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Abstract. In this work we investigate the derivations of n−dimensional complex
evolution algebras, depending on the rank of the appropriate matrices. For evolution
algebra with non-singular matrices we prove that the space of derivations is zero. The
spaces of derivations for evolution algebras with matrices of rank n− 1 are described.
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1. Introduction and Preliminaries

The notion of evolution algebras recently was introduced in the book [11], where the
author represented a lot of connections of evolution algebras with the other objects in
mathematics, genetic and physics. The basic properties and some classes of evolution
algebras were studied as well in [1], [10], [11].

The concept of evolution algebras lies between algebras and dynamical systems. Al-
though, evolution algebras do not form a variety (they are not defined by identities),
algebraically, their structure has table of multiplication, which satisfies the conditions of
commutative Banach algebra. Dynamically, they represent discrete dynamical systems.
In fact, evolution algebras are close related with graph and group theories, stochastic
processes, mathematical physics, genetics etc. The papers [4]- [6] were devoted to study
of genetics using an abstract algebraic approach.

Recall the definition of evolution algebras. Let E be a vector space over a field K
with defined multiplication · and a basis {e1, e2, . . . } such that

ei · ej = 0, i 6= j,

ei · ei =
∑

k

aikek, i ≥ 1,

then E is called evolution algebra and basis {e1, e2, . . . } is said to be natural basis.
From the above definition it follows that evolution algebras are commutative (there-

fore, flexible).
Let E be a finite dimensional evolution algebra with natural basis {e1, . . . , en}, then

ei · ei =
n

∑

j=1

aijej , 1 ≤ i ≤ n,

where remaining products are equal to zero.
The matrix A = (aij)

n
i,j=1 is called matrix of the algebra E in natural basis

{e1, . . . , en}.
Obviously, rankA = dim(E · E). Hence, for finite dimensional evolution algebra the

rank of the matrix does not depend on choice of natural basis.
1
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The derivation for evolution algebra E is defined as usual, i.e., a linear operator
d : E → E is called a derivation if

d(u · v) = d(u) · v + u · d(v)

for all u, v ∈ E.
Note that for any algebra, the space Der(E) of all derivations is a Lie algebra with

the commutator multiplication.
Let d be a derivation of evolution algebra E with natural basis {e1, . . . , en} and

d(ei) =
∑n

j=1 dijej, 1 ≤ i ≤ n. Then the space of derivations for evolution algebra E is

described as follows in [11].

Der(E) =

{

d ∈ End(E) | akjdij + akidij = 0, for i 6= j; 2ajidii =
n

∑

k=1

akidjk

}

.

In the theory of non-associative algebras, particularly, in genetic algebras, the Lie
algebra of derivations of a given algebra is one of the important tools for studying its
structure. There has been much work on the subject of derivations of genetic algebras
( [2], [3], [7]).
In [9] multiplication is defined in terms of derivations, showing the significance of

derivation in genetic algebras. Several genetic interpretations of derivation of genetic
algebra are given in [8].
For evolution algebras the system of equations describing the derivations are given

in [11]. In this work, we establish that the space of derivations of evolution algebras with
non-singular matrices is equal to zero. The description of the derivations for evolution
algebras, the matrices of which are of rank n− 1 is obtained.

2. Main Result

The following theorem describes derivations of evolution algebras with non-singular
matrices.

Theorem 2.1. Let d : E → E be a derivation of evolution algebra E with non-singular

evolution matrix in basis 〈e1, . . . , en〉. Then this derivation d is zero.

Proof. For a derivation d we have d(ei)ej + eid(ej) = 0 and d(eiei) = 2d(ei)ei for all
1 ≤ i 6= j ≤ n.

Let d(ek) =

n
∑

i=1

dkiei. Then we obtain

dij(ejej) + dji(eiei) = 0 (1)

d(eiei) = 2dii(eiei) (2)

for all 1 ≤ i 6= j ≤ n.
Since evolution matrix A of algebra E is non-degenerated and (ei·ei), (ej ·ej) represent

the i−th and j−th rows of the matrixA respectively, they can not be linearly dependent.
Thus, dij = dji = 0 for all 1 ≤ i 6= j ≤ n. Therefore, d = diag{d11, . . . , dnn} and

d(ek) = dkkek. Hence spec(d) = {d11, . . . , dnn}.
Now d(ei · ei) = 2d(ei) · ei = 2dii(ei · ei).
Since A is a non-singular, ei · ei 6= 0 for all 1 ≤ i ≤ n. The last equality shows that

{2d11, . . . , 2dnn} = spec(d).

This is possible if only d is zero. �
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Now we will investigate derivations for evolution algebras with matrices of rank n−1.
Since rankA = n−1, making the suitable basis permutation we can assume that first

n− 1 rows of the matrix A are linearly independent, i.e., e1e1, . . . , en−1en−1 are linearly

independent and enen =
n−1
∑

k=1

bk(ekek) for some b1, . . . , bn−1 ∈ C.

Since eiei 6= 0 for all 1 ≤ i ≤ n− 1, from (2) we obtain that 2dii is an eigenvalue of
d for all 1 ≤ i ≤ n− 1. Hence,

spec(d) ⊇ {2d11, 2d22, . . . , 2dn−1n−1}.

Now from equality (1) we deduce dij = dji = 0 for all 1 ≤ i 6= j ≤ n− 1.
By putting i = n to (1) we obtain dnj(ejej) + djn(enen) = 0 or

(dnj + djnbj)(ejej) +
n−1
∑

k=1,k 6=j

djnbk(ekek) = 0

Hence we obtain djnbk = 0 and dnj + djnbj = 0 for all 1 ≤ k 6= j ≤ n− 1.
Depending on different values of bk we will consider several cases.

Lemma 2.2. Let enen =

n−1
∑

k=1

bk(ekek) and bp 6= 0, bq 6= 0 for some 1 ≤ p 6= q ≤ n. Then

d = 0.

Proof. In this case we have djnbp = 0 for all 1 ≤ j 6= p ≤ n − 1 and djnbq = 0 for all
1 ≤ j 6= q ≤ n− 1, which implies djn = 0 for all 1 ≤ j ≤ n− 1.

Putting djn = 0 to dnj + djnbj = 0 we obtain dnj = 0 for all 1 ≤ j ≤ n− 1.
Hence, d = diag{d11, d22, . . . , dnn}.
Since enen 6= 0 from (2) we obtain that 2dnn is an eigenvalue of d. Hence,

spec(d) = {d11, d22, . . . , dnn} = {2d11, 2d22, . . . , 2dnn}

which is possible if only d = 0. �

It should be noted that the opposite statement is not true.
From this lemma it follows that the only cases left to investigate are enen = 0 and

enen = bkek, bk 6= 0 for some 1 ≤ k ≤ n. In the last case, by making suitable basis
permutation one can assume that enen = b(e1e1), b 6= 0. Consider the following n × n
matrices:



























d11 0 . . . 0 0 . . . 0 d1n
0 0 . . . 0 0 . . . 0 0
...

...
. . .

...
...

...
...

0 0 . . . 0 0 . . . 0 0
0 0 . . . 0 2d11 . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . 0 0 . . . 2n−s−1d11 0
−bd1n 0 . . . 0 0 . . . 0 d11



























(D1)
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d11 0 . . . 0 0 . . . 0 0 . . . 0 d1n
0 d22 . . . 0 0 . . . 0 0 . . . 0 0
...

...
. . .

...
...

...
...

...
...

0 0 . . . 2k−1d22 0 . . . 0 0 . . . 0 0
0 0 . . . 0 2d11 . . . 0 0 . . . 0 0

0 0 . . .
...

...
. . .

...
...

...
...

0 0 . . . 0 0 . . . 2m−kd11 0 . . . 0 0
0 0 . . . 0 0 . . . 0 0 . . . 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . 0 0 . . . 0 0 . . . 0 0

−bd1n 0 . . . 0 0 . . . 0 0 . . . 0 d11







































(D2)































d11 0 . . . 0 0 . . . 0 0 d1n
0 0 . . . 0 0 . . . 0 0 0
...

...
. . .

...
...

...
...

...
0 0 . . . 0 0 . . . 0 0 0
0 0 . . . 0 d11

2n−s−2 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 . . . 0 0 . . . d11

2
0 0

0 0 . . . 0 0 . . . 0 d11 0
−bd1n 0 . . . 0 0 . . . 0 0 d11































(D3)

Lemma 2.3. Let enen = b(e1e1), b 6= 0. Then derivation d is either zero or it is in one

of the following forms up to basis permutation:

(i) (D1) where d11 =
δ

2n−s − 1
, 1 ≤ s ≤ n− 1 and δ2 = −bd21n;

(ii) (D2) where d22 =
1− 2m−k

2k−1
d11, d11 =

δ

2m−k+1 − 1
, 1 ≤ k < m ≤ n − 1 and

δ2 = −bd21n;
(iii) (D3) where d11 = δ and δ2 = −bd21n.

Proof. We have d2n = · · · = dn−1n = 0, dn2 = · · · = dnn−1 = 0 and dn1 = −bd1n.
By putting i = n in (2), we obtain

2bd11(e1e1) = bd(e1e1) = d(b(e1e1)) = d(enen) = 2dnn(enen) = 2dnnb(e1e1).

Hence, d11 = dnn.
From (2) we deduce that

ai1(d11e1 + d1nen) +

n−1
∑

j=2

aijdjjej + ain(−bd1ne1 + d11en) = d(eiei) = 2dii(eiei) =

2dii

n
∑

j=1

aijej

which implies
ai1(2dii − d11) = −aind1nb (3)

ain(2dii − d11) = ai1d1n (4)

aij(2dii − djj) = 0 (5)

for all 1 ≤ i ≤ n− 1 and 2 ≤ j ≤ n− 1.
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If d1n = 0, then d = diag{d11, . . . , dn−1n−1, d11} and {d11, . . . , dn−1n−1} = spec(d) ⊇
{2d11, 2d22, . . . , 2dn−1n−1} which leads to d = 0.

Assume that d1n 6= 0. One can find spec(d) = {d22, . . . , dn−1n−1, α, β}, where α =
d11 + δ, β = d11 − δ and δ2 = −bd21n. Obviously, α 6= β.

Let λ ∈ spec(d) be such that |λ| = max{|α|, |β|, |d22|, . . . , |dn−1n−1|}.
If λ ∈ {d22, . . . , dn−1n−1} then 2λ is also an eigenvalue which contradicts to module

maximality of λ. Therefore λ = α or λ = β.
Also note that from (3) and (4) it follows that ai1 = 0 if and only if ain = 0.
If ai1 6= 0 (ain 6= 0), then multiplying (3) and (4) we obtain (2dii − d11)

2 = −bd21n or
2dii = d11 ± δ. Hence for these i we have

dii =
1

2
α or dii =

1

2
β. (6)

Now we consider several cases.

Case 1. Let αβ 6= 0, α+β 6= 0. Since α+β = 2d11 ∈ spec(d) and α+β 6∈ {α, β} we
obtain that there exists i1 such that di1i1 = α+ β. Then 2di1i1 ∈ spec(d) which implies
that 2di1i1 = di2i2 for some i2 or 2di1i1 ∈ {α, β}. If 2di1i1 = di2i2 we can continue till we
obtain 2kdi1i1 = · · · = 2dikik ∈ {α, β} for some 1 ≤ k ≤ n− 2.

Thus, for some 1 ≤ k ≤ n− 2 we have 2k(α + β) ∈ {α, β}.
Let us assume that 2k(α+ β) = α.
Then d11 =

α
2k+1 , di1i1 =

α
2k
, . . . , dikik = α

2
and β = −(1 − 1

2k
)α. Hence, |β| < |α| and

obviously, 2sβ 6= 2rα for any r, s ∈ Z.
Consider the possible non-zero values of |d22|, . . . , |dn−1n−1| and let them be d1 <

· · · < dp. We already know that {d1, . . . , dn−1} ⊇ { |α|
2k
, . . . , |α|

2
}. Since spec(d) ⊇

{2d22, . . . , 2dn−1n−1} one obtains that 2d1, . . . , 2dp ∈ {d1, . . . , dp, |α|, |β|}.

Since 2dp ≤ |α| and dikik = α
2
we conclude that dp =

|α|
2
.

Observe that there can be only one eigenvalue dikik = α
2
with module dp. Indeed, if for

some i we have |dii| = dp, dii 6=
α
2
, then spec(d) ∋ 2dii 6= α and |2dii| = |α|. Therefore,

there exists j such that djj = 2dii. But then 2djj ∈ spec(d) and |2djj| = 2|α| > |α|
which is a contradiction.

Now since there is only one eigenvalue with module 1
2
|α| one obtains that there is

only one eigenvalue 1
4
α of module dp−1 and etc.

If not all d2, . . . , dp are in the form 1
2m

|α| then applying similar arguments to |β| we
obtain that there can be at most only one eigenvalue 1

2
β with module 1

2
|β|, 1

4
β with

module 1
4
|β| and etc.

Hence, {d22, . . . , dn−1n−1} \ {0} =

s
⋃

i=1

{
1

2i
α} or {d22, . . . , dn−1n−1} \ {0} =

s
⋃

i=1

{
1

2i
α}

r
⋃

j=1

{
1

2j
β}.

Case 1.1. Let {d22, . . . , dn−1n−1} \ {0} =
s
⋃

i=1

{
1

2i
α}. Then from (6) for those i such

that ain 6= 0 we obtain 2dii = α. Then (4) implies ai1 = α−d11
d1n

ain. Hence, the first and
the last columns of the matrix A are collinear. Therefore, all other columns must be
non-zero and linearly independent so that rankA = n− 1 is satisfied.

Assume that there are s − 1 zeros among d22, . . . , dn−1n−1. Then 0 = d22 = · · · =
dss < |ds+1s+1| ≤ |ds+2s+2| ≤ · · · ≤ |dn−1n−1|. If 2 ≤ i ≤ s and s + 1 ≤ j ≤ n − 1
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then 2dii − djj = −djj 6= 0 and from aij(2dii − djj) = 0 we obtain aij = 0 for 2 ≤ i ≤
s, s+ 1 ≤ j ≤ n− 1.
Now if 2 ≤ j ≤ s and s+1 ≤ i ≤ n−1 then djj = 0, dii 6= 0 and from aij(2dii−djj) = 0

we conclude that aij = 0 for 2 ≤ j ≤ s, s+ 1 ≤ i ≤ n− 1.
Since ds+1s+1 6= 2dii for all 2 ≤ i ≤ n − 1, from (5) we obtain ais+1 = 0 for all

2 ≤ i ≤ n − 1. Since 2−, . . . , (n − 1)−th columns are linearly independent, a1s+1 6= 0
and therefore, by (5) we obtain ds+1s+1 = 2d11.
Now we will show that among ds+1s+1, . . . , dn−1n−1 there are no equal elements. Let

ds+1s+1 = ds+2s+2. Then ds+2s+2 6= 2dii for all 2 ≤ i ≤ n − 1 and from (5) we obtain
ais+2 = 0 for all 2 ≤ i ≤ n− 1. Hence, the (s+ 2)−th column is either zero or collinear
to (s+ 1)−th column of matrix A. This is a contradiction.
Now let |ds+1s+1| < |ds+2s+2| < · · · < |djj| = |dj+1j+1| ≤ · · · ≤ |dn−1n−1| for some

s + 2 ≤ j ≤ n − 2. Then 2dii − djj = 0 if and only if i = j − 1 and therefore (5)
implies aij = 0 for all i 6= j − 1. Similarly, since 2dii − dj+1j+1 = 0 only if i = j − 1
we obtain aij+1 = 0 for all i 6= j − 1. This implies that either columns j and j + 1 are
collinear or at least one of them is zero, which is a contradiction. Hence in this case
all ds+1s+1, . . . , dn−1n−1 are distinct and 2n−sd11 = 2n−s−1ds+1s+1 = · · · = 2dn−1n−1 = α
and hence 2n−sd11 = d11 + δ ⇒ d11 =

1
2n−s−1

δ.
Therefore matrix A should be in the form































0 0 . . . 0 a1s+1 0 . . . 0 0
0 a22 . . . a2s 0 0 . . . 0 0
...

...
...

...
...

. . .
...

...
0 as2 . . . ass 0 0 . . . 0 0
0 0 . . . 0 0 as+1s+2 . . . 0 0
...

...
...

...
...

. . .
...

...
0 0 . . . 0 0 0 . . . an−2n−1 0

an−11 0 . . . 0 0 0 . . . 0 an−1n

0 0 . . . 0 ba1s+1 0 . . . 0 0































(A1)

and d is in the form (D1) with d11 =
δ

2n−s − 1
.

Case 1.2. Let {d22, . . . , dn−1n−1} \ {0} =

s
⋃

i=1

{
1

2i
α}

r
⋃

j=1

{
1

2j
β}.

Assume that {d22, . . . , dkk} =

r
⋃

j=1

{
1

2j
β}, {dk+1k+1, . . . , dmm} =

s
⋃

i=1

{
1

2i
α} and

dm+1m+1 = · · · = dn−1n−1 = 0 such that |d22| ≤ · · · ≤ |dkk|, |dk+1k+1| ≤ · · · ≤ |dmm|.
Since 2dii−d22 6= 0 for all 1 ≤ i ≤ n from (5) and due to ain = bai1 we obtain ai2 = 0

for all 1 ≤ i ≤ n. Now since rankA = n − 1, the other columns must be non-zero and
linearly independent. Similarly, as in Case 1.1 one obtains that d33 6= d22 and so on.
Hence,

dkk = 2dk−1k−1 = · · · = 2k−1d22

and for all 3 ≤ j ≤ k it follows that aj−1j 6= 0, aij = 0 (i 6= j − 1).
Now since 2dii − dk+1k+1 6= 0 for all 2 ≤ i ≤ n− 1, where dk+1k+1 is 1

2s
α, it must be

dk+1k+1 = 2d11. Otherwise, the (k+1)− column is zero, which is a contradiction. Then
in the (k + 1)−th column the only non-zero elements are a1k+1 and ank+1 = ba1k+1.
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Applying the similar arguments as in Case 1.1 we deduce

dmm = 2dm−1m−1 = · · · = 2m−k−1dk+1k+1 = 2m−kd11

and for all k + 1 ≤ j ≤ m we have aj−1j 6= 0, aij = 0, i 6= j − 1.
Now for all 1 ≤ i ≤ m and m + 1 ≤ j ≤ n − 1 we have 2dii − djj = 2dii 6= 0. Then

from (6) we obtain aij = 0 for all 1 ≤ i ≤ m and m + 1 ≤ j ≤ n − 1. Also, since
anj = ba1j , it follows anj = 0 for m+ 1 ≤ j ≤ n.

Hence, dkk =
1
2
β and dmm = 1

2
α. Then from (4) and (6) it follows that

akn =
d1n

β − d11
ak1 6= 0 and amn =

d1n
α− d11

am1 6= 0.

Also from d11 + δ = α = 2dmm = 2m−k+1d11 it follows that d11 =
δ

2m−k+1 − 1
.

Now 2d11 − α = β = 2dkk = 2kd22 implies d22 =
1− 2m−k

2k−1
d11.

Hence, the matrix of A is














































0 0 0 . . . 0 a1k+1 0 . . . 0 0 . . . 0 0
0 0 a23 . . . 0 0 0 . . . 0 0 . . . 0 0
...

...
...

. . .
...

...
...

...
...

...
...

0 0 0 . . . ak−1k 0 0 . . . 0 0 . . . 0 0
ak1 0 0 . . . 0 0 0 . . . 0 0 . . . 0 akn
0 0 0 . . . 0 0 ak+1k+2 . . . 0 0 . . . 0 0
...

...
...

...
...

...
. . .

...
...

...
...

0 0 0 . . . 0 0 0 . . . am−1m 0 . . . 0 0
am1 0 0 . . . 0 0 0 . . . 0 0 . . . 0 amn

0 0 0 . . . 0 0 0 . . . 0 am+1m+1 . . . am+1n−1 0
...

...
...

...
...

... . . .
...

...
. . .

...
...

0 0 0 . . . 0 0 0 . . . 0 an−1m+1 . . . an−1n−1 0
0 0 0 . . . 0 ba1k 0 . . . 0 0 . . . 0 0















































Denote by (A2) the form of the above matrix. For the evolution algebra with matrix

in the form (A2) the derivation d is in the form (D2) with d22 =
1− 2m−k

2k−1
d11 and

d11 =
δ

2m−k+1 − 1
.

Note that, we can assume 2k(α + β) = β in the beginning of our argumentation in

this case. Then in Case 1.1 we obtain that d is in the form (D1) with d11 =
−δ

2n−s − 1
.

In Case 1.2 d is in the form (D2) with d22 =
1− 2m−k

2k−1
d11 and d11 =

−δ

2m−k+1 − 1
.

Case 2. Let αβ 6= 0, α = −β, i.e., d11 = 0. We will show that this case is impossible.
Obviously, there are non-zero elements among d22, . . . , dn−1n−1. Otherwise, from (3)

and (4) it follows that the first and the last columns of matrix A are zero, which is a
contradiction.

Now consider the possible non-zero values of |d22|, . . . , |dn−1n−1| and let them be
d1 < · · · < dp. Since spec(d) ⊇ {2d22, . . . , 2dn−1n−1} one obtains that 2d1, . . . , 2dp ∈
{d1, . . . , dp, |α|}.

Since this values are non-zero, we deduce that |α| = 2dp, dp = 2dp−1, . . . , d2 = 2d1.
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Observe that there can be only eigenvalue α
2
or−α

2
with module dp. Indeed, if for some

i we have |dii| = dp, dii 6= ±α
2
we obtain spec(d) ∋ 2dii 6= ±α and |2dii| = |α|. Therefore,

there exists j such that djj = 2dii. But then 2djj ∈ spec(d) and |2djj| = 2|α| > |α|
which is a contradiction.
Now since ±1

2
α are the only possible eigenvalues with module 1

2
|α| one obtains that

the only possible eigenvalues with module dp−1 are ±1
4
α and etc.

Hence, {d22, . . . , dn−1n−1} \ {0} ⊆
s
⋃

i=1

{
1

2i
α}

r
⋃

j=1

{−
1

2j
α}.

If 1
2
α 6∈ {d22, . . . , dn−1n−1} and −1

2
α 6∈ {d22, . . . , dn−1n−1} then from (6) we obtain

that the first and the last columns are zero which contradicts to rankA = n− 1. Hence
there exists 2 ≤ k ≤ n− 1 such that dkk ∈ {1

2
α,−1

2
α}.

Now, if {d22, . . . , dn−1n−1}\{0} ⊇

s
⋃

i=1

{
1

2i
α} and −1

2
α 6∈ {d22, . . . , dn−1n−1} then by (4)

and (6) we obtain that the first and the last columns of matrix A are linearly dependent,
i.e., ai1 = α

d1n
ain for all 1 ≤ i ≤ n. Hence, in order to be rankA = n − 1 the other

columns must be non-zero and linearly independent.
However, if dpp =

1
2s
α, then from (5) we obtain that the p−th column is zero which

is a contradiction.

Now if {d22, . . . , dn−1n−1}\{0} ⊇
r
⋃

j=1

{−
1

2j
α} and 1

2
α 6∈ {d22, . . . , dn−1n−1} then by (4)

and (6) we obtain that the first and the last columns of matrix A are linearly dependent,
i.e., ai1 = −α

d1n
ain for all 1 ≤ i ≤ n. Hence, in order to be rankA = n − 1 the other

columns must be non-zero and linearly independent.
However, if dpp =

1
2q
α, then from (5) we obtain that the p−th column is zero which

is a contradiction.

Now let {d22, . . . , dn−1n−1} \ {0} =

s
⋃

i=1

{
1

2i
α}

r
⋃

j=1

{−
1

2j
α}. Then for dpp = 1

2s
α and

dqq = − 1
2r
α we obtain 2dii − dpp 6= 0, 2dii − dqq 6= 0 for all 1 ≤ i ≤ n − 1 and hence

from (5) the p−th and q−th columns are zero which is a contradiction to rankA = n−1.

Case 3. Let α 6= 0, β = 0.
Then 2d11 = α = d11 + δ, and hence d11 = δ.
Let us consider the possible non-zero values of |d22|, . . . , |dn−1n−1| and let them be

d1 < · · · < dp. Since spec(d) ⊇ {2d22, . . . , 2dn−1n−1} one obtains that 2d1, . . . , 2dp ∈
{d1, . . . , dp, |α|}.
Since this values are non-zero, it follows that |α| = 2dp, dp = 2dp−1, . . . , d2 = 2d1.
Observe that there can be only eigenvalue α

2
with module dp. Indeed,if for some i we

have |dii| = dp, dii 6=
α
2
we obtain spec(d) ∋ 2dii 6= α and |2dii| = |α|. Therefore, there

exists j such that djj = 2dii. But then 2djj ∈ spec(d) and |2djj| = 2|α| > |α| which is
a contradiction.
Similarly, since there is only one eigenvalue with module 1

2
α one obtains that there

is only one eigenvalue 1
4
α of module dp−1 and etc.

Thus, spec(d) = { 1
2p
α, . . . , 1

2
α, α} or spec(d) = {0, 1

2p
α, . . . , 1

2
α, α}. Again, by making

suitable basis permutation one can assume that |d22| ≤ · · · ≤ |dn−1n−1|.
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Assume that there are s−1 zeros among d22, . . . , dn−1n−1. Then 0 = d22 = · · · = dss <
ds+1s+1 ≤ ds+2s+2 ≤ · · · ≤ dn−1n−1. If 1 ≤ i ≤ s and s+1 ≤ j ≤ n−1 then 2dii−djj 6= 0
and from aij(2dii − djj) = 0 we obtain aij = 0 for 1 ≤ i ≤ s, s+ 1 ≤ j ≤ n− 1.

Now if 2 ≤ j ≤ s and s+1 ≤ i ≤ n−1 then djj = 0, dii 6= 0 and from aij(2dii−djj) = 0
we obtain aij = 0 for 2 ≤ j ≤ s, s+ 1 ≤ i ≤ n− 1.

Since ds+1s+1 6= 2dii for all s+1 ≤ i ≤ n−1, from ais+1(2dii−ds+1s+1) = 0 we obtain
ais+1 = 0 for all s+ 1 ≤ i ≤ n− 1, i.e., the (s+ 1)−th column of matrix A is zero.

Now we will show that among ds+1s+1, . . . , dn−1n−1 there are no equal elements. Let
ds+1s+1 = ds+2s+2. Then ds+2s+2 6= 2dii for all s + 1 ≤ i ≤ n − 1, from ais+2(2dii −
ds+2s+2) = 0 we obtain ais+2 = 0 for all s + 1 ≤ i ≤ n − 1 i.e., the (s + 2)−th column
of matrix A is zero. This is a contradiction to rankA = n− 1.

Now let ds+1s+1 < ds+2s+2 < · · · < djj = dj+1j+1 ≤ · · · ≤ dn−1n−1 for some s + 2 ≤
j ≤ n− 2. Then 2dii − djj = 0 only if i = j − 1 and therefore aij(2dii − djj) = 0 implies
aij = 0 for all i 6= j − 1. Similarly, since 2dii − dj+1j+1 = 0 only if i = j − 1 we obtain
aij+1 = 0 for all i 6= j − 1. This implies that either columns j and j + 1 are collinear or
at least one of them is zero. However, this contradicts to rankA = n− 1. Hence in this
case all ds+1s+1, . . . , dnn are distinct.

Also from (6) it follows that ai1 = ain = 0 for all s+ 1 ≤ i ≤ n− 1.
Therefore matrix A should be in the form































a11 0 . . . 0 0 0 . . . 0 a1n
a21 a22 . . . a2s 0 0 . . . 0 a2n
...

...
...

...
...

...
...

as1 as2 . . . ass 0 0 . . . 0 asn
0 0 . . . 0 0 as+1s+2 . . . 0 0
...

...
...

...
...

. . .
...

...
0 0 . . . 0 0 0 . . . an−2n−1 0

an−11 0 . . . 0 0 0 . . . 0 an−1n

ba1n 0 . . . 0 0 0 . . . 0 0































. (A3)

Hence, for the evolution algebra with matrix in the form (A3) the derivation d is in
the form (D3) with d11 = δ.

Note that in symmetrical case α = 0, β 6= 0 one can obtain in a similar way that d is
in the form (D3) with d11 = −δ. So the statement of Lemma 2.3 is verified. �

The following lemma completes the description of derivations of evolution algebras
with matrices of rank n− 1.

Lemma 2.4. Let evolution algebra has a matrix A = (aij)1≤i,j≤n in the natural basis

e1, . . . , en such that enen = 0 and rankA = n − 1. Then derivation d of this evolution

algebra is either zero or it is in one of the following forms up to basis permutation:









0 . . . 0 d1n
...

. . .
...

...

0 . . . 0 dn−1n

0 . . . 0 0









, (D4)

where

n−1
∑

k=1

aikdkn = 0, 1 ≤ i ≤ n− 1;
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0 . . . 0 0 . . . 0 0
...

. . .
...

...
...

...

0 . . . 0 0 . . . 0 0
0 . . . 0 dnn

2n−k−1 . . . 0 dk+1n
...

. . .
...

...
. . .

...
...

0 . . . 0 0 . . . dnn

2
dn−1n

0 . . . 0 0 . . . 0 dnn























, (D5)

where di+1n = ain
aii+1

(

1
2n−i−1 − 1

)

dnn, aii+1 6= 0, k + 1 ≤ i ≤ n − 2, 1 ≤ k ≤ n − 1 and

dk+1n ∈ C.

Proof. From enen = 0 we obtain dnj = 0 for all 1 ≤ j ≤ n − 1. Now one can see that
spec(d) = {d11, . . . , dnn} ⊇ {2d11, 2d22, . . . , 2dn−1n−1}.
Let λ ∈ spec(d) be such that |λ| = max1≤i≤n |dii|.
If λ ∈ {d11, . . . , dn−1n−1} then 2λ ∈ spec(d) which yields λ = 0. Therefore, in this

case we obtain d11 = · · · = dnn = 0 and d(ei) = dinen for all 1 ≤ i ≤ n− 1. Then from

(2) it follows that
n

∑

j=1

aijdjnen = d(eiei) = 0 for all 1 ≤ i ≤ n− 1. The last one implies

that vector (d1n, . . . , dn−1n, 0) is a solution of homogeneous linear system of equations
Ax = 0. Observe that if the first n− 1 columns are linearly independent then d = 0.
In order to d 6= 0 we consider the matrices with first n−1 columns linearly dependent.

Denote the form of this matrices by (A4).
So in this case d is in the form (D4).

Now if λ /∈ {d11, . . . , dn−1n−1} then λ = dnn and we can assume that dnn 6= 0. Consider
the possible non-zero values of |d11|, . . . , |dn−1n−1| and let them be d1 < · · · < dp. Since
spec(d) ⊇ {2d11, . . . , 2dn−1n−1} one obtains that 2d1, . . . , 2dp ∈ {d1, . . . , dp, |dnn|}. Since
this values are non-zero, we deduce |dnn| = 2dp, dp = 2dp−1, . . . , d2 = 2d1. Observe that
there can be only one eigenvalue 1

2
dnn with module dp. Indeed,if for some i < n we have

|dii| = dp, dii 6= dnn we obtain spec(d) ∋ 2dii 6= dnn and |2dii| = |dnn|. Therefore, there
exists 1 ≤ j ≤ n− 1 such that djj = 2dii. But then 2djj ∈ spec(d) and |2djj| = 2|dnn| >
|dnn| which is a contradiction. Similarly, since there is only one eigenvalue with module
1
2
dnn one obtains that there is only one eigenvalue 1

4
dnn of module dp−1 and etc.

Hence, spec(d) = {dnn

2p
, . . . , dnn

2
, dnn} or spec(d) = {0, dnn

2p
, . . . , dnn

2
, dnn}. Now making

appropriate basis permutation we can assume that |d11| ≤ · · · ≤ |dn−1n−1| < |dnn|.
From (2) we obtain

n−1
∑

j=1

aijdjjej +
n

∑

j=1

(aijdjn)en = d(eiei) = 2dii(eiei) = 2dii

n
∑

j=1

aijej,

which implies
n

∑

j=1

aijdjn = 2diiain and aij(2dii − djj) = 0 for all 1 ≤ i, j ≤ n− 1.

Assume that there are k zeros among d11, . . . , dn−1n−1. Then 0 = d11 = · · · = dkk <
|dk+1k+1| ≤ · · · ≤ |dn−1n−1| < |dnn|. If 1 ≤ i ≤ k and k+1 ≤ j ≤ n−1 then dii = 0, djj 6=
0 and from aij(2dii − djj) = 0 it follows that aij = 0 for 1 ≤ i ≤ k, k + 1 ≤ j ≤ n− 1.
Analogously, if 1 ≤ j ≤ k and k + 1 ≤ i ≤ n − 1 then djj = 0, dii 6= 0 and from

aij(2dii − djj) = 0 we obtain aij = 0 for 1 ≤ j ≤ k, k + 1 ≤ i ≤ n− 1.
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Since dk+1k+1 6= 2dii for all k + 1 ≤ i ≤ n − 1, from aik+1(2dii − dk+1k+1) = 0 we
obtain aik+1 = 0 for all k + 1 ≤ i ≤ n − 1, i.e., the (k + 1)−th column of matrix A is
zero.

Now we will show that among dk+1k+1, . . . , dnn there are no equal elements. Let
dk+1k+1 = dk+2k+2. Then dk+2k+2 6= 2dii for all k + 1 ≤ i ≤ n − 1, from aik+2(2dii −
dk+2k+2) = 0 we obtain aik+2 = 0 for all k + 1 ≤ i ≤ n− 1 i.e., the (k + 2)−th column
of matrix A is zero. This is a contradiction to rankA = n− 1.

Now let |dk+1k+1| < |dk+2k+2| < · · · < |djj| = |dj+1j+1| ≤ · · · < |dnn| for some
k+2 ≤ j ≤ n− 2. Then 2dii − djj = 0 only if i = j− 1 and therefore aij(2dii− djj) = 0
implies aij = 0 for all i 6= j − 1. Similarly, since 2dii − dj+1j+1 = 0 only if i = j − 1
we obtain aij+1 = 0 for all i 6= j − 1. This implies that either columns j and j + 1 are
collinear or at least one of them is zero. However, this contradicts to rankA = n − 1.
Hence in this case all dk+1k+1, . . . , dnn are distinct and dii =

dnn

2n−i for all k+1 ≤ i ≤ n−1.
Now if k + 1 ≤ i, j ≤ n− 1 we have 2dii − djj = 0 if and only if j = i+ 1 and hence

aij = 0 for all k + 1 ≤ i ≤ n− 1 and k + 1 ≤ j ≤ n− 1, j 6= i+ 1. Therefore, matrix A
should be in the form



























a11 . . . a1k 0 0 . . . 0 a1n
...

. . .
...

...
...

...
...

ak1 . . . akk 0 0 . . . 0 akn
0 . . . 0 0 ak+1k+2 . . . 0 ak+1n
...

...
...

...
. . .

...
...

0 . . . 0 0 0 . . . an−2n−1 an−2n

0 . . . 0 0 0 . . . 0 an−1n

0 . . . 0 0 0 . . . 0 0



























(A5)

Denote by Ak = (aij)1≤i,j≤k the k × k submatrix of matrix A.
Since rankA = n− 1 we obtain detAk · ak+1k+2 · · · · · an−1n 6= 0.

Now
n

∑

j=1

aijdjn = 2diiain implies





a11 . . . a1k
...

...
ak1 . . . akk









d1n
...

dkn



 =





0
...
0



 (7)

and aii+1di+1n+aindnn = 2diiain for all k+1 ≤ i ≤ n−2 and an−1ndnn = 2dn−1n−1an−1n

which is an identity.
Now since detAk 6= 0 from (7) it follows that d1n = · · · = dkn = 0.
For k + 1 ≤ i ≤ n− 2 we obtain ain(2dii − dnn) = aii+1di+1n which implies

di+1n =
ain
aii+1

(

1

2n−i−1
− 1

)

dnn.

Hence, derivation d is in the form of (D5). �

As a result of previous lemmas we obtain the following

Theorem 2.5. Let d : E → E be a derivation of n−dimensional evolution algebra E
with matrix A in basis 〈e1, . . . , en〉 such that rankA = n− 1. Then the derivation d is

either zero or is in one of the forms given in Lemma 1.2 and Lemma 1.3.

We can conclude that if the matrix of evolution algebra E can be transformed by
basis permutation to matrices of the form (A1)− (A5), then in this permuted basis the
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corresponding derivations are in the form (D1) − (D5), respectively. Moreover, if the
matrix of evolution algebra E can not be transformed by basis permutation to any of
the forms Ai, 1 ≤ i ≤ 5, then derivation of such algebra is zero.
For all 1 ≤ i ≤ 5 denote by Ei an evolution algebra with matrix, that can be

transformed by basis permutation to the form Ai.
Then it is easy to see that dimDer(Ei) = 2, i 6= 4 and dimDer(E4) = 1.

Proposition 2.6. Let evolution algebra E(k)(1 ≤ k ≤ n) with natural basis {e1, . . . , en}

be such that eiei =
k

∑

j=i

aijej , aii 6= 0 for 1 ≤ i ≤ k and eiei = 0 for k + 1 ≤ i ≤ n. Then

in this basis the derivation has the following matrix:
(

O O
O D

)

(8)

where D ∈ Mn−k(C).

Proof. From (1) it follows that dij(ejej) + dji(eiei) = 0 for all 1 ≤ i 6= j ≤ n. Now if
we take 1 ≤ i 6= j ≤ k then eiei and ejej are linearly independent. Hence, we obtain
dij = dji = 0 for all 1 ≤ i 6= j ≤ k.
Now if 1 ≤ i ≤ k and k + 1 ≤ j ≤ n then ejej = 0 and hence dji(eiei) = 0. This

implies that dji = 0 for all 1 ≤ i ≤ k, k + 1 ≤ j ≤ n.
From (2) we have d(ekek) = 2d(ek)ek.

Since d(ekek) = akkd(ek) = akk

n
∑

j=k

dkjej and 2d(ek)ek = 2dkk(ekek) = 2dkkakkek we

obtain dkk = dkk+1 = · · · = dkn = 0.
Assume that d(ek−j+1) = · · · = d(ek) = 0 for some j.
From (2) we have d(ek−jek−j) = 2d(ek−j)ek−j.

Since d(ek−jek−j) = d(

k
∑

p=k−j

ak−jpep) = ak−j k−jd(ek−j) = ak−j k−j

n
∑

p=k−j

dk−jpep and

2d(ek−j)ek−j = 2dk−jk−j(ek−jek−j) = 2dk−jk−j

k
∑

p=k−j

ak−jpep we deduce dk−jk−j = 0 and

hence dk−j k−j+1 = · · · = dk−jn = 0. Therefore, d(ek−j) = 0 and we obtain d(e1) = · · · =
d(ek) = 0.
Since for k+1 ≤ i, j ≤ n equalities (1) and (2) turn into identities, we obtain that d

is in the form (8). �

Note that dimDer(E(k)) = (n− k)2.
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