
Membrane Systems with Priority, Dissolution,

Promoters and Inhibitors and Time Petri Nets

Péter Battyányi, György Vaszil

Department of Computer Science, Faculty of Informatics
University of Debrecen
Kassai út 26, 4028 Debrecen, Hungary

{battyanyi.peter,vaszil.gyorgy}@inf.unideb.hu

Summary. We continue the investigations on exploring the connection between mem-
brane systems and time Petri nets already commenced in [4] by extending membrane
systems with promoters/inhibitors, membrane dissolution and priority for rules com-
pared to the simple symbol-object membrane system. By constructing the simulating
Petri net, we retain one of the main characteristics of the Petri net model, namely, the
�rings of the transitions can take place in any order: we do not impose any additional
stipulation on the transition sequences in order to obtain a Petri net model equivalent to
the general Turing machine. Instead, we substantially exploit the gain in computational
strength obtained by the introduction of the timing feature for Petri nets.

1 Introduction

Several models have emerged in the past decades to model distributed systems
with interactive, parallel components. One of them was developed by C. A. Petri
[20], and since then the Petri nets have become the underlying system of a vast �eld
of research with a considerable practical interest on the other hand. The theory
of membrane systems was invented by Gh. P un [18], and it has proved to be
a very convenient and many-sided model of distributed systems with concurrent
processes.

Place/transition Petri nets are bipartite graphs, the conditions of the events
of a distributed system are represented by places and directed arcs connect the
places to the transitions, that model the events. The conditions for the events are
expressed by tokens, an event can take place, i.e., a transition can �re, if there
are enough number of tokens an the places at the ends of the incoming arcs of
a transition. these places are called as preconditions. The outgoing edges of a
transition represent the postcondition of the events. Firing of a transition means
removing tokens from the preconditions and adding them to the postconditions.
The number of tokens moved in this way are prescribed by the multiplicities of
the incoming and outgoing arcs, respectively.

60 Péter Battyányi, György Vaszil

In some cases the original place/transition model has turned out not to be
satisfactory, for example, we are not able to model systems where a certain order
of events must be taken into account. Various extensions of the Petri net model
have appeared, in this paper we deal with the time Petri net model developed by
Merlin [17]. In this model, time intervals are associated to transitions. The local
time observed from a transition can be modi�ed by the Petri net state transition
rules, and a transition can �re only if its observed time lies in the interval assigned
to the transition by the construction of the model. In this way, the computational
power of Petri nets is increased: the time Petri net model is Turing complete in
contrast with the original state/transition Petri net.

Membrane systems are models of distributed, synchronized computational sys-
tems ordered in a tree-like structure. The building blocks are compartments, which
contain multisets of objects. The multisets evolve in each compartment in a paral-
lel manner, and the compartments, in each computational step, wait for the others
to �nish their computation, hence the system acts in a synchronized manner. In
every computational step, the multisets in the compartments evolve in a maximal
parallel manner, this means that, in each step, as many rules of the compartment
are applied simultaneously as possible.

In this paper, we continue the research on the connection between time Petri
nets and membrane systems initiated in [4]. We extend the basic construction
of the time Petri net simulating a symbol object membrane system developed in
[4] in order to represent some more membrane computational tools like promot-
ers/inhibitors, membrane dissolution and priority of rules. One of the main features
of our construction is that the unsynchronized characteristics of Petri nets is re-
tained when a Petri net equivalent of a membrane system is presented. That is,
unlike the construction in [13], we do not stipulate that the Petri nets should per-
form their computational steps in a maximal parallel manner, the attached time
intervals provide the synchronization in the corresponding Petri nets.

2 Membrane Systems

Membrane systems are computational models operating on multisets. A �nite mul-
tiset over an alphabet O is a mapping M : O → N, where N is the set of non-
negative integers. The number M(a) for a ∈ O is called the multiplicity of a in
M . We write that M1 ⊆ M2 if for all a ∈ O, M1(a) ≤ M2(a). The union or sum
of two multisets over O is de�ned as (M1 + M2)(a) = M1(a) + M2(a), while the
di�erence is de�ned forM2 ⊆M1 as (M1−M2)(a) = M1(a)−M2(a) for all a ∈ O.
The set of all �nite multisets over an alphabet O is denoted byM(O); the empty
multiset is denoted by ∅.

The notation N>0 stands for the set of positive integers, while Q and Q≥0
denotes the set of rational numbers and non-negative rational numbers and R and
R≥0 the set of real numbers and non-negative real numbers, respectively.

We de�ne the notion of the basic symbol-object membrane system [19] together
with the additional features discussed in Chapter 5. A membrane system (or P sys-

Membrane Systems with Priority, . . . and Time Petri Nets 61

tem) is a tree-like structure of hierarchically arranged membranes. The outermost
membrane is usually called the skin membrane. The membranes are labelled by
natural numbers {1, . . . , n}, and we use the notation mi for a membrane labelled
by i. Each membrane, except for the skin membrane, has its parent membrane.
We use µ for representing the structure of the membrane system itself, in fact,
the structure itself can be given as a balanced string of left and right brackets
indexed by their labels. For example, µ = [skin [1 [2]2 [3]3 [4]4]skin. Here, the skin
membrane has two submembranes, while region 1 also contains two embedded re-
gions. Abusing the notation, µ(i) = k can also mean that the parent of the i-th
region is region k.

The regions contain multisets over a �nite alphabet O. The contents of the
regions of a P system evolve through rules associated with the regions. The rules
constitute the micro steps of the computations. They are applied in a maximal
parallel manner: the computation in a region proceeds until no more rule can
further be applied. A computational step is the macro step of the process: it
ends when each of the regions have �nished their computations. A computational
sequence is a sequence of computational steps.

Here we make the usual conditions on the presentation of a computational step:
we assume that the computational steps in the regions consist of two phases- �rst
the rule application part produces from the objects on the left-hand sides of the
rules the labelled objects on the right-hand sides (the labels of the labelled objects
describe the way they should be moved between the regions: stay where they are,
move to the parent region, or move into one of the children regions); then we have
the communication phase when the labels are removed and all the objects �nd
their regions indicated by their labels.

The P system gives a result when it halts, i.e., when no more rules can be
applied in any of the regions. The result is a number or a tuple of natural numbers
counting certain objects in the membrane designated as as the output membrane.
More formally,

De�nition 1. A P system of degree n ≥ 1 is Π = (O,µ,w1, . . . , wn, R1, . . . , Rn)
where O is an alphabet of objects, µ is a membrane structure of n membranes,
wi ∈ M(O) with 1 ≤ i ≤ n are the initial contents of the n regions, Ri with
(1 ≤ i ≤ n) are the sets of evolution rules associated with the regions; they are of
the form u → v, where u ∈ M(O) and v ∈ M(O × tar), and tar = {here, out} ∪
{inj | 1 ≤ j ≤ n}.

Unless stated otherwise, we consider the n-th membrane as the output mem-
brane. A con�guration is the sequenceW = (w1, . . . , wn), where wk is the multiset
contained by membrane mk (1 ≤ k ≤ n). By the application of a rule u→ v ∈ Ri
we mean the process of removing the elements of u from the multiset wi and
extending wi with the labelled elements, which are called messages. As a result,
during a computational step, a region can contain both elements of O and mes-
sages. An intermediate con�guration is an n-tuple of multisets over O∪ (O× tar).
We say that W is a proper con�guration, if wi ∈M(O) for each of its regions wi.

62 Péter Battyányi, György Vaszil

The communication phase means that the elements coming from the right-hand
sides of the rules of region i should be added to the regions as speci�ed by the tar-
get indicators associated with them. If rhs(r) contains a pair (a, here) ∈ O× tar,
then a ∈ O is added to region i, the region where the rule is applied. If rhs(r)
contains (a, out) ∈ O × tar, then a is added to the parent region of region i. If
rhs(r) contains (a, inj) ∈ O × tar, then a is added to the contents of region j. In
the latter case, µ(mj) = mi holds.

Given a (proper) con�guration W , we obtain a new (proper) con�guration W ′

by executing the two phases of the transformations determined by the maximal
parallel sets of rules chosen for each compartment of the membrane system. We
call this a computational step, and denote it by W ⇒W ′.

In the general case, the symbol-object membrane systems can already generate
the recursively enumerable sets of natural numbers. We might consider additional
features being present in the membrane system, though, by the previous remark
they do not enhance the computational power of the P system. First of all, we
can add promoters and inhibitors to the rules that regulate the rule applications
in a way that the promoter assigned to the rule r ∈ Ri, when 1 ≤ i ≤ n is �xed,
prescribes how many copies of object a (a ∈ O) should be present in mi for the
rule to be applied, while the inhibitor prevents the rule from being applied if the
number of a certain object a exceeds the number determined by the inhibitor.
Second, we deal with the so-called membrane dissolution. The set of objects is
extended with an additional element δ that can appear on the right hand sides of
the rules. If δ ∈ rhs(r), where r is a rule of the i-th region for some i, and rule r is
chosen to be in the maximal multiset of rules in Ri applied in that computational
step, then the communication phase is executed as before and, as the result of the
presence of δ in mi, the region mi together with its set of rules Ri disappears from
the P system. This means, it is invisible to the subsequent computational steps.
The elements of mi, except for δ, which disappears, are passed over to the region
containing mi and the rules in Ri can never be applied anymore. The region skin
cannot dissolve. Finally, we consider a priority relation among rules. That is, we
consider a two-place relation ρi on the set Ri for each 1 ≤ i ≤ n. Let r′, r ∈ Ri
for some �xed i ∈ {1, . . . , n}. We say that r′ has priority over r, or r′ has higher
priority than r, if (r′, r) ∈ ρi. In this case, if both r′ and r were applicable in a
maximal parallel step, then r is suppressed, that is, not allowed to be applied. The
exact de�nitions can be found in the relevant parts of Section 5. In Section 5 we
show that all these features can be smoothly modelled by time Petri nets. The
advantage of using time Petri nets instead of the Petri net models mostly applied
in the literature (see e.g. [13]) is the fact that the usual order of the �rings of the
transitions is preserved- we do not in�ict any additional �ring condition on the
transitions of the Petri nets, like the requirement that the transitions �red in a
computational step should constitute a maximal multiset of �reable transitions.

Membrane Systems with Priority, . . . and Time Petri Nets 63

3 Time Petri Nets

In this section, following the de�nitions in [21] we de�ne time Petri nets� a model
rendering time intervals to transitions along the concept of Merlin [17]. First of all
we de�ne the underlying place/transition Petri nets, and then extend this model
to the timed version.

De�nition 2. A Petri net is a tuple U = (P, T, F, V,m0) such that

1. P , T , F are �nite, where P ∩ T = ∅, P ∪ T 6= ∅ and F ⊆ (P × T) ∪ (T × P),
2. V : F → N>0,
3. m0 : P → N.

The elements of P and T are called places and transitions, respectively. The el-
ements of T are the arcs, and F is the �ow relation of U . The function V is
the multiplicity (weight) of the arcs, and m0 is the initial marking. In general, a
marking is a function m : P → N. We may occasionally omit the initial marking
and simply refer to a Petri net as the tuple U = (P, T, F, V). We stipulate that
for every transition t ∈ T , there is a place p ∈ P such that f = (p, t) ∈ F and
V (f) 6= 0.

Let x ∈ P ∪T . The pre- and post-sets of x, denoted by •x and x• respectively,
are de�ned as •x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F}.

De�nition 3. For each transition t ∈ T , we de�ne two markings, t−, t+ : P → N
as follows:

t−(p) =

{
V (p, t), if (p, t) ∈ F,
0 otherwise ,

t+(p) =

{
V (t, p), if (t, p) ∈ F,
0 otherwise .

A transition t ∈ T is said to be enabled if t−(p) ≤ m(p) for all p ∈ •t.

Applying the notation M t(p) = t+(p)− t−(p) for p ∈ P , we are able to de�ne
the �ring of a Petri net.

De�nition 4. Let U = (P, T, F, V,m0) be a Petri net, and m be a marking in U .
A transition t ∈ T can �re in m (notation: m −→t) if t is enabled in m. After
the �ring of t, the Petri net obtains the new marking m′ : P → N with m′(p) =
m(p)+ M t(p) for all p ∈ P . Notation: m −→t m′.

We arrive at time Petri nets if we add time assigned to transitions of the Petri
net. Intuitively, the time associated with a transition denote the last time when
the transition was �red. We are considering only bounded time intervals.

De�nition 5. A time Petri net is a 6-tuple N = (P, T, F, V,m0, I) such that

1. the skeleton of N given by S(N) = (P, T, F, V,m0) is a Petri net, and
2. I : T → Q × Q is a function assigning a rational interval to each transition,

that is, for each t ∈ T and I(t) = (I(t)1, I(t)2) we have that 0 ≤ I(t)1 ≤ I(t)2.

64 Péter Battyányi, György Vaszil

We call I(t)1 and I(t)2 the earliest and the latest �ring times belonging to t, and
denote them by eft(t) and lft(t), respectively.

Given a time Petri nets N = (P, T, F, V,m0, I), a function m : P → N is called
a p-marking of N . Note that talking about a p-marking of N is the same as talking
about a marking of S(N).

De�nition 6. Let N = (P, T, F, V,mo, I) be a time Petri net, m : P → N a p-
marking in N , and h be a function called a transition marking (or t-marking)
in N , h : T → R≥0 ∪ {#}. A state in N is a pair u = (m,h) such that the two
markings m and h satisfy the following properties: for all t ∈ T ,
1. if t is not enabled in m (that is, if t−(p) > m(p) for some p ∈ •t), then
h(t) = #,

2. if t is enabled in m (that is, if t−(p) ≤ m(p) for all p ∈ •t), then h(t) ∈ R with
h(t) ≤ lft(t)).

The initial state is the pair u0 = (m0, h0), where m0 is the initial marking and
for all t ∈ T ,

h0(t) =

{
0, if t−(p) ≤ m0(p) for all p ∈ •t,
#, otherwise .

De�nition 7. A transition t ∈ T is ready to �re in state u = (m,h) (denoted
by u −→t) if t is enabled and eft(t) ≤ h(t).

We de�ne the result of the �ring for a transition that is ready to �re.

De�nition 8. Let t ∈ T be a transition and u = (m,h) be a state such that u −→t.
Then the state u′ resulting after the �ring of t denoted by u −→t u′ is a new state
u′ = (m′, h′), such that m′(p) = m(p)+4t(p) for all p ∈ P . Now, for all transitions
s ∈ T , we have

h′(s) =


h(s), if s−(p) ≤ m(p), s−(p) ≤ m′(p) for all p ∈ •s,
0, if s−(p) > m(p) for some p ∈ •s, but

s−(p) ≤ m′(p) for all p ∈ •s,
#, if s−(p) > m′(p) for some p ∈ •s.

Hence, the �ring of a transition changes not only the p-marking of the Petri
net, but also the time values corresponding to the transitions. If a transition s ∈ T
which was enabled before the �ring of t remains enabled after the �ring, then the
value h(s) remains the same, even if s is t itself. If an s ∈ T is newly enabled with
the �ring of transition t, then we set h(s) = 0. Finally, if s is not enabled after
�ring of transition t, then h(s) = #.

Observe that we ensure that a rule can be chosen more than once in a maximal
parallel step that we allow transitions to be �red several times in a row: if t is �red
resulting in the new p-marking m′ and t−(p) ≤ m′(p) holds for all p ∈ •t, then
h(t) remains the same.

Besides the �ring of a transition there is another possibility for a state to alter,
and this is the time delay step.

Membrane Systems with Priority, . . . and Time Petri Nets 65

De�nition 9. Let u = (m,h) be a state of a time Petri net, and τ ∈ R≥0. Then,
the elapsing of time with τ is possible for the state u (denoted u −→τ) if for all
t ∈ T , h(t) 6= # we have h(t) + τ ≤ lft(t). Then the state u′, namely the result of
the elapsing of time by τ denoted by u −→τ u′ is de�ned as u′ = (m′, h′), where
m = m′ and

h′(t) =

{
h(t) + τ, if h(t) 6= #,
otherwise.

Note that De�nition 9 ensures that we are not able to skip a transition when it is
enabled: a transition cannot be disabled by a time jump. This kind of semantics
is called the strong semantics in the literature [22].

We remark that classic Petri nets can be obviously obtained by having h(t) =
[0, 0] for every transition, and no time delay step is ever made.

4 Connecting Petri nets and membrane systems

First of all, we introduce the time Petri net model constructed in [4], which serves
as our starting point in the constructions below. Our model relies on the corre-
spondence between Petri nets and membrane systems described in [13], with the
additional property that we do not require that our Petri net model should operate
in a maximal parallel manner. In general, both by membrane systems and by Petri
nets, a computational step can be considered as a multiset of rules or as a multiset
of transitions, respectively. In the case of Petri nets, an application of a multiset of
transitions is maximal parallel, if augmenting the multiset by any other transition
results in a multiset of transitions that cannot be �red simultaneously in that con-
�guration. In the case of membrane systems, maximal parallel execution means
that, if we consider any membrane mk, no rule of mk can be added to our multiset
of rules such that the remaining multiset still forms a multiset of executable rules
in mk. In our construction, the �reable transitions of the simulating Petri nets can
be executed in any order, we do not impose a restriction on the computational
sequence of the Petri nets. This involves that we have made an essential use of
the time feature, since the original place/transition Petri net model is not Turing
complete, unlike the majority of the symbol object membrane systems.

We remark that, similarly to membrane systems, Petri nets can also be con-
sidered as computational devices, which means that, if we start from an initial
con�guration such that an input is represented by the tokens contained by some
designated places, then, when the computation halts, the content of the output
places provide the result of the computation. Depending on the construction, the
result can either be a number, or a tuple. The following statement is a reformu-
lation of Theorem 4.2 in [4]. We present the proof with details here, since the
subsequent Petri nets in the next section build upon this construction.

Theorem 1. Let Π = (O,µ,w1, . . . , wn, R1, . . . , Rn) be a membrane system. Then
there is a time Petri net N = (P, T, F, V,m0, I) such that N halts if and only if Π
halts and, if either of them halts, then both systems provide the same result.

66 Péter Battyányi, György Vaszil

Proof. The proof is a reinterpretation of that of Theorem 1 in [4]. We elabo-
rate the construction again in order to keep our presentation self-contained. Let
Π = (O,µ,w1, . . . , wn, R1, . . . , Rn) be a membrane system and let
N = (P, T, F, V,m0, I) be the corresponding Petri net. We de�ne N so that a
computational step of Π is simulated by two subnets of N . The two subnets cor-
respond to the two computational phases of a computational step of a membrane
system, namely, the rule application and the communication phases. In our Petri
net model, the tokens in the places P0 = O × {1, . . . , n} stand for the objects in
the various compartments, while the tokens of the places P̄0 = Ō × {1, . . . , n},
where Ō = {ā | a ∈ O}, represent the messages obtained in the course of the rule
applications. Let us see the construction in detail.

• P = P0 ∪ P̄0 ∪ {initapp, initcom, sem, enabld}, where P0 = O × {1, . . . , n} and
P̄0 = Ō × {1, . . . , n}. Let m0(p) = wj(a) for every place p = (a, j) ∈ P0.

Intuitively, the relation |p| = t, where p = (a, i) ∈ O×{1, . . . , n}, means that there
are as many as t objects a ∈ O in compartment mi. In other words, wi(a) = t. On
the other hand, the equality |p̄| = s, where p̄ = (b̄, j) ∈ Ō × {1, . . . , n}, expresses
the fact that there are s copies of object b that will enter into membrane mj at the
end of the computational step. The places initcom, initapp, sem, enabld are places
enabling the synchronization of the Petri net model.

• T = T0 ∪ T ∗0 ∪ T# ∪ {tapp, tcom, t1sem, t2sem},

where the transitions are de�ned as follows.
Let ri,j ∈ Ri, where 1 ≤ j ≤ |Ri| and 1 ≤ i ≤ n, be a rule in mi. Then the
transition ti,j ∈ T0 corresponds to ri,j ∈ Ri. Let us de�ne the arcs associated with
ti,j for a �xed i and j together with their multiplicities.

- Assume ti,j ∈ T0, where 1 ≤ i ≤ n and 1 ≤ j ≤ |Ri|. Then p = (a, i) ∈ •ti,j
if and only if a ∈ lhs(ri,j), and p̄ = (b̄, k) ∈ t•i,j if and only if either (b, ink) ∈
rhs(ri,j), that is, mi is the parent region of mk, or (b, out) ∈ rhs(ri,j), where
region k is the parent region of i, or k = j and (b, here) ∈ rhs(ri,j).
In addition, enabld ∈ •ti,j ∩ t•i,j (1 ≤ i ≤ n, 1 ≤ j ≤ |Ri|).
Regarding the weights of the arcs, let p = (a, i) and f = (p, ti,j) ∈ F . Then
the weight of f is the multiplicity of a ∈ O on the left-hand side of ri,j ,
namely, V (f) = lhs(ri,j)(a); furthermore, for p̄ = (b̄, k) and f = (ti,j , p̄) ∈ F ,
the weight of f is V (f) = rhs(ri,j)(b, ink) if region k is a child region of
i, V (f) = rhs(ri,j)(b, out) if region k is the parent region of i, or V (f) =
rhs(ri,j)(b, here) for k = j. Additionally, if f = (ti,j , enabld), then V (f) = 1
(1 ≤ i ≤ n, 1 ≤ j ≤ |Ri|).

The transitions in T# are in charge with the correct simulation of a maximal
parallel step: they �re only if there are any enabled rules in any of the regions.
Their inputs are the same as those of the elements of T0, only their outputs di�er,
since they should not give rise to a change in the original distribution of the tokens
before the computational step takes place.

Membrane Systems with Priority, . . . and Time Petri Nets 67

- Let ri,j ∈ Ri, where 1 ≤ j ≤ |Ri|, 1 ≤ i ≤ n; then t#i,j ∈ T# is the transition

checking the applicability of ri,j . Let p = (a, i) ∈ P0 and let t#i,j ∈ T#; then

p ∈ •(t#i,j) and initapp ∈ •t#i,j and enabld ∈ (t#i,j)
• and p ∈ (t#i,j)

•. In words,

for a �xed i and j, t#i,j expects as many tokens from its outgoing places as the
number of distinct objects that is necessitated by an execution of the rule ri,j .
In the meantime, a token arrives in enabld, which ensures the continuation of
the simulation of the rule application phase. Then t#i,j gives back the tokens to
the places in P0.
As regards the multiplicities, if f = (initapp, t

#
i,j) then V (f) = 1, and if f =

(t#i,j , enabld) then V (f) = 1; furthermore, if f = (p, t#i,j) or f = (t#i,j , p) where
p = (a, i), then V (f) = lhs(ri,j)(a).

The transitions in T ∗0 ensure that tokens can �ow back from P̄0 to P0, thus
representing the communication phase of the membrane computation.

- T ∗0 = {sa,i | a ∈ O, 1 ≤ i ≤ n}. Let p̄ = (ā, i) ∈ P̄0, then p̄ ∈ •sa,i and
initcom ∈ •sa,i. Moreover, if p = (a, i), then p ∈ s•a,i and initcom ∈ s•a,i.
Regarding the multiplicities, each arc has multiplicity 1.

The intervals belonging to the elements of T = T0 ∪T ∗0 ∪T# are [0, 0]. The rest of
the transitions are de�ned as follows.

- tapp connects enabld, and hence the rule application part of the Petri net with
the semaphore: enabld ∈ •tapp and sem ∈ t•app. Moreover, V (enabld, tapp) = 1
and V (tapp, sem) = 2 and I(tapp) = [1, 1].

The role of tapp is to guarantee that a sequence of �rings of transitions correctly
simulates a maximal parallel application of membrane rules: every transition, ti,j
(1 ≤ j ≤ |Ri|, 1 ≤ i ≤ n), corresponding to a rule execution can �re only if a
token is found in enabld. On the other hand, if no transition ti,j can �re, then the
transition tapp connected only to enabld will be activated after a time unit's delay.

- tcom connects initcom, and hence the communication part of the Petri net with
the semaphore: initcom ∈ •tcom and sem ∈ t•com. Moreover, V (initcom, tcom) =
V (tcom, sem) = 1 and I(tcom) = [1, 1].
The role of the semaphore is to make sure that the simulation of the rule
application and the communication phases takes place in an alternating order.
This is achieved by the following machinery.

- Let t1sem and t2sem be transitions of the semaphore. Then sem ∈ •(t1sem) and
sem ∈ •(t2sem); furthermore, initapp ∈ (t1sem)• and initcom ∈ (t1sem)•. If f =
(sem, t2sem), then V (f) = 2. The weights of the other arcs are 1. In addition,
I(t1sem) = [1, 1] and I(t2sem) = [0, 0].

To sum up the above construction: a computational step of a membrane system
is split into a rule application and a communication phase, and those two phases are
simulated separately and in an alternating order. The simulation of a phase �nishes
when no more rule applications are possible, hence we ensure that a maximal

68 Péter Battyányi, György Vaszil

parallel step is correctly simulated. When the rule application phase �nishes its
operation, 2 tokens are sent to the semaphore via tapp, and the simulation of
the communication phase can immediately begin by forwarding the 2 tokens to
initcom. Otherwise, when the communication phase �nishes its operation, only 1
token is sent to the semaphore, so the rule application phase is initiated after a
time unit's wait. The structure of the various subnets are described in Figures 1,
2 and 3, respectively.

initapp enabld (a, 1) (b, 1)

tapp[1,1] [0,0] t#1,1 [0,0] t1,1

sem (c̄, 1) (d̄, 2)

initapp enabld (a, 1) (b, 1)

tapp[1,1] [0,0] t#1,1 [0,0] t1,1

sem (c̄, 1) (d̄, 2)

2

Fig. 1. Assume a, b2 ∈ w(1) and r1,1 = ab → c3(d, in2), where m2 is child of m1. The
�gure shows the result of a single application of the rule in a split table: to the left is the
subnet testing the applicability of r1,1 and to the right is the application of the rule itself.
The rule consumes an a and a b in region 1 and three tokens are sent to the place (c̄, 1),
and one token to (d̄, 2), in accordance with the fact that three objects of c should be
added to region 1, and one copy of d should be added to region 2 in the communication
phase.

By this, we have simulated a membrane system with a time Petri net such that
in the Petri net model no restriction on the transitions is made: the transitions
that are ready to �re can be �red in any order. �

5 Extending the correspondence to membrane systems with

more features

In this section we examine the possibility of extending our core model to Petri nets
that are able to represent various properties of membrane systems, such as the
presence of promoters/inhibitors, membrane dissolution and priority among rules.
The obtained Petri nets each build upon the basic model de�ned in the previous
section, so, in most of the cases, we restrict ourselves to emphasize only the new
elements of the constructions by which the basic Petri net model is extended.
First of all, we begin with discussing the case of promoters and inhibitors in the
membrane system. Below we present the necessary de�nitions.

Membrane Systems with Priority, . . . and Time Petri Nets 69

sem (c, 1) (d, 2)

tcom[1,1]

1

sc,1[0,0] sd,2[0,0]

initcom (c̄, 1) (d̄, 2)

Fig. 2. The Petri net simulating the communication phase of a membrane computational
step. When the simulation of a maximal parallel rule application step is �nished, a token is
given to the semaphore sem. The transitions sc,1, sd,2 ∈ T ∗

0 ensure the correct placement
of the tokens corresponding to the messages.

sem

[1,1]

t1sem

[0,0]

t2sem

initapp initcom

1 2

Fig. 3. The semaphore for the Petri net. When the simulation of the rule application
phase of a computational step of the membrane system is complete, two tokens appear at
sem, and then sent to initcom, activating the simulation of the communication phase of
the computational step. When the simulation of the communication phase is completed,
one token appears at sem, which is then sent to init0, activating the simulation of the
rule application phase of a subsequent computational step.

De�nition 10. Let Π = (O,µ,w1, . . . , wn, R1, . . . , Rn,P) be a membrane system
with promoters/inhibitors, where P(rj,i) ⊆ O∗ × O∗, for every rj,i ∈ Ri. Then
P(rj,i) = (ρj,i, τj,i) ⊆ O∗ ×O∗ is a promoter/inhibitor pair for rj. We denote the
pair (ρj,i, τj,i) by (promr, inhibr). Let R be a multiset of rules. A multiset R is
applicable, if each of the following conditions ful�ll.

1. lhs(rj,i)(a) · R(j, i) ≤ wi(a) (a ∈ O),

70 Péter Battyányi, György Vaszil

2. promr(a) ≤ wi(a) (r ∈ R, a ∈ O),
3. wi(a) < inhibr(a) (r ∈ R, a ∈ O).

In what follows, we give the structure of the Petri net simulating a general
example of a membrane system with promoters/inhibitors.

Theorem 2. Let Π = (O,µ,w1, . . . , wn, R1, . . . , Rn,P) be a membrane system
with promoters/inhibitors. Then there is a time Petri net N = (P, T, F, V,m0, I)
such that N halts if and only if Π halts and, if any of them halts, then both systems
provide the same result.

Proof. LetΠ be as in the statement of the theorem. We constructN in a way anal-
ogous to the construction of the Petri net of Theorem 1. The Petri net simulates
the rule application and the communication phase separately, we only concentrate
on the rule application part, since the other parts of the construction are identical
to that of the proof of Theorem 1. Let us detail the proof a bit more.

• P = P0∪ P̄0∪{initapp, initcom, sem, enabld, contd}, where P0 = O×{1, . . . , n}
and P̄0 = Ō × {1, . . . , n}. Let m0(p) = wj(a) for every place p = (a, j) ∈ P0.

As before, if |p| = t, where p = (a, i) ∈ O×{1, . . . , n}, then there are as many as t
objects a ∈ O in compartment mi. Likewise, we retain the meaning of p̄ = (b̄, j) ∈
Ō× {1, . . . , n}, where |p̄| = s expresses the fact that there are s copies of object b
that are going to appear in membranemj at the end of the computational step. The
places initcom, initapp, sem, enabld, contd are places enabling the synchronization
of the Petri net model. The new element here is the place contd, which is introduced
in order to handle conditions 2 and 3 for rule applicability in De�nition 10.

• T = T0 ∪ T ∗0 ∪ T# ∪ T## ∪ {tapp, tcom, t1sem, t2sem},

where the transitions are de�ned as follows.

- The de�nitions of the transitions T0 and T ∗0 are unchanged. The construction
of the arcs and their weights, with respect to T0 and T ∗0 , is exactly the same
as above.

The di�erence lies in the de�nitions of T# and T##. They ensure that the
conditions of rule applications presented in De�nition 10 are simulated correctly.

- Let ri,j ∈ Ri, where 1 ≤ j ≤ |Ri|, 1 ≤ i ≤ n; then t#i,j ∈ T# is the transition
checking conditions 1 and 2 in De�nition 10. Let p = (a, i) ∈ P0 and let

t#i,j ∈ T#; then p ∈ •(t#i,j) and initapp ∈ •t
#
i,j and contd ∈ (t#i,j)

• and p ∈ (t#i,j)
•

and enabld ∈ (t#i,j)
•.

As regards the multiplicities, if f = (initapp, t
#
i,j) then V (f) = 1, and if f =

(contd, t#i,j) or f = (t#i,j , enabld) then V (f) = 1; furthermore, if f = (p, t#i,j)

or f = (t#i,j , p), where p = (a, i), then V (f) = max{lhs(ri,j)(a), promri,j (a)}.
The time interval assigned to t#i,j is [1, 1].

Membrane Systems with Priority, . . . and Time Petri Nets 71

The novelty in this Petri net is the appearance of the transitions T## =
{t##
i,j | ri,j ∈ Ri}, that are responsible for the correct simulation of the inhibitors.

- Let ri,j ∈ Ri, where 1 ≤ j ≤ |Ri|, 1 ≤ i ≤ n; then t##
i,j ∈ T## is the transition

checking condition 3 in De�niton 10. Let p = (a, i) ∈ P0 and let t##
i,j ∈ T#;

then p ∈ •(t##
i,j) ∩ (t##

i,j)•.

If f = (p, t##
i,j) or f = (t##

i,j , p), where p = (a, i), then V (f) = inhibri,j (a).

The time interval assigned to t##
i,j is [0, 0].

In words, the transitions t##
i,j capture the tokens of p = (a, i) in the case when

|p| ≥ inhibri,j (a). The �ring sequence can continue with the simulation of the
application of rule ri,j only if |p| < inhibri,j (a) holds for every a ∈ O for which
lhs(ri,j)(a) > 0.

The rest of the construction is the same as that of Theorem 1, hence we omit
the details. The changes in the Petri net compared to the core model are illustrated
in Figures 4. �

init enabld contd (a, 1)

tapp[2,2] [0,0] tr,1 [1,1] t#r,1

sem

[0,0] t##
r,1

2

sem (c̄, 1) (d̄, 2)

init enabld contd (a, 1)

tapp[2,2] [0,0] tr,1 [1,1] t#r,1

sem

[0,0] t##
r,1

2

sem (c̄, 1) (d̄, 2)

3

2

Fig. 4. The rule application phase for the Petri net, where a ∈ w1 and r = a→ c(d, in2)3

and promr(a) = inhibr(a) = 1.

Next, we turn our attention to membrane systems with dissolution. Let Π =
(O,µ,w1, . . . , wn, R1, . . . , Rn, δ) be a membrane system with dissolution. We recall
form our previous de�nitions that this means that there exists a special element
δ ∈ O, which can appear on the right side of a rule only. Assume r ∈ Ri and
δßrhs(r). Suppose r is chosen in the actual maximal parallel rule application of
mi. Then all the rules of Ri appearing in that computational step are executed as
usual, and, after the maximal parallel step is over, the region mi disappears, its
objects wander into the parent region and the rules Ri cease to operate. With this
in mind, we construct a time Petri net simulating the operation of the membrane
system in the sense below.

72 Péter Battyányi, György Vaszil

Theorem 3. Let Π = (O,µ,w1, . . . , wn, R1, . . . , Rn, δ) be a membrane system
with dissolution. Then there is a time Petri net N = (P, T, F, V,m0, I) such that N
halts if and only if Π halts and, if either of them halts, then both systems provide
the same result.

Proof. LetΠ be as in the theorem. We construct the Petri netN with the required
properties. The construction again leans on the proof of Theorem 1. The rule
application phase is exactly the same with one exception: places δi symbolizing
the dissolution of membrane mi appear. The di�erence manifests itself in the
de�nition of the communication phase. Moreover, we introduce one more phase, a
δ-phase, that serves for moving the elements of a previously dissolved membrane
to the parent region. First of all, we de�ne the set of places as before.

• P = P0 ∪ P̄0 ∪ {initapp, initcom, sem, enabld, δi}, where P0 = O × {1, . . . , n}
and P̄0 = Ō × {1, . . . , n} and 1 ≤ i ≤ n. Let m0(p) = wj(a) for every place
p = (a, j) ∈ P0.

The only change is the presence of the places δi for every region mi. Intuitively,
they are indicators whether a membrane is going to disappear in the next step or
has been dissolved already. This is re�ected in the design of the arcs for the rule
application phase. We require an extended set of transitions, since we have a third
phase also that transfers the objects of the dissolved membranes to their parent
membranes.

• T = T0 ∪ T ∗0 ∪ T δ0 ∪ T# ∪ T [∪ {tapp, tcom, tclean, t1sem, t2sem, t3sem},

and the arcs for the rule application phase are identical to those of Theorem 1
with the only exception of the arcs pointing from ti,j , where ri,j ∈ Ri, to the place
δi with multiplicity 1 provided δ ∈ rhs(ri,j). Thus we are only interested in the
transitions T ∗0 , T

[and their corresponding arcs.

- Let T ∗0 = {sa,i | a ∈ O, 1 ≤ i ≤ n} and T δ0 = {sδa,i | a ∈ O, 1 ≤ i ≤ n}. Let mi

be a region other than the skin membrane, assumemk is its parent region. (Ifmi

is the skin membrane, it cannot disappear.) Let p̄ = (ā, i) ∈ P̄0, then p̄ ∈ •sa,i
and, if p = (a, i), then p ∈ s•a,i. Moreover, initcom ∈ •sa,i ∩ s•a,i. In addition, δi

is connected with sδa,i for every object a ∈ O, that is: δi ∈ •sδa,k ∩ sδa,i
•
and we

have q̄ = (ā, k) ∈ sδa,i
•
. Regarding the multiplicities, each arc has multiplicity

1.
Furthermore, I(sa,i) = [1, 1], I(sδa,i) = [0, 0] and I(tcom) = [2, 2], where tcom is
the transition connecting initcom with the place sem.

Intuitively, if mi is a region with parent region mk, the communication phase
transfers the tokens of p̄ = (ā, i) to the place p = (a, i), as long as the membrane
mi exists. When mi is marked for dissolution or has been already dissolved, that
is, |δi| = 1, then the tokens of p̄ = (ā, i) are redirected to q̄ = (ā, k). This is
achieved by a time gap between the possible �rings of the transitions sa,i and s

δ
a,i.

This implies that the elements appearing on the right hand side of the rules of a
dissolved membrane �nd their correct place: they wander to the upper levels of the

Membrane Systems with Priority, . . . and Time Petri Nets 73

tree until they �nd the �rst ancestor region not dissolved. The main ingredients
of the construction are illustrated in Figure 5.

The only missing part is the subnet directing the remaining object of a dissolved
membrane into an existing container membrane. We term this phase the cleaning
phase. The construction is quite simple: let mk be a region and assume that mi is
its parent region. Then, for every place p = (a, k), there corresponds a transition
tfp lat which transfers the objects of p to q = (a, i) when δk contains a token. The

place initclean is connected to all the transitions t[p in order to perceive when the
tidying phase is ready. After this, 3 tokens are sent to the semaphore and a new
application phase activates. More formally,

- let T [= {t[a,k | a ∈ O, 1 ≤ k ≤ n}. Assume mi is the parent region of region

mk. Then p = (a, k) ∈ •t[p and q = (a, i) ∈ t[p
•
and δk ∈ •t[p ∩ t[p

•
. Moreover,

initclean ∈ •t[p ∩ t[p
•
and initclean ∈ •tclean and sem ∈ t•clean. Regarding the

multiplicities, each arc has multiplicity 1, except for (tclean, sem), which has
multiplicity 3.
Furthermore, I(t[a,i) = [0, 0], I(tclean) = [1, 1].

This is described in Figure 6. The semaphore is extended with a new transition,
t3sem which leads to the initialization of the third phase in the simulation of a
maximal parallel step. The new semaphore is depicted in Figure 7.

δ2 (a, 2) (b, 2)

tr

(c̄, 2) (d̄, 3)

2

(c̄, 1) (c, 2)

sδc,2[0,0] sc,2[1,1]

(c̄, 2)δ2

Fig. 5. The Petri net simulating a membrane system with dissolution. In this case, m2

is dissolved, hence sδc,2 can be activated moving the elements of p̄(c, 2) to p̄(c, 1).

�

Finally, we tackle the problem of to the representation membrane systems with
priorities in terms of Petri nets. Again, our construction is a slight modi�cation of

74 Péter Battyányi, György Vaszil

sem (a, 2) (a, 1)

tclean[1,1]

3

t[a,2[0,0]

initclean

δ2

Fig. 6. The Petri net simulating the phase when the objects of a dissolved membrane
are directed towards the parent membrane. Here we assume that region 1 is the parent
of region 2, and the place δ2 already has a token.

sem

[2,2]

t1sem

[1,1]

t2sem

[0,0]

t3sem

initapp initcom initclean

1 2 3

Fig. 7. The semaphore for the Petri net with dissolution. The choice of the next phase
is uniquely determined by the number of tokens arriving in the place sem.

the core model. What we have to do is to introduce some pieces of information in
the simulation of the rule application phase that accounts for the treatment of the
priorities. Let Π = (O,µ,w1, . . . , wn, R1, . . . , Rn, ρ) be a membrane system with
priorities. This means that ρ ⊆ R×R, and the rule application is modi�ed in the
following way.

De�nition 11. Let Π = (O,µ,w1, . . . , wn, R1, . . . , Rn, ρ) be a membrane system
with priorities. Let r ∈ Ri, if 1 ≤ i ≤ n. Then r is applicable, if

1. lhs(ri) ≤ wi,
2. for every r′ ∈ Ri such that r′ > r, r′ is not applicable.

Let r1, r2 ∈ Rk be two rules of region mk, assume that (r1, r2) ∈ ρ, that
is, r1 > r2. Then, considering a computational step, r2 can be applied if r2 is

Membrane Systems with Priority, . . . and Time Petri Nets 75

applicable in the usual sense and, in addition, r1 fails to be applicable in the
maximal parallel step belonging to region mk. We remark that we use priority
in the strong sense: assume wk = a2b, r1 = a → c and r2 = ab → d. Then the
result of the maximal parallel step will be ad, instead of cd, since r1 > r2 and r1 is
applicable, which implies that r2 cannot be applied in that maximal parallel step
at all, even if r1 is not applicable any more. We understand applicability in the
sense of De�nition 11, that is, a rule is not only required to have enough resources
for being a candidate for that computational step, but also it is demanded that
no other rule with higher priority should be applicable in that stronger sense.
Moreover, conforming to the applications of priority suggested by the literature
on P systems, we stipulate that priorities do not interfere with each other, i.e., no
rule appears on the left hand side of a priority relation and on the right hand side
of a (possibly di�erent) priority relation. We can handle the membrane systems
even if we omit this stipulation: to obtain an idea how to treat the other case, the
reader should refer to page 526 in [3].

Now we are in a position to state the theorem on the simulation.

Theorem 4. Let Π = (O,µ,w1, . . . , wn, R1, . . . , Rn, ρ) be a membrane system
with priorities. Then there is a time Petri net N = (P, T, F, V,m0, I) such that N
halts if and only if Π halts and, if either of them halts, then they provide the same
result.

Proof. Let Π as above. We describe the Petri net N simulating Π. The only dif-
ferences in comparison with the model in Theorem 1 occur by the rule application
phase when we select the transitions that stand for the applicable rules. We adopt
the stipulation that no rule can occur both on the left hand side of a priority
relation and on the right hand side of a (possibly di�erent) priority relation. We
omit repeating the construction of the Petri net in detail and we con�ne ourselves
to the rule application phase that represents the di�erence. The places are

• P = P0 ∪ P̄0 ∪ PTA ∪ PTNA ∪ {initapp, initcom, sem, enabld}, where P0 =
O×{1, . . . , n} and P̄0 = Ō×{1, . . . , n} and the auxiliary places are de�ned as in
Theorem 1. Regarding the new places, PTA = {ptAi,j | ri,j ∈ Ri, 1 ≤ j ≤ |Ri|}
and PTNA = {ptNAi,j | ri,j ∈ Ri, 1 ≤ j ≤ |Ri|}.
The new places accomplish some bookkeeping in order to keep track of which

rules are applicable and which ones are not. A token in ptAi,j should symbolize the

applicability of an arbitrary ri,j ∈ Ri, while a token in ptNAi,j should mean that ri,j
is not applicable in that maximal parallel step. We de�ne now the new transitions
together with the arcs induced by these transitions.

• T = T0 ∪ T ∗0 ∪ T# ∪ Tρ ∪ T [∪ {tapp, tcom, t1sem, t2sem}.

The transitions are de�ned as before, except for the elements of Tρ and T
[, where

Tρ = {tri>rj | ri, rj ∈ mk, and (r1, r2) ∈ ρ} and T [= {t[i,j | ti,j ∈ T0}. We retain
the arcs de�ned in the construction of the core model between the places and
transitions. Modi�cations take place only in connection with the new states and
transitions. We detail the rule application phase only.

76 Péter Battyányi, György Vaszil

- Let ri,j ∈ Ri, where 1 ≤ j ≤ |Ri|, 1 ≤ i ≤ n; then, as in the previous

constructions, t#i,j ∈ T# is checking the applicability of ri,j . Let p = (a, i) ∈ P0

and let t#i,j ∈ T#; then p ∈ •(t#i,j)∩(t#i,j)
• and initapp ∈ •t#i,j and enabld ∈ •t

#
i,j∩

(t#i,j)
•, which is a slight modi�cation compared to Theorem 1. Furthermore,

ptAi,j ∈ t
#
i,j

•
.

Regarding the multiplicities, V ((initapp, t
#
i,j)) = 1, and if f = (t#i,j , enabld)

then V (f) = 1; furthermore, if f = (p, t#i,j) or f = (t#i,j , p) where p = (a, i),

then V (f) = lhs(ri,j)(a). in addition, the multiplicity of (t#i,j , pt
A
i,j) is 1.

- Now, we turn to determining the operations of the transitions Tρ. Let ri,j ,
ri,k ∈ Ri with ri,k > ri,j . Then tri,k>ri,j ∈ Tρ, and ptAi,k ∈ •tri,k>ri,j ∩ t•ri,k>ri,j ,
and ptAi,j ∈ •tri,k>ri,j and ptNAi,j ∈ t•ri,k>ri,j .
The multiplicities of all the new arcs is 1.
The elements of T [collect the tokens that might remain in the places PTA

and PTNA after a �nished maximal parallel step. We have ptAi,j , pt
NA
i,j ∈ •t[i,j

for every index pair i, j such that t[i,j ∈ T [. The multiplicities of the arc is 1.

For each tri,k>ri,j ∈ Tρ, we have I(tri,k>ri,j) = [0, 0], moreover, I(t[i,j) = [2, 2].
- Finally, let ti,j ∈ T0, where 1 ≤ i ≤ n and 1 ≤ j ≤ |Ri|. Then, as before,

p = (a, i) ∈ •ti,j if and only if a ∈ lhs(ri,j). In addition, enabld ∈ •ti,j ∩ t•i,j
(1 ≤ i ≤ n, 1 ≤ j ≤ |Ri|).
Regarding the weights of the arcs, let p = (a, i) and f = (p, ti,j) ∈ F . Then the
weight of f is the multiplicity of a ∈ O on the left-hand side of ri,j , namely,
V (f) = lhs(ri,j)(a). If f = (ti,j , enabld) or f = (enabld, ti,j), then V (f) = 1
(1 ≤ i ≤ n, 1 ≤ j ≤ |Ri|). Moreover, if tapp is the transition connecting enabld
to sem, then I(tapp) = [2, 2].

The de�nition of the communication part is the same as that of the proof of
Theorem 1, we ignore repeating the rest of the construction.

Intuitively, the tokens in the places ptAi,j , where ri,j ∈ Ri, stand for the appli-

cability of rule ri,j in region mi. If ri,k > ri,j , then the token in ptAi,j is directed

into ptNAi,j and remains there until that maximal parallel step is �nished. The time
intervals assigned to the transitions tri,k>ri,j ensure that every such pair of the
priority relation is discovered before we begin the actual simulation of the rule
applications. Hence, only transitions corresponding to rules applicable in the weak
sense of of priority are able to �re. If no more rule can be applied, the token in
enabld is passed over to sem at time instance 2, and the simulation of the rule
application phase terminates. �

6 Conclusions

In this paper, we have made a step forward in relating the membrane systems
and time Petri nets. We connected membrane systems with promoters/inhibitors,

Membrane Systems with Priority, . . . and Time Petri Nets 77

(a, 1) ptA2 ptNA2 ptA1 (b, 1)

t2[1,1] [0,0] tr1>r2 [2,2] pt[r2 [2,2] pt[r1 [1,1] t1

(c̄, 1) (d̄, 2)

(a, 1) ptA2 ptNA2 ptA1 (b, 1)

t2[1,1] [0,0] tr1>r2 [2,2] pt[r2 [2,2] pt[r1 [1,1] t1

(c̄, 1) (d̄, 2)

Fig. 8. Assume w1 = a2b and r1, r2 ∈ R1, r1 = ab → d, r2 = a → c such that r1 > r2.
Then t1 can �re only, the token from ptA2 eventually moves to ptNA2 .

membrane dissolution and priority for rules with time Petri nets by extending the
Petri net model presented in [4]. We preserved the main characteristic of Petri nets,
namely, the �rings of the transitions can take place in any order: we do not impose
any additional condition on the transition sequences in order to obtain a Petri net
model equivalent to the general Turing machine. We can ignore the requirement of
computing with maximal parallel transition sequences in the case of the Petri nets.
Instead, our simulating Petri net model adopts the usual semantics: the �reable
transitions can �re in any possible order.

References

1. B. Aman, G. Ciobanu. Adding Lifetime to Objects and Membranes in P Systems.
International Journal of Computers, Communications and Control, 5(3) (2010) 268�
279.

2. B. Aman, G. Ciobanu. Veri�cation of Membrane Systems with Delays via Petri Nets
with Delays. Theoretical Computer Science, 598 (2015) 87�101.

3. B. Aman, P. Battyányi, G. Ciobanu, Gy. Vaszil, Simulating P systems with membrane
dissolution in a chemical calculus. Natural Computing 15 (4) (2016), 521-532.

4. B. Aman, P. Battyányi, G. Ciobanu, Gy. Vaszil. Local time mem-
brane systems and time Petri nets. Theoretical Computer Science, (2018),
https://doi.org/10.1016/j.tcs.2018.06.013

5. B. Aman, G. Ciobanu, G.M. Pinna. Timed Catalytic Petri Nets. In Proceedings
SYNASC, IEEE Computer Society, 319�326, 2012.

6. M. Cavaliere, D. Sburlan. Time and Synchronization in Membrane Systems. Funda-
menta Informaticae, 64(1) (2005) 65 � 77.

7. M. Cavaliere, D. Sburlan. Time Independent P Systems Towards a Petri Net Seman-
tics for Membrane Systems. Lecture Notes in Computer Science, vol.3365, 239�258,
2005.

8. G. Ciobanu, G.M. Pinna. Catalytic and Communicating Petri Nets are Turing Com-
plete. Information and Computation, 239 (2014) 55�70.

9. R. Freund, O. Ibarra, A. P un, P. Sosík, H.-C. Yen. Catalytic P Systems. In [19],
83�117, 2010.

10. M.H.T. Hack. Decidability Questions for Petri Nets, PhD Thesis, M.I.T., 1976.

78 Péter Battyányi, György Vaszil

11. M. Ionescu, Gh. P un, T. Yokomori. Spiking Neural P Systems. Fundamenta Infor-

maticae, 71 (2006) 279�308.
12. R.M. Karp, R.E. Miller. Parallel Program Schemata. Journal of Computer and Sys-

tem Sciences, 3 (1969) 147�195.
13. J.H.C.M. Kleijn, M. Koutny, G. Rozenberg. Towards a Petri Net Semantics for Mem-

brane Systems. Lecture Notes in Computer Science, vol.3850, 292�309, 2005.
14. S.R. Kosaraju. Decidability of Reachability in Vector Addition Systems. 14th ACM

Symposium on Theory of Computing, 267�281, 1982.
15. C. Martín-Vide, Gh. P un, J. Pazos, A. Rodríguez-Patón. Tissue P Systems. Theo-

retical Computer Science, 296 (2003) 295�326.
16. E.W. Mayr. Persistence of Vector Replacement Systems is Decidable. Acta Infor-

matica, 15 (1981) 309�318.
17. P.M. Merlin. A Study of the Recoverability of Computing Systems. PhD Thesis,

University of California, Irvine, 1974.
18. Gh. P un. Membrane Computing - An Introduction, Springer, 2002.
19. Gh. P un, G. Rozenberg, A. Salomaa. The Oxford Handbook of Membrane Comput-

ing. Oxford University Press, 2010.
20. C.A. Petri. Kommunikation mit Automaten. Dissertation, Universität Hamburg,

1962.
21. L. Popova. On Time Petri Nets. Journal of Information Processing and Cybernetics,

27(4) (1991) 227�244.
22. L. Popova-Zeugmann. Time and Petri Nets, Springer, 2013.

