
The DBSCAN Clustering Algorithm on
P Systems

György Vaszil

Department of Computer Science, Faculty of Informatics
University of Debrecen
Kassai út 26, 4028 Debrecen, Hungary
vaszil.gyorgy@inf.unideb.hu

Summary. We show how to implement the DBSCAN clustering algorithm (Density
Based Spatial Clustering of Applications with Noise) on membrane systems using evolu-
tion rules with promoters and priorities.

1 Introduction

Clustering is the process of partitioning elements of a dataset according to some
similarity measure in such a way that elements in the same cluster are similar,
elements in different clusters are dissimilar. Clustering analysis is widely used in
several areas of data mining as a tool to discover implicit patterns and deduce
knowledge based on the data, or it can also be used for preprocessing before the
application of other algorithms. The reader is referred to [3] for more details about
clustering, and the area of data mining in general.

The density based clustering of applications with noise (DBSCAN) clustering
algorithm was introduced in [2]. It clusters data points based on density (a point
is dense if it has many neighbors within a given radius. The algorithm can be
summarized in the following steps:

Input: A set of points, the neighborhood radius ε, and the density threshold
MinPts.

1. Mark all points “univisited”.
2. Pick an unvisited point p,

• change its mark to “visited”, and
• count the number of points in its ε neighborhood to see if it is a core point,

that is, if the number of points in its ε neighborhood is at least MinPts.
• If p is not a core point, mark it as “noise”, otherwise create C as a new

cluster and add p to C, together with those points in its ε neighborhood
which do not belong to any cluster yet.

172 György Vaszil

3. Pick an unvisited point p′ in C

• change the mark of p′ to “visited”,
• count the number of points in its ε neighborhood to see if it is a core point.
• If p′ is a core point, add those points to C in its ε neighborhood which do

not belong to any cluster yet.
• If there are unvisited points in C, go back to 3.

4. If there are unvisited points in the data set, go back to 2.

Output: The clustering result.

In the following we intend to give an implementation of this algorithm in terms
of P systems. The system will use evolution rules with promoters and priorities.
Our goal is to exploit the parallelism of P systems in order to parallelize, and thus,
to speed up the DBSCAN algorithm which in its original version works with O(n2)
time complexity on a sequential machine (where n is the number of points to be
clustered). On P systems, the running time can be reduced to O(n).

Ours is not the only proposal for clustering with P systems. As examples, see
[4], or see [9] for a so called k-nearest base clustering algorithm on P systems with
active membranes, and [8] for clustering with splicing P systems. Even a DBSCAN
algorithm implementation was already presented in [11], we believe however, that
our present proposal is conceptually simpler.

2 Preliminaries and Definitions

Let O be a finite nonempty set (the set of object) and N be the set of non-negative
integers. A multiset M (or an multiset M for short), over O is a pair (O, f), where
f : O → N is mapping which gives the multiplicity of each object a ∈ O. The set
supp(M) = {a ∈ O | f(a) > 0} is called the support of M . If supp(M) = ∅, then
M is the empty multiset. If a ∈ supp(M), then a ∈ M , and a ∈n M if f(a) = n.
In the following we represent a multiset M over O = {a1, . . . , ak} by the string

a
M(a1)
1 . . . a

M(ak)
k (or any of its permutations).

Membrane systems, or P systems, were introduced in [5] as computing mod-
els inspired by the functioning of the living cell. The main component of such a
system is a membrane structure with membranes enclosing regions as multisets of
objects. Each membrane has an associated set of operators working on the objects
contained by the region. These operators can be of different types, they can change
the objects present in the regions or they can provide the possibility of transferring
the objects from one region to another one. The evolution of the objects inside
the membrane structure from an initial configuration to a final configuration cor-
responds to a computation having a result which is derived from some properties
of the final configuration.

Several variants of the basic notion have been introduced and studied proving
the power of the framework, see the monograph [6] for a comprehensive introduc-

The DBSCAN Clustering Algorithm on P Systems 173

tion, the handbook [7] for a summary of notions and results of the area, and the
volumes [1, 10] for various applications.

An n + 3-tuple Π = (O,w1, . . . , wn, R1, . . . , Rn, ρ) is a P system of degree n,
where

• O is a finite set called the alphabet of objects Π;
• wi, 1 ≤ i ≤ n, is a finite multiset of objects containing the initial contents of

compartment i of Π;
• Ri, 1 ≤ i ≤ n, is a finite set of rules of the form u → v or u → v|α with

u, α ∈ O∗ and v ∈ O ∪ {here, in, out};
• ρ ⊂ R × R is a priority relation defined on the rules of R =

⋃
1≤i≤nRi which

may also be empty.

For a P system Π = (O,w1, . . . , wn, R1, . . . , Rn, ρ) as above, an n-tuple c =
(u1, . . . , un) with ui ∈ O∗ for each i, is called a configuration of Π and c0 =
(w1, . . . , wn) is called its initial configuration. The multisets u1, . . . , un are also
called the contents of compartments 1, . . . , n, in configuration c.

A P system changes its configurations by applying its rules in the so-called
maximally parallel manner. A multiset of rules from Ri for some 1 ≤ i ≤ n, as
given above, is applicable to a configuration c, if and only if the union of the
multisets on the lefthand sides of the rules is a submultiset of ui, the contents of
the ith region. As a result of applying the rules to c, each object of the multisets on
the righthand sides of the rules replace the objects on the lefthand side. Moreover,
if the objects are moved to the respective neighboring regions according to the
target indicators here, in, out. Rules multisets are applied in all regions in parallel,
producing a series of configuration changes.

We say that the configuration c′ = (v1, . . . , vn) of Π is obtained directly from
c = (u1, . . . , un) by applying the rules in a maximally parallel manner, if the rule
multisets applied in the regions are maximal, that is, by adding any rule to the
multiset, they are not applicable simultaneously any more. A rule of the form
x→ y|α is applicable only if α ∈ O∗ (the promoter mutiset) is a submutiset of the
respective region.

When the priority relation ρ is nonempty, we denote by r1 > r2 if (r1, r2) ∈ ρ,
that is, if a rule r1 has higher priority than r2. In such a case, r2 can only be
applied to configurations where r1 is not applicable.

A sequence of configurations c0, c1, . . . of Π, obtained directly from each other
and starting from the initial configuration, is called a computation. The compu-
tation halts if no rule can be applied in the current configuration. The result of a
halting computation are the multisets of objects in the compartments at halting.

3 Implementing the DBSCAN Algorithm

In order to perform the clustering algorithm, let us construct a P system Π =
(O, [], w,R, ρ) with

174 György Vaszil

O = {pi, p′i, pi,j?, pi,j , p′i,j , pcri , pnsi , pnsi,j?, pcri,j , pncri,j | 1 ≤ i, j ≤ n} ∪
{Ei, Hi | 1 ≤ i ≤ n} ∪ {A,B,C,D, F, F ′, F ′′}.

The objects of the form pi represent the n points of the data set. We assume that
we have a distance function d : {p1, . . . , pn}2 → N.

The initial contents of the system is the multiset

w = Ap1 . . . pn,

corresponding to the n points, and a synchronizing symbol A.
Now we present the rules of R and at the same time, describe the functioning

of the system. Let R = Rpick ∪ Rcehck ∪ Rmark ∪ Rcheck2 ∪ Rmark2, and let us
describe these rule sets as follows.

Rpick = {Api → Bp′i | 1 ≤ i ≤ n}.

Using the single occurrence of A, the application of one of these rules picks a point
pi for some 1 ≤ i ≤ n by changing it to its primed version p′i. Now, in the presence
of p′i, the system checks whether the ith point is dense, that is, whether it has
more than MinPts points in its ε neighborhood. This is achieved by the rules

Rcheck = {pk → Eipk,i?|Bp′i , p
ncr
k,j → Eip

ncr
k,j |Bp′i , p

ns
k → Eip

ns
k,i?|Bp′i | for

1 ≤ i, j, k ≤ n, such that d(pi, pk) < ε} ∪ {B → C}

where d(pi, pk) denotes the distance between the locations of the ith and the kth
points. The application of these rules produce a number of Ei objects which is
equal to the number of points that are in the ε neighborhood of the ith point.

Now we mark the point corresponding to p′i core or non-core, depending on the
number of its ε neighbors with the following rules. If m = MinPts, then we have

Rmark = {p′i → pcri |C(Ei)m > p′i → pnsi |C | 1 ≤ i ≤ n} ∪
{pj,i? → p′j,i|Dpcri , p

ns
j,i? → p′j,i|Dpcri | 1 ≤ i, j ≤ n} ∪

{pj,i? → pj |Dpns
i
, pnsj,i? → pnsj |Dpns

i
| 1 ≤ i, j ≤ n} ∪

{Ei → ε|C | 1 ≤ i ≤ n} ∪ {C → D,D → F}

where the symbol > shows the priority among the first group of rules in Rmark.
The rules here are used for two consecutive steps: First, the chosen point is marked
core or noise (based the number of points in its ε neighborhood) by changing p′i
to pcri or to pnsi depending on the number of Ei symbols that are present (these
were created in the previous step, their number corresponds to the number of
neighbors). Second, if the point is marked core, its ε neighborhood is also added
to this cluster (the cluster denoted by i).

The next group of rules serves to see if the recently created cluster (cluster i)
can be expanded further.

The DBSCAN Clustering Algorithm on P Systems 175

Rcheck2 = {pcrj,i → Hip
cr
j,i|Fp′k,i

, pncrj,i → Hip
ncr
j,i |Fp′k,i

, pnsj → Hip
ns
j,i?|Fp′k,i

,

pj → Hipj,i?|Fp′k,i
| for 1 ≤ i, j, k ≤ n, such that d(pj , pk) < ε} ∪

{F → F ′}.

These rules examine the neighborhood of the kth point which has recently been
added to the cluster denoted by i. The number of Hi symbols is the same as the
number of points in the ε neighborhood of point (k).

The next group of rules is the following.

Rmark2 = {p′k,i → pcrk,i|F ′(Hi)m > p′k,i → pncrk,i |F ′ | 1 ≤ i, k ≤ n} ∪
{pj,i? → p′j,i|F ′′pcrk,i

, pnsj,i? → p′j,i|F ′′pcrk,i
| 1 ≤ i, j, k ≤ n} ∪

{pj,i? → pj |F ′′pncr
k,i
, pnsj,i? → pnsj |F ′′pncr

i
| 1 ≤ i, j ≤ n} ∪

{Hi → ε|F ′ | 1 ≤ i ≤ n} ∪ {F ′ → F ′′}
{F ′′ → F |p′k,i

> F ′′ → A | 1 ≤ i, k ≤ n},

where m = MinPts, as before. Similarly to Rmark, these rules decide whether the
cluster denoted by i should be expanded with the elements of the ε neighborhood of
point (k). If the number of neighbors is sufficient, they are added to the cluster, and
also marked for further investigation. If there are points which are newly added to
the cluster, that is, if further neighborhood checks are necessary, then the symbol
F ′ is changed to F ′′, and then back to F , so the rules in Rcheck2 become applicable
again, and the checking process can repeated. If no new points are added to the
cluster, F ′′ is changed to A, so the rules in Rcheck are activated, and the search
for additional clusters can start with the identification of a yet unclassified point
by Rpick.

To see how the system Π operates, consider the initial configuration

Ap1 . . . pn.

By applying a rule Api → Bp′i ∈ Rpick for some 1 ≤ i ≤ n, a not yet classified
point (i) is chosen from the point set (1), . . . , (n), and we obtain

Bp1 . . . p
′
i . . . pn.

To show how the system works, we start with a more general case

Bx1 . . . p
′
i . . . xn,

where xi ∈ {pi, pnsi , pcri , pcri,j , pncri,j }.
Now, because B is present, the rules of Rcheck are applicable, so we get

C . . . p′i . . . y1Ei . . . ylEi . . .

where yj ∈ {pk,i?, pnsk,i? | for some 1 ≤ k ≤ n}, 1 ≤ j ≤ l. All symbols which
correspond to unclassified points or noise points (k) in the ε neighborhood of

176 György Vaszil

point (i) are marked as candidates for inclusion in the same cluster as (i) (denoted
by the index i?).

If the number of neighbors (equal to the number of Ei symbols) is not sufficient
(less than MinPts), we get

D . . . pnsi . . . y1 . . . yl . . . ,

and then
Fx1 . . . p

ns
i . . . xn

by the rules of Rmark. Now F is changed to F ′, F ′′, and then back to A, when the
rules of Rpick become applicable again, and the system continues with choosing
an other point for examination.

Otherwise, if the number of neighbors of point (i) are sufficient, we get

D . . . pcri . . . y1 . . . yl . . . ,

and then
F . . . pcri . . . p′X1,i . . . p

′
Xl,i

. . . ,

where 1 ≤ Xj ≤ n, 1 ≤ j ≤ l, marking the point (i) as core point, and marking its
neighbors as members of the cluster denoted by i.

Now, the newly added points (X1), . . . , (Xl), corresponding to the symbols
p′X1,i

, . . . , p′Xl,i
have to be checked, which is done by the rules of Rcheck2 If the ε

neighborhood of a point (k) contains a sufficient number of points, then similarly
to Rcheck, the rules of Rcheck2 introduce a sufficient number of Hi symbols for
the rule p′k,i → pcrk,i to be applicable, and point (k) is marked as a core point,
denoted by a corresponding symbol pcrk,i. Otherwise, if the number of neighbors is
not sufficient, then point (k) is marked as non-core, denoted by the symbol pncrk,i

introduced by the rule p′k,i → pncrk,i .
These checks are executed in parallel for all p′Xk,i

, resulting in marking some of
them core, some of them non-core, and priming all neighbors of core points in two
computational steps, using the rules in Rcheck2 and Rmark2. If the result contains
primed points, that is, points that have to be checked by counting the number of
their neghbors, then F ′′ is rewritten to F , so the process can start all over again,
otherwise it is rewritten to A, meaning that the cluster denoted by i cannot be
expanded any more, the search for new clusters can begin by picking a new point
using the rules of Rpick.

If all points are classified, then no rule of Rpick can be used, the system halts
in a configuration containing the symbol A, and with all points (i), 1 ≤ i ≤ n,
having a corresponding symbol, which is either

• pcri : point (i) is a core point, belonging to the cluster denoted by i,
• pcri,j : point (i) is a core point, belonging to the cluster denoted by j,
• pncri,j : point (i) is a non-core point, belonging to the cluster denoted by j,
• pnsi : point (i) is a noise point, it does not belong to any cluster.

The DBSCAN Clustering Algorithm on P Systems 177

4 Conclusion

We have shown how to implement the DBSCAN clustering algorithm on P systems.
The model we used worked with evolution rules, promoters and priorities, Due to
the parallel nature of P systems, our implementation has a time complexity of
O(n) which is clear improvement compared to the time complexity of O(n2) of a
sequential DBSCAN implementation. Our P system implementation presented in
in this paper is not the first one, but we believe that it is conceptually more simple
than the implementation presented in [11].

Considering the parallelity of our approach, the points of the dataset are ex-
amined by the algorithm one-by-one, but the number of neighbors of the examined
points is calculated in parallel. Moreover, all points examined in step 3 of the al-
gorithm (see the introduction for the numbering of the steps of the algorithm) are
examined in parallel which further reduces the time complexity of the P system
implementation. An interesting challenge would be to find a way in which the par-
allelity of the algorithm can further be increased, and thus, the time complexity
further reduced.

Acknowledgments

This research is supported in part by project no. K 120558 of the National Re-
search, Development and Innovation Fund of Hungary, financed under the K 16
funding scheme, and by the EFOP-3.6.1-16-2016-00022 project, co-financed by the
European Union and the European Social Fund.

References

1. Ciobanu, G., Pérez-Jiménez, M.J., Păun, G. (eds.): Applications of Membrane Com-
puting. Natural Computing Series, Springer (2006)

2. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering
clusters a density-based algorithm for discovering clusters in large spatial databases
with noise. In: Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining. pp. 226–231. KDD’96, AAAI Press (1996)

3. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 3rd edn. (2011)

4. Jiang, Y., Peng, H., Huang, X., Zhang, J., Shi, P.: A novel clustering algorithm based
on p systems. International journal of innovative computing, information & control:
IJICIC 10, 753–765 (01 2014)

5. Păun, G.: Computing with membranes. Journal of Computer and System Sciences
61(1), 108 – 143 (2000)

6. Păun, G.: Membrane Computing: An Introduction. Springer-Verlag, Berlin, Heidel-
berg (2002)

7. Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-
puting. Oxford University Press, Inc., New York, NY, USA (2010)

178 György Vaszil

8. Xu, J., Liu, X., Xue, J.: Cluster analysis by a class of splicing p systems. In: Park,
J.J.J.H., Pan, Y., Kim, C.S., Yang, Y. (eds.) Future Information Technology. pp.
575–581. Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

9. Xue, J., Liu, X.: A k-nearest based clustering algorithm by
P systems with active membranes. JSW 9(3), 716–725 (2014),
https://doi.org/10.4304/jsw.9.3.716-725

10. Zhang, G., Pérez-Jiménez, M.J., Gheorghe, M.: Real-life Applications with Mem-
brane Computing. Springer Publishing Company, Incorporated (2017)

11. Zhao, Y., Liu, X., Li, X.: An improved DBSCAN algorithm based on cell-like P
systems with promoters and inhibitors. PLoS ONE 13, e0200751 (Dec 2018)

