1; %number of possible indicated airspeeds

%% Latitude, longitude, altitude into coordinates
%Discretize to the possible values and then convert them to coordinates
%to generate the state
%- Latitude is going to be the direction of x, going one step forwards
% each step of time
%- Altitude is going to be transformed into vertical lanes. It is going
% to be defined as alt(msl)-alt(respective glideslope) to avoid landing
% interferences and after reaching 50 ft, agl (above ground level)
%- Longitude is going to be transformed into horizontal lanes
[file.xv,file.Vlanev,file.Hlanev]=degreestocoords(file.lat,...

file.long,file.altmsl,file.altagl,airport);

Hlanes = 2*length(airport.incrthetaL)+1; %number of possible horizontal lanes
Vlanes = 2*length(airport.incrthetaG)+1; %number of possible vertical lanes

end

%% First structure, mdp_params
mdp_params=struct(...

’seed’,0,... %initialization for random seed
’ini’,ini,... %initial point of the range of all ratios
’last’,last,... %last point of the range of all ratios
’inis’,inis,... %initial point of the range of indicated airspeed
’lasts’,lasts,... %last point of the range of indicated airspeed
’length’,len,... %number of iterations considered in a segment
’Hlanes’,Hlanes,... %number of possible horizontal lanes (longitude)
’Vlanes’,Vlanes,... %number of possible vertical lanes (altitude)
’pitchrs’,divisions,... %number of possible pitch ratios
’rollrs’,divisions,... %number of possible roll ratios
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’headrs’,divisions,... %number of possible heading ratios
’Trs’,divisions,... %number of possible T ratios
’Vs’,Vs,... %number of possible indicated airspeeds
’airport’,airport,... %data about runway, glideslope and localizer
’continuous’,contin,... %discrete (0) or continuous (1)
’determinism’,deter,... %probability of correct transition
’discount’,discount); %temporal discount factor to use

%% Second structure, example_sample
% example_samples is a matrix with:
% - the length of the ’road’ considered as number of columns
% - the number of iterations as number of rows
% in each cell of a row, a vector with the state and the actions indicates
% the sequence of the followed trajectory

%% Files to save
files_gen = tlen/len; %number of files that are going to be the segments

for file_gen=1:files_gen
file_name=[’landing_’,num2str(file_gen),’.mat’]; %file to use with IRL

s = zeros(length(files),len); %matrix of states
a = zeros(length(files),len); %matrix of actions
example_samples = cell(length(files),len); %cell matrix to save both

for ii=1:length(files)
fd=load(files(ii).name);

%For actions it is more accurate to use the data obtained with
%X-Plane without discretise or converting to coordinates
x=(file_gen-1)*len; %previous component to use in present segment
dp=[diff(fd.pitchr),0]; %due to diff, one component gets lost
dr=[diff(fd.rollr),0]; %due to diff, one component gets lost
dy=[diff(fd.headr),0]; %due to diff, one component gets lost
dT=[diff(fd.Tr),0]; %due to diff, one component gets lost
totald=[dp;dr;dy;dT];
[~,maxind]=max(abs(totald));
%maxval: maximum absolute value of difference
%maxind: index of row with the maximum value

%For states it is needed the discretised parameters converted to
%coordinates
T_r = fd.T_r;
pitch_r = fd.pitch_r;
roll_r = fd.roll_r;
head_r = fd.head_r;
xv = fd.xv; %the same as x
Hlanev = fd.Hlanev;
Vlanev = fd.Vlanev;
V_ = fd.V_;

for jj=1:len
%STATES: from the definition of the coordinates in pitch, roll,
%heading and throttle, an unique value is generated and save as
%the state in that step of time using this function:
s(ii,jj) = landingcoordstostate(x+jj,Hlanev(1,x+jj),...

Vlanev(1,x+jj),pitch_r(1,x+jj),roll_r(1,x+jj),...
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head_r(1,x+jj),T_r(1,x+jj),V_(1,x+jj),mdp_params);

%ACTIONS: each step time an action is taken among 9 of them.
%The process to choose what to do is based in the biggest
%difference of the variables each step of time, after observing
%the behaviour. After several steps, throttle is inoperative,
%because of getting null. If all of them are equal (even zero),
%it takes the first one that is the maximum: pitchr (first row)
if maxind(x+jj) == 1

if totald(1,x+jj)<0
a(ii,jj) = 1; %decrease pitch_ratio

elseif totald(1,x+jj)>0
a(ii,jj) = 2; %increase pitch_ratio

elseif totald(1,x+jj) == 0
a(ii,jj) = 9; %no action

end
elseif maxind(x+jj) == 2

if totald(2,x+jj)<0
a(ii,jj) = 3; %decrease roll_ratio

else
a(ii,jj) = 4; %increase roll_ratio

end
elseif maxind(x+jj) == 3

if totald(3,x+jj)<0
a(ii,jj) = 5; %decrease heading_ratio

else
a(ii,jj) = 6; %increase heading_ratio

end
elseif maxind(x+jj) == 4

if totald(4,x+jj)<0
a(ii,jj) = 7; %decrease throttle_ratio

else
a(ii,jj) = 8; %increase throttle_ratio

end
else

a(ii,jj) = 9; %no action
end

%IMPROVEMENT: take into account several actions at the same
%time, either with an index or changing the algorithm code
%(much more complicated)

example_samples{ii,jj}=[s(ii,jj); a(ii,jj)];
end

end
example_samples = {example_samples}; %to create a cell matrix

autopilot_result = struct(...
’example_samples’,example_samples,...
’mdp_params’,mdp_params);

save(file_name,’autopilot_result’);
end

The functions mentioned in this code are in the following Subsection 9.2.1, Subsection 9.3.1, Subsec-
tion 9.3.2 and Subsection 9.3.3.
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9.3.1 ratiostocoords.m

Code 9.5 ratiostocoords.m.

function [pitch_r,roll_r,head_r,T_r,V_] = ...
ratiostocoords(pitchr,rollr,headr,Tr,V,ini,last,divisions,inis,lasts)

%Function for converting from ratios to components of the possible values.

%% Discretize to the possible values
%Before converting ratios to coordinates, they are discretized to their
%possible values. It has taken into account the same range and possible
%values for all of them.

vect=(ini:(last-ini)/(divisions-1):last); %vector of possible values

for ii=1:4 %variables of control pitch, roll, heading and T ratios
if ii==1

var = pitchr; %var is used to reduce the lines of the code
elseif ii==2

var = rollr;
elseif ii==3

var = headr;
elseif ii==4

var = Tr;
end
for jj = 1:length(var) %for every component of var

for kk = 1:length(vect)-1 %for every component of possible
%values except the last one, because it is analysing if the
%X-Plane values are inside two close possible values given
%by range (ini and last) and divisions
if var(jj)>=vect(kk) && var(jj)<(vect(kk+1)+vect(kk))/2

var(jj) = vect(kk); %associate with the inferior value
elseif var(jj)>=(vect(kk+1)+vect(kk))/2 && var(jj)<=vect(kk+1)

var(jj) = vect(kk+1); %associate with the superior value
end

end
end
if ii==1

pitchr = var; %get back the name parameter discretized
elseif ii==2

rollr = var;
elseif ii==3

headr = var;
elseif ii==4

Tr = var;
end

end

% IMPROVEMENT: generalize this to do it with another loop using for,
% for example, instead of doing with every field, being able to
% do with every field included, not these that are fixed.
% So if a field is added, the code doesn’t need to be changed,
% adding a line for the new field. Exclude field Properties (it only is
% created by default with command matlabfile, with the properties of the
% .mat Both options give problems:
% namefield = fieldnames(file); % Name of fields of file
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% for jj=1:length(namefield)-1 %to not overwrite Properties
% namefield{jj}(end:tlen)=files(ii).name.namefield{jj}(end) %1
% set(file,namefield{jj}(end:tlen),namefield{jj}(end)) %2
% end

%% Ratios to coords
%pitchr, rollr, headr and Tr are ratios, and therefore, a conversion
%to the ’component of the possible number of each parameters is needed’.
%For example, pitchrs could be 201 possible values, from -1 to 1 with a step
%of 0.01. So the values of a linear conversion have to be found.
%Two possible equations are:
%-1*a+b=1 %the first possible value of pitchr
%1*a+b=201 %the last possible value of pitchr
%Substracting: 2a=200, a=100 and therefore, b is 101

%If pitchr is 0.1, its conversion would be: 0.1*100+101=112
%It is the same with each of the rest parameters

%Generalizing for a number of possible pitch_r such as pitchrs and [ini,last]:
%ini*a+b=1 %the first possible value of pitch_r
%last*a+b=pitchrs %the last possible value of pitch_r
%Subtracting: (last-ini)*a=pitchrs-1, a=(pitchrs-1)/(last-ini) and therefore,
%b=1-a*ini; b=1-ini*(pitchrs-1)/(last-ini)-, b=(last-ini*pitchrs)/(last-ini);
%It is going to be considered the same number of possible ratios of all
%variables: pitchrs=rollrs=headrs=Trs=divisions

%The last abstraction would be converting and having different ranges of
%each variable or/and different number of possible values of each variable
%It is a future improvement

a = (divisions-1)/(last-ini);
b = 1-ini*(divisions-1)/(last-ini);

pitch_r = pitchr*a+b;
roll_r = rollr*a+b;
head_r = headr*a+b;
T_r = Tr*a+b;

%% Speed
vects = (inis:(lasts-inis)/(divisions-1):lasts);
V_ = zeros(1:length(length(V)));
for ii = 1:length(V) %for every component of V

for jj = 1:length(vects)-1 %for every component of possible values
if V(ii)>=vects(jj) && V(ii)<=vects(jj+1)

V_(ii) = jj;
% else
% V_(ii) = jj+1; %it is the case of not having calculate

%accurately the end of the range, and that some values
%of speed exceed it.

%However, this can’t be implemented due to change in each iteration
%the number of possible speeds and therefore changing the state.
end

end
end
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9.3.2 degreestocoords.m

Code 9.6 degreestocoords.m.

function [xv,Vlanev,Hlanev]=degreestocoords(lat,long,altmsl,altagl,airport)
%Utility for converting latitude, longitude and altitude into simplified
%coordinates such as vectors of one step discretized.
%Only for converting X-Plane data into the kind of data managed by IRL
%Toolkit

%% Conversion degrees to feet
%From degrees to feet conversion using KSEA diagram of FAA:
%In the plane of the KSEA airport, two measures are represented:
% 47o¯ 26’ = 47.43o¯
% 47o¯ 27’ = 47.45o¯
% Between them, their distance is divided into 10 segments.
% 1 segment = 0.1’ = 0.0017o¯
% The length of the runway is 8500 feet and it takes 14 segments like
% those, that means 14*0.0017o¯ = 0.0233o¯
% So, the conversion could be: 8500 feet / 0.0233o¯ = 364290 feet/degree
% Or what is the same: 2.7451e-06 degrees/feet
% conv=364290; %feet in one degree

%Other conversion: 360o¯ of longitude in the equatorial circumference of
%40075161.2 meters (Earth radius of the semi-major axis of the Earth at the
%equator is 6378137 meters) gives 111319.9 meters/degree
% conv = 111319.9*3.28084; %feet in one degree
%The inconvenient of this one is the inaccuracy for the longitude
%conversion.

%Haversine formula (in radians) to get the conversion factors:
% -increment of latitude to feet
% -increment of longitude to feet
%It calculates the great-circle distance between two points, the shortest
%distance over the Earth’s surface.This is needed above all due to the
%decreasing distance between two meridians, that goes to zero when going
%to the poles, multiplied by the cosine of the latitude.
%The two previous conversions aren’t used.
% R_Earth = 6371e3*3.28084; %feet of Earth’s radius
%
% for ii=1:2
% if ii==1 %1 degree of latitude at the location of the airport
% %for example, the north, it could also have been south. For that,
% %put S where N is inside this if.
% lat1 = airport.latN;
% lat2 = airport.latN+1;
% long1 = airport.longN;
% long2 = airport.longN;
%
% else %1 degree of longitude at the location of the airport
% %for example, the north, it could also have been south. For that,
% %put S where N is inside this if.
% lat1 = airport.latN;
% lat2 = airport.latN;
% long1 = airport.longN;
% long2 = airport.longN+1;
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% end
%
% ilat = lat2-lat1;
% ilong = long2-long1;
% iphi = ilat*pi/180; %in radians
% ilambda = ilong*pi/180; %in radians
%
% a = (sin(iphi/2))^2+cos(lat1*pi/180)*cos(lat2*pi/180)*(sin(ilambda/2))^2;
% c = 2*atan2(sqrt(a),sqrt(1-a));
% d = R_Earth*c;
%
% if ii==1
% convlat = d; %feet in a degree of latitude at that location
% else
% convlong = d; %feet in a degree of longitude at that location
% end
% end

%The value of convlat and convlong could is implemented as the fixed value
%obtained instead of running the previous lines every time
convlat = 364812.76;
convlong = 246631.93;

%Data from struct airport:
incrthetaG = airport.incrthetaG; %degrees of cones in vertical plane
xGSr = airport.xGSr; %distance between GS and runway in x axis
yGSr = airport.yGSr; %distance between GS and runway in y axis

incrthetaL = airport.incrthetaL; %degrees of cones in horizontal plane
xLOCr = airport.xLOCr; %distance between LOC and runway in x axis
yLOCr = airport.yLOCr; %distance between LOC and runway in y axis

incrlat = airport.latN-airport.latS;
incrlong = airport.longS-airport.longN;

if lat(1)>airport.latN
latr = airport.latS; %degrees in second extreme of the runway, the south
longr = airport.longS; %degrees in second extreme of the runway, longitude
yGSr = -airport.yGSr;
%At least in KSEA, glideslope is at the right going to north and at the
%left going to south
altgs = airport.zGSaN;
SN = -1; %it indicates that it doesn’t go from South to North

else
latr = airport.latN; %degrees in second extreme of the runway, the north
longr = airport.longN; %degrees in second extreme of the runway, longitude
altgs = airport.zGSaS;
SN = 1; %it indicates that it goes from South to North

end

%% Runway in feet
xr = [0,incrlat*convlat]; %points that define the runway
yr = [0,incrlong*convlong]; %points that define the
zr = [0,0]; %this would be elevation if it was in MSL instead of AGL
delta = abs(atand(diff(yr)/diff(xr)));

%% Aircraft in feet
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xa = abs(lat-latr)*convlat; %of the aircraft
ya = SN*(long-longr)*convlong; %of the aircraft
za = zeros(1,length(altmsl)); %of the aircraft

runw = 0; %it starts in the air, no in the runway
for ii=1:length(altmsl)

if altagl(ii)>15 && runw==0
za(ii) = altmsl(ii)-altgs; %to avoid the interference of buildings

else
za(ii) = altagl(ii); %because not having the runway profile
runw = 1; %this is needed, because the runway
%profile varies and without this paraeter, it would return the take
%the first value of za instead of this one once it has touchdown.

end
end

xv = 1:length(xa);

%% Vertical plane with initial point in the GS (glideslope)
vdeg = sort([3-incrthetaG,3+incrthetaG]); %limit of vertical lanes
%sort orders the elements of a vector in ascending order

xGS = xr(2)-xGSr*cosd(delta)+yGSr*sind(delta); %Location of GS

vdegair = atand(za./(xa-xGS)); %degrees of aircraft in vertical plane as to GS

%VERTICAL LANES
Vlanev = zeros(1,length(vdegair));
for ii = 1:length(vdegair) %for every component of vdegair

jj = 1;
found = 0;
while jj<=length(vdeg)-1 && found==0 %for every component of possible values

if jj==1 && vdegair(ii)<vdeg(1)
Vlanev(ii) = 1; %in the first lane, the lowest
found = 1; %to stop searching and save time and operations

elseif vdegair(ii)>=vdeg(jj) && vdegair(ii)<=vdeg(jj+1)
Vlanev(ii) = jj+1;
found = 1; %to stop searching and save time and operations

elseif jj==length(vdeg)-1 && vdegair(ii)>vdeg(jj+1)
Vlanev(ii) = jj+2; %in the last lane, the highest
found = 1; %to stop searching and save time and operations

end
jj = jj+1; %update index

end
end

%Height of transition (from approach to flare)
ht = 15; %feet AGL. According to the FAA, 10-20 feet AGL
xh = [0,xa(end)+2];
zh = [ht,ht];

Vlanev(za<ht) = length(vdeg)/2+1; %it is is under ht, it is practically on
% the runway, the central vertical lane
% approximation

%% Horizontal plane changes with initial point in the LOC (localizer)
hdeg = sort([-incrthetaL,incrthetaL]); %limit of horizontal lanes
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%sort orders the elements of a vector in ascending order

xLOC = xr(1)-xLOCr*cosd(delta); %Location of LOC (negative, behind
%the origin point in the near extreme of the runway
yLOC = yr(1)-yLOCr; %In general, it is zero, because of being aligned

hdegair = atand((ya-yLOC)./(xa-xLOC)); %degrees of aircraft in horizontal
%plane according to GS

%HORIZONTAL LANES
Hlanev = zeros(1,length(hdegair));
for ii = 1:length(hdegair) %for every component of hdegair

jj = 1;
found = 0;
while jj<=length(vdeg)-1 && found==0 %for every component of possible values

if jj==1 && hdegair(ii)<hdeg(1)
Hlanev(ii) = 1; %in the first lane, the most to the left
found = 1; %to stop searching and save time and operations

elseif hdegair(ii)>=hdeg(jj) && hdegair(ii)<=hdeg(jj+1)
Hlanev(ii) = jj+1;
found = 1; %to stop searching and save time and operations

elseif hdegair(ii)>=hdeg(jj+1)
Hlanev(ii) = jj+2; %in the last lane, the most to the right
found = 1; %to stop searching and save time and operations

end
jj = jj+1; %update index

end
end

9.3.3 landingcoordstostate.m

Inside the definition of the world where the project takes form, it is needed to transform parameters to a state
that can be controlled by the main software of this toolbox.

Code 9.7 landingcoordstostate.m.

function s = landingcoordstostate(x,Hlane,Vlane,pitch_r,roll_r,head_r,...
T_r,V_,mdp_params)

% Utility function for converting coordinates to state indices.
%x: position in that step of time, x=1 in the first iteration (latitude)
%pitch_r: coordinate of ratio of deflection of elevator discretised
%roll_r: coordinate of ratio of deflection of ailerons discretised
%head_r: coordinate of ratio of deflection of rudder discretised
%T_r: coordinate of ratio of throttle discretised
%V_: indicated airspeed converted to coordinate
%mdp_params.Hlanes: number of possible horizontal lanes (longitude)
%mdp_params.Vlanes: number of possible vertical lanes (altitude)
%mdp_params.pitchrs: number of possible pitch ratios
%mdp_params.rollrs: number of possible roll ratios
%mdp_params.headrs: number of possible heading ratios
%mdp_params.Trs: number of possible throttle ratios
%mdp_params.Vs: number of possible indicated airspeed

%To a better understanding of why these expressions have been obtained like
%that, see the memory of the project.
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s = (x-1)*mdp_params.Hlanes*mdp_params.Vlanes*mdp_params.pitchrs*...
mdp_params.rollrs*mdp_params.headrs*mdp_params.Trs*mdp_params.Vs...

+ (Hlane-1)*mdp_params.Vlanes*mdp_params.pitchrs*mdp_params.rollrs*...
mdp_params.headrs*mdp_params.Trs*mdp_params.Vs...

+ (Vlane-1)*mdp_params.pitchrs*mdp_params.rollrs*mdp_params.headrs*...
mdp_params.Trs*mdp_params.Vs...

+ (pitch_r-1)*mdp_params.rollrs*mdp_params.headrs*mdp_params.Trs*...
mdp_params.Vs...

+ (roll_r-1)*mdp_params.headrs*mdp_params.Trs*mdp_params.Vs...
+ (head_r-1)*mdp_params.Trs*mdp_params.Vs...
+ (T_r-1)*mdp_params.Vs...
+ (V_);

end

9.4 IRL Toolkit

These are the codes for the created environment that are executed together with the IRL Toolkit.
There are two unfinished functions: landingfeatures.m and landingbuild.m which are not included here

but they can be found in the attachments.

9.4.1 landingcoordstostate.m

It is the same as Subsection 9.3.3

9.4.2 landingstatetocoords

Inside the definition of the world where the project takes form, it is needed to transform state into parameters
to get a vision of the main characteristics of the object in each step of time.

Code 9.8 landingstatetocoords.m.

function [x,Hlane,Vlane,pitch_r,roll_r,head_r,T_r,V_] = ...
landingstatetocoords(s,mdp_params)

% Utility function for coverting state indices to coordinates.
% See landingcoordstostate to understand how s has been created from
% coordinates. It is easier to understand in that way and then try with this
%x: position in that step of time, x=1 in the first iteration (latitude)
%pitch_r: coordinate of ratio of deflection of elevator discretised
%roll_r: coordinate of ratio of deflection of ailerons discretised
%head_r: coordinate of ratio of deflection of rudder discretised
%T_r: coordinate of ratio of throttle discretised
%V_: indicated airspeed converted to coordinate
%mdp_params.Hlanes: number of possible horizontal lanes (longitude)
%mdp_params.Vlanes: number of possible vertical lanes (altitude)
%mdp_params.pitchrs: number of possible pitch ratios
%mdp_params.rollrs: number of possible roll ratios
%mdp_params.headrs: number of possible heading ratios
%mdp_params.Trs: number of possible throttle ratios
%mdp_params.Vs: number of possible indicated airspeed

x = ceil(s/(mdp_params.Hlanes*mdp_params.Vlanes*mdp_params.pitchrs*...
mdp_params.rollrs*mdp_params.headrs*mdp_params.Trs*mdp_params.Vs));

s = s - (x-1)*(mdp_params.Hlanes*mdp_params.Vlanes*mdp_params.pitchrs*...
mdp_params.rollrs*mdp_params.headrs*mdp_params.Trs*mdp_params.Vs);

Hlane = ceil(s/(mdp_params.Vlanes*mdp_params.pitchrs*mdp_params.rollrs*...
mdp_params.headrs*mdp_params.Trs*mdp_params.Vs));
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s = s -(Hlane-1)*(mdp_params.Vlanes*mdp_params.pitchrs*...
mdp_params.rollrs*mdp_params.headrs*mdp_params.Trs*mdp_params.Vs);

Vlane = ceil(s/(mdp_params.pitchrs*mdp_params.rollrs*mdp_params.headrs*...
mdp_params.Trs*mdp_params.Vs));

s = s - (Vlane-1)*(mdp_params.pitchrs*mdp_params.rollrs*...
mdp_params.headrs*mdp_params.Trs*mdp_params.Vs);

pitch_r = ceil(s/(mdp_params.rollrs*mdp_params.headrs*mdp_params.Trs*...
mdp_params.Vs));

s = s - (pitch_r*-1)*(mdp_params.rollrs*mdp_params.headrs*...
mdp_params.Trs*mdp_params.Vs);

roll_r = ceil(s/(mdp_params.headrs*mdp_params.Trs*mdp_params.Vs));
s = s - (roll_r*-1)*(mdp_params.headrs*mdp_params.Trs*mdp_params.Vs);
head_r = ceil(s/(mdp_params.Trs*mdp_params.Vs));
s = s - (head_r*-1)*(mdp_params.Trs*mdp_params.Vs);
T_r = ceil(s/(mdp_params.Vs));
s = s - (T_r*-1)*(mdp_params.Vs);
V_ = s;
end

9.4.3 coordstoratios.m

This function is needed to convert the coordinates (defined by the state and action indicated by the IRL
algorithm) to ratios that will be introduced in X-Plane.

Code 9.9 coordstoratio.m.

function [pitchr,rollr,headr,Tr,V] = ...
coordstoratios(pitch_r,roll_r,head_r,T_r,V_,ini,last,divisions,inis,lasts)

%Function for converting from components of the possible values to ratios
%and speed

%% Coords to ratios discretised to the possible ones
%Generalizing for a number of possible pitch_r such as pitchrs and [ini,last]:
%ini*a+b=1 %the first possible value of pitch_r
%last*a+b=pitchrs %the last possible value of pitch_r
%Subtracting: (last-ini)*a=pitchrs-1, a=(pitchrs-1)/(last-ini) and therefore,
%b=1-a*ini; b=1-ini*(pitchrs-1)/(last-ini)-, b=(last-ini*pitchrs)/(last-ini);
%It is going to be considered the same number of possible ratios of all
%variables: pitchrs=rollrs=headrs=Trs=divisions
%Now the conversion is the inverse, extracting the ratios discretised

%The last abstraction would be converting and having different ranges of
%each variable or/and different number of possible values of each variable
%It is a future improvement

a = (divisions-1)/(last-ini);
b = 1-ini*(divisions-1)/(last-ini);

pitchr = (pitch_r-b)/a;
rollr = (roll_r-b)/a;
headr = (head_r-b)/a;
Tr = (T_r-b)/a;

%% Speed: an approximation, the important parameters are the previous actions
%X-Plane will present more accurate data after implementing the actions
vects = (inis:(lasts-inis)/(divisions-1):lasts);
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V = zeros(1:length(length(V_)));
%It is going to be associated the inferior value always in this case
for ii = 1:length(V_) %for every component of V_

V(ii)=vects(V_(ii));
end
end

9.4.4 landingdefaultparams.m

Code 9.10 landingdefaultparams.m.

function mdp_params = landingdefaultparams(mdp_params)
% Fill in default parameters for the landingworld example.

ini = -1; %initial point of the range
last = 1; %last point of the range
divisions = 21; %number of possible values in the range
%201 with range [-1,1] and step of 0.01
%Another good option would be 21: [-1,1] and step of 0.1
%This first method allows to discretise variables to have less values. It
%is useful if the discretisation is approximately logical and simplifies
%the result (a correct combination of ini, last, divisions; according to
%the original values, such as the two options presented).

inis = 0; %initial value of the range of airspeed indicated
lasts = 200; %last value of the range of airspeed indicated
%for speed, the initial value doesn’t reach 200knots and the last is 0knots
%It is considered the same number of divisions, but this divisions are now
%limits of the segments
%This second method is useful to take directly the component of the possible
%values of a parameter. The difference is that with that, the variable
%isn’t discretised. While the first one gives divisions as the number of
%possible values, in this one, they are one possible value less due to be
%between two consecutive values. (SEE the paper of the project to
%understand it better).
%If the values outside the range are also considered, the number of
%components of possible values are 2 more than the provided by the
%first method. This is applied for the horizontal and vertical lanes
%related to longitude and altitude.

% AIRPORT
%If in the airport there aren’t glideslope or localizer, set the data
%of where they would be optimally: the point to touchdown and the point
%where to locate the origin point of horizontal guide

%Information of the north extreme
airport.rWNS = ’16R’; %name of runway from North to South
airport.latN = 47.46384; %latitude
airport.longN = -122.31785; %longitude
airport.elevN = 330.33; %altitude MSL, it isn’t used
airport.zGSaN = 351.79; %altitude MSL glideslope in north

%Information of the south extreme
airport.rwSN = ’34L’; %name of runway from South to North
airport.latS = 47.44056; %latitude
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airport.longS = -122.31808; %longitude
airport.elevS = 353; %altitude MSL, it isn’t used
airport.zGSaS = 359.86; %altitude MSL glideslope in south

%Runway given by two points in its central line:
airport.lr = 8500; %the longitudinal length of runway
airport.wr = 150; %width of runway

%Localizer
airport.xLOCr = 800; %distance between the extreme of runway and the LOC
airport.yLOCr = 0; %distance between the axis of runway and the LOC
airport.zLOC = 0; %altitude AGL
airport.incrthetaL = [1.5,3]; %degrees from the central line of the cone(s)
% try to put a difference such as the space created is equally distributed
% between cones, for example: incrthetaL=[1,3] gives an interior cone of 2
% degrees and a exterior one of 6 degrees in total
%[1.5,3] is what gives the most similar result to what X-Plane uses, and
%determines 5 lanes: under the lowest line, between the lower lines of
%the cones, the central zone, between the upper lines of the cones and
%above the uppest line

%Glideslope
airport.xGSr = 793; %distance between the extreme of runway and the GS
airport.yGSr = 175; %distance between the axis of runway and the GS
airport.zGS = 0; %altitude AGL
airport.incrthetaG = [0.25,0.7]; %degrees from the central line of the cone(s)
% try to put a difference such as the space created is equally distributed
% between cones, for example: incrthetaG=[1,3] gives an interior cone of 2
% degrees and a exterior one of 6 degrees in total
%[0.25, 0.7] is what gives the most similar result to what X-Plane uses, and
%determines 5 lanes: under the lowest line, between the lower lines of
%the cones, the central zone, between the upper lines of the cones and
%above the uppest line

Hlanes = incrthetaL*2+1;
Vlanes = incrthetaG*2+1;

% Create default parameters.
default_params = struct(...

’seed’,0,... %initialization for random seed
’ini’,ini,... %initial point of the range of all ratios
’last’,last,... %last point of the range of all ratios
’inis’,inis,... %initial point of the range of indicated airspeed
’lasts’,lasts,... %last point of the range of indicated airspeed
’length’,50,... %number of iterations considered in a segment
’Hlanes’,Hlanes,... %number of possible horizontal lanes (longitude)
’Vlanes’,Vlanes,... %number of possible vertical lanes (altitude)
’pitchrs’,divisions,... %number of possible pitch ratios
’rollrs’,divisions,... %number of possible roll ratios
’headrs’,divisions,... %number of possible heading ratios
’Trs’,divisions,... %number of possible T ratios
’Vs’,divisions-1,... %number of possible indicated airspeeds
’airport’,airport,... %data about runway, glideslope and localizer
’continuous’,0,... %discrete (0) or continuous (1)
’determinism’,1.0,... %probability of correct transition
’discount’,0.9); %temporal discount factor to use
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% Set parameters.
mdp_params = filldefaultparams(mdp_params,default_params);



Attachments

This chapter contains the management of attachments. While this memory can be found in its digital
version in a file of extension .pdf in the general, the rest of files are organized in folders:

• X-Plane software, with the installation files of demo versions X-Plane 10 and X-Plane 11, as well as
the aircraft employed in this project: A380.

• XPlaneConnect-master, which comprehends:

– Folders of the toolkit in different languages and files for testing the different contents in
\ TestScripts. For the present document only MATLAB is used.

* Inside MATLAB, some simple examples are found, the inner functions described in Sec-
tion 5.2 and the folder landing with all what has been developed for this project.

· Landing specifically contains the SERP3nmiapp.m, Original data taken from X-Plane,
which has got several modifications explained in a README inside the folder, to
become the data that is in Correct data. This is the one copied into landing_demos
folder of IRL Toolkit and which the machine is supposed to process in order to learn the
reward function R. The last file is SERP3nmiappML.m which receives in real time the
data extracted from X-Plane and implements in the simulator the actions generated by
the IRL algorithm after processing the data with the learn reward and policy functions.

• IRL-Toolkit-master which has been deeply explained in Chapter 7.

• Papers, with all the important previous investigations, and interesting slides and lectures of Stanford
and Berkeley.

The general perspective is in Figure 9.1, and the respective detailed views of the folders XPlaneConnect-
master and IRL-Toolkit-master are in Chapter 5 and Chapter 7.

Figure 9.1 General directory of attachments.
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ADF-NDF Automatic Directional Finding/Non Directional Beacon

ADIRS Air Data and Inertial Reference System

AGL Above Ground Level

AI Artificial Intelligence

ANN Artificial Neural Networks

DH Decision height

DL Deep Learning

DME Distance Measuring Equipment

ETSI Escuela Técnica Superior de Ingeniería

FAA Federal Aviation Administration

FMC Flight Management Computer

FMS Flight Management System

G/S Glideslope

GBAS Ground Based Augmentation System

GNSS Global Navigaton Satellite System

GPIRL Gaussian Process Inverse Reinforcement Learning

GPS Global Position System

ILS Instrument Landing System

IMC Instrument Meteorological Condition

IOC Inverse Optimal Control

IRL Inverse Reinforcement Learning

KSEA Seattle-Tacoma International Airport (ICAO code)

LAAS Local Area Augmentation System

LOC Localizer

MDP Markov Decision Process

ML Machine Learning
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MLS Microwave Landing System

NASA National Aeronautics and Space Administration

RL Reinforcement Learning

RNAV Area Navigation

RNP Required Navigation Performance

RVR Runway Visual Range

TLS Transponder Landing System

U.S. NAS United States National Airspace System

UDP User Datagram Protocol

US Universidad de Sevilla

VHF Very High Frequency

VMC Visual Meteorogical Conditions

VNAV Vertical Navigation

VOR Very High Frequency Omnidirectional Range

WAAS Wide Area Augmentation System

WOW Weight On Wheels

XPC X-Plane Connect
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