
ADDR[0]
ADDR[1]
ADDR[2]
ADDR[3]

A0
A1
A2
A3

DIN[1]

RAM 16x1

WE

O

D

A0
A1
A2
A3

WCLK

DEC 2:4

EN

I0 O0
O1

RAM 16x1

WE

O

D

A0
A1
A2
A3

WCLK

RAM 16x1

WE

O

D

A0
A1
A2
A3

WCLK

RAM 16x1

WE

O

D

A0
A1
A2
A3

WCLK

CLOCK

DIN[0]

CLOCK

DIN[1] DIN[0]

WE

CLOCK CLOCK

ADDR[4]

ADDR[4]

DOUT[0]

DOUT[1]

ADDR[0]
ADDR[1]
ADDR[2]
ADDR[3]

ADDR[0]
ADDR[1]
ADDR[2]
ADDR[3]

ADDR[0]
ADDR[1]
ADDR[2]
ADDR[3]

RAM 32x2
DIN[1:0]

WE

CLOCK

DOUT[1:0]

ADDR[4:0]

Figure 1. LUT-based implementation of a RAM 32x2: (a) block diagram and (b) schematic

(a) (b)

FPGA-Based Implementation of RAM with
Asymmetric Port Widths for Run-Time

Reconfiguration
R. Senhadji-Navarro, I. García-Vargas, G. Jiménez-Moreno, A. Civit-Balcells

Dpto. Arquitectura y Tecnología de Computadores
Universidad de Sevilla, Sevilla (España)

raouf@atc.us.es

Abstract— In this paper, we present a HDL description of a
RAM with asymmetric port widths which allows read and
write operations with different data size. This RAM is suitable
for implementing run-time reconfigurable systems in FPGA.
The proposed RAM specification has been tested with different
target devices.

I. INTRODUCTION

In spite of the idea of reconfigurable logic is not novel,
the growing interest on reconfigurable systems in recent
years have been motivated basically by the partial dynamic
reconfiguration capabilities of new Field Programmable Gate
Array (FPGA) devices [1, 2]. The partial dynamic
reconfiguration allows reprogram selected areas of an FPGA
after its initial configuration, while the remainder areas
continue in operation. This solution presents some
disadvantages: the reprogramming cost (e.g. size of
reconfiguration data or reconfiguration latency) is high, the
reconfiguration depends on the placement and routing of the
circuit and the reconfiguration sequences must be generated
as a technology-dependent bitstreams. Moreover, not all
FPGA devices support dynamic reconfiguration.

An alternative scheme to design reconfigurable systems
is to use memory-based implementations. As the
functionality of the circuit is defined by the RAM content, it

can be changed by reloading the RAM. This alternative
saves the technology dependence problem mentioned above
due to the independence of the RAM content and its
implementation. In the last years, different models of
Reconfigurable Finite State Machines (RFSM) using
memory-based implementation have been proposed [1, 2, 3].
These RFSM implementations require dual-port capabilities:
one read and one write port. The first one is used for normal
machine operation and the second one for the
reconfiguration process. The width of the read port is
determined by the FSM description and depends on the
number of outputs and states [4]. However, the write port
width depends on the architecture of the reconfigurator
system, e.g. a microprocessor, and the strategy of
reconfiguration (to modify a state, a transition, an output,
etc.). Thus, the data size of read and write operations must be
different. The availability of RAM with asymmetric port
widths (asymmetric RAM) is useful to implement
memory-based reconfigurable systems.

A RAM memory is implemented in FPGA by using
smaller memories connected via multiplexors and decoders.
Fig. 1 shows an implementation on a Xilinx FPGA of a
RAM with 32 words of two bits each using look-up tables
(LUT). This manufacturer allows RAM implementation
using either RAM blocks or LUTs configured as basic RAM

This work has been partially supported by the Spanish Government under project TEC2006-11730-C03-02

memories (distributed RAM).

Usually, CAD tools inference RAM memories from HDL
description, but the read and write port widths must be equal
(symmetric RAM). This kind of memory is widely used in
system-on-chip; however, it is not suitable for
memory-based reconfigurable architectures. On the other
hand, CAD tools allow architectural descriptions or provide
GUI facilities to synthesize asymmetric RAMs. The Xilinx
CoreGen tool [5] can be used to implement asymmetric
RAMs using memory blocks. However, distributed RAM
with asymmetric port widths can not be generated.

The use of a specific HDL architectural description for
each asymmetric RAM design is tedious and makes difficult
its reusability and scalability. On the other hand, the GUI
alternative presents some disadvantages: it is not adequate
for script-based design flows, and it requires a separate tool
to generate and regenerate the RAM. In addition, the
technology-dependent implementation generated by tools
like CoreGen may complicate the portability to different
devices.

To save these problems the authors present a generic
VHDL description with the aim of easy the implementation
of asymmetric RAMs.

II. IMPLEMENTATION OF RAM WITH ASYMMETRIC
WIDTH PORTS

The proposed VHDL architectural description (called
ASYMRAM) and the schematic are shown in Fig. 2 and
Fig. 3, respectively. The ASYMRAM component can be
used as symmetric and asymmetric RAM. The high-level
entity consists of one decoder and a set of basic RAM
components and multiplexors. The multiplexor and the
decoder description use a generic VHDL behaviour
description. The basic RAM component depends on the
specific device. So, it must be described by the designer for
each specific manufacturer using the appropriate primitive or
VHDL behaviour description. This component models a
dual-port RAM with a configurable depth and width. In
order to support ASYMRAM initialization via signal, the
basic RAM component must be designed with this feature.

The RAM specification achieves a high degree of
portability and flexibility by hiding the specific device
architecture. Fig. 4 shows the basic RAM entity (Fig. 4-a)
and different architectures for Xilinx FPGA devices: using 4-
input LUTs (Fig. 4-b), 6-input LUTs available in new
Virtex-5 devices (Fig. 4-c), and SelectRAM blocks (Fig. 4-
d). Each case uses the appropriate available resource.

III. EXPERIMENTAL RESULTS

With the aim of showing the feasibility and the usefulness
of ASYMRAM, it has been implemented using Xilinx ISE
7.1. We have tested ASYMRAM configured as both
symmetric and asymmetric RAM with different target
devices.

entity asymram is
 generic(
 raw : natural:=13; -- read address width
 rdw : natural:=4; -- read data width
 waw : natural:=12; -- write address width
 wdw : natural:=8; -- write data width
 baw : natural:=12; -- basic_ram address width
 bdw : natural:=4; -- basic_ram data width
 init : bit_vector:="0"); -- initial ram content

 port(
 clk : in std_logic;
 we : in std_logic;
 raddr : in std_logic_vector(raw-1 downto 0);
 waddr : in std_logic_vector(waw-1 downto 0);
 din : in std_logic_vector(wdw-1 downto 0);
 dout : out std_logic_vector(rdw-1 downto 0));

end asymram;

architecture architectural of asymram is
 component basic_ram ...
 component mux is ...
 component dec is ...

 ...
 type bout_t is array (0 to 2**(raw-baw)*(rdw/bdw)-1)
 of std_logic_vector(bdw-1 downto 0);

 signal bout: bout_t;
 type muxin_t is array (0 to rdw-1)
 of std_logic_vector(2**(raw-baw)-1 downto 0);

 signal muxin : muxin_t;
 signal decout : std_logic_vector(2**(waw-baw)-1 downto 0);
 signal we_i : std_logic_vector(2**(waw-baw)-1 downto 0);
 type init_t is array (0 to (2**(raw-baw))*rdw-1)
 of bit_vector(bdw*2**baw-1 downto 0);

 function initialize_ram return init_t is
 ...

 end function initialize_ram;
 constant init_i : init_t := initialize_ram;
begin
 BRAM0: for i in 0 to 2**(raw-baw)*(rdw/bdw)-1 generate
 we_i(i*bdw/wdw) <= we and decout(i*bdw/wdw);
 BRAM1: basic_ram

 generic map(baw=>baw, bdw=>bdw, init=>init_i(i))
 port map(clk => clk,
 we => we_i(i*bdw/wdw),
 ra => raddr(raw-1 downto raw-baw),
 wa => waddr(waw-1 downto waw-baw),
 di => din(((i mod (wdw/bdw)) + 1) * bdw - 1

 downto (i mod (wdw/bdw)) * bdw),
 do => bout(i));

 end generate BRAM0;
 MUX0: if raw > baw generate
 MUX1: for j in 0 to rdw-1 generate

 MUX2: mux generic map(raw-baw)
 port map(inputs => muxin(j),

 control => raddr(raw-baw-1 downto 0),
 output => dout(j));

 end generate MUX1;
 WIRE0: for i in 0 to 2**(raw-baw)*(rdw/bdw)-1 generate

 WIRE1: for j in 0 to bdw-1 generate
 muxin(j+bdw*(i mod (rdw/bdw)))(i*bdw/rdw)

 <= bout(i)(j);
 end generate WIRE1;

 end generate WIRE0;
 end generate MUX0;
 NULLMUX0: if raw<=baw generate
 NULLMUX1: for i in 0 to rdw/bdw generate

 dout((i+1)*bdw-1 downto i*bdw) <= bout(i);
 end generate NULLMUX1;

 end generate NULLMUX0;
 DEC0: if waw>baw generate
 DEC1: dec generic map(waw-baw)

 port map(inputs => waddr(waw-baw-1 downto 0),
 outputs => decout);

 end generate DEC0;
 NULLDEC0: if waw<=baw generate
 decout <= (others=>'1');

 end generate NULLDEC0;
end architectural;

Figure 2. ASYMRAM VHDL description

As Xilinx do not provide HDL templates to infer
asymmetric RAM [6], only symmetric RAMs with different
depth have been synthesized in order to compare
ASYMRAM with Xilinx HDL templates. For all test cases,
the maximum operation frequency is the same in both
implementations. However, the number of resources used
differs: ASYMRAM spents less number of LUTs than the
Xilinx HDL template for RAMs with more than 128 words
(Fig. 5). These differences are due to the decoding logic
implementation. Fig. 6 shows the VHDL code of
ASYMRAM decoder.

IV. CONCLUSIONS

This paper presents a VHDL description of asymmetric
RAM. The lack of VHDL templates or library components
to generate asymmetric memories makes difficult its use in
FPGA-based designs. This is especially interesting to
develop memory-based reconfigurable systems. The
asymmetric RAM has been designed to allow the portability

to different devices and the use of different memory
resources. The feasibility and the correctness of the proposed
specification have been tested with different target devices.

REFERENCES
[1] M. Boden, M. Koegst, J.L. Tiburcio-Badia, S. Rulke, ‘Cost-Efficient

Implementation of Adaptive Finite States Machines’, Proceedings of
the EUROMICRO Symposium on Digital System Design (DSD’04),
pp. 144-151, Rennes (France), 2004

[2] V. Sklyarov, ‘Reconfigurable models of finite state machines and
their implementation in FPGAs’. Journal of Systems Architecture, 47,
2002, pp. 1043-1064.

[3] J. Teich, M Köster, ‘(Self-)reconfigurable Finite State Machines:
Theory and Implementation’, Proceedings of the International
Conference on Design Automation and Test in Europe (DATE’02),
pp 559-567, Paris (France), March, 2002

[4] R. Senhadji-Navarro, I. García-Vargas, G. Jimenez-Moreno and A.
Civit-Ballcels ‘ROM-based FSM implementation using input
multiplexing’, Electronics Letters, Vol. 40, N. 20, September 2004

[5] Xilinx, Inc. (www.xilinx.com)
[6] Xilinx, Inc.: ‘XST User Guide’

DOUT[0:bdw-1]

… …

…

…

…

…

… …

…

DOUT[wdw-bdw:wdw-1] DOUT[rdw-wdw:rdw-wdw+bdw-1] DOUT[rdw-bdw:rdw-1]

RADDR[0:raw-baw-1]

DEC waw-baw:2waw-bawEN

WADDR[0:waw-baw-1]

I

WE

WE

DO
RA

WA
DI

WE

DO
RA

WA
DI …

DIN[wdw-bdw:wdw-1]

WE

DO
RA

WA
DI

WE

DO
RA

WA
DI… …

WE

DO
RA

WA
DI

WE

DO
RA

WA
DI …

WE

DO
RA

WA
DI

WE

DO
RA

WA
DI…

WADDR[waw-baw:waw-1]

Figure 3. ASYMRAM schematic

 O[0]…O[wdw/bdw-1] … O[bn-wdw/bdw]…O[bn-1]

RADDR[raw-baw:raw-1]

DIN[0:bdw-1]

DIN[wdw-bdw:wdw-1]

DIN[0:bdw-1]

DIN[wdw-bdw:wdw-1]

DIN[0:bdw-1]

DIN[wdw-bdw:wdw-1]

DIN[0:bdw-1]

entity basic_ram is
 generic(baw: natural:=4;

 bdw: natural:=1;
 init: bit_vector:="0000000000000000");

 port(clk: in std_logic;
 we: in std_logic;
 ra: in std_logic_vector(baw-1 downto 0);
 wa: in std_logic_vector(baw-1 downto 0);
 di: in std_logic_vector(bdw-1 downto 0);
 do: out std_logic_vector(bdw-1 downto 0));

end basic_ram;

 (a)
architecture architectural of basic_ram is
begin
 RAM16X1D_inst : RAM16X1D
 generic map (

 INIT => init)
 port map (

 DPO => do(0), -- Port B 1-bit data output
 A0 => wa(0), -- Port A address[0] input bit
 ...
 A3 => wa(3), -- Port A address[3] input bit
 D => di(0), -- Port A 1-bit data input
 DPRA0 => ra(0), -- Port B address[0] input bit
 ...
 DPRA3 => ra(3), -- Port B address[3] input bit
 WCLK => clk, -- Port A write clock input
 WE => we); -- Port A write enable input

end architectural;

 (b)
architecture architectural of basic_ram is
begin
 RAM64X1D_inst : RAM64X1D
 generic map (

 INIT => init)
 port map (

 DPO => do(0), -- Port B 1-bit data output
 A0 => wa(0), -- Port A address[0] input bit
 ...
 A4 => wa(4), -- Port A address[4] input bit
 D => di(0), -- Port A 1-bit data input
 DPRA0 => ra(0), -- Port B address[0] input bit
 ...
 DPRA4 => ra(4), -- Port B address[4] input bit
 WCLK => clk, -- Port A write clock input
 WE => we); -- Port A write enable input

end architectural;

(c)
architecture architectural of basic_ram is
begin
 RAMB16_S4_S4_inst : RAMB16_S4_S4
 generic map (

 INIT_00 => init(255 downto 0),
 INIT_01 => init(511 downto 256),
 ...)

 port map (
 DOA => do, -- Port A 4-bit Data Output
 ADDRA => ra, -- Port A 12-bit Address Input
 ADDRB => wa, -- Port B 12-bit Address Input
 CLKA => clk, -- Port A Clock
 CLKB => clk, -- Port B Clock
 DIA => "0000", -- Port A 4-bit Data Input
 DIB => di, -- Port B 4-bit Data Input
 ENA => '1', -- Port A RAM Enable Input
 ENB => '1', -- Port B RAM Enable Input
 SSRA => '0', -- Port A Synchronous Set/Reset Input
 SSRB => '0', -- Port B Synchronous Set/Reset Input
 WEA => '0', -- Port A Write Enable Input
 WEB => we); -- Port B Write Enable Input

end architectural;

(d)
Figure 4. Basic RAM component description: (a) VHDL entity, (b) 4-LUT,

(c) 6-LUT, and (d) SelectRAM 4Kx4

Figure 5. Area occupation of distributed RAM 2n×8: ASYMRAM vs
Xilinx HDL template

entity dec is
generic(n: natural:=2);
port(
inputs: in std_logic_vector(n-1 downto 0);

 outputs: out std_logic_vector(2**n-1 downto 0));
end dec;

architecture behavioral of dec is

function decode(inputs : std_logic_vector(n-1 downto 0))
return std_logic_vector is
 variable outputs : std_logic_vector(2**n-1 downto 0);
begin

 outputs := (others=>'0');
outputs(conv_integer(inputs)) := '1';

 return outputs;
 end decode;

begin
 outputs <= decode(inputs);
end behavioral;

Figure 6. ASYMRAM decoder VHDL description

